亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

殘差網絡(ResNets)在模式識別方面顯示了令人印象深刻的結果,最近,由于與神經常微分方程(neural ODEs)的感知聯系,獲得了相當大的理論興趣。隨著層數的增加,這條鏈路依賴于網絡權值的收斂到平滑的函數。我們通過詳細的數值實驗研究了隨機梯度下降訓練權值的性質,以及它們隨網絡深度的變換。我們觀察到有明顯不同于神經ODE文獻中假設的標度區存在。根據網絡結構的某些特征,如激活函數的光滑性,人們可以得到另一個ODE極限,一個隨機微分方程或兩者都不能。這些發現對神經ODE模型作為深度ResNets的充分漸近描述的有效性提出了質疑,并指出了另一類微分方程作為深度網絡極限的更好描述。

//www.zhuanzhi.ai/paper/74bb9f3249e109282560f46658d244eb

付費5元查看完整內容

相關內容

用反向傳播方法訓練深度殘差神經網絡(ResNets)的記憶成本隨網絡深度的增加而線性增加。規避這個問題的一種方法是使用可逆的架構。本文提出通過增加動量項來改變ResNet的正向規則。所得到的網絡,動量剩余神經網絡(動量ResNets)是可逆的。與以前的可逆架構不同,它們可以作為任何現有的ResNet塊的替代。我們證明動量ResNets可以被解釋為二階常微分方程(ode),并準確地描述了如何逐步增加動量增加動量ResNets的表示能力。我們的分析顯示,Momentum ResNets可以學習任何線性映射到一個倍增因子,而ResNets不能。在優化設置的學習中,需要收斂到一個不動點,我們從理論上和經驗上證明了我們的方法成功,而現有的可逆架構失敗。我們在CIFAR和ImageNet上展示了Momentum ResNets與ResNets具有相同的精度,但占用的內存要小得多,并展示了預訓練的Momentum ResNets對模型的微調是有前途的。

//www.zhuanzhi.ai/paper/867b3834167694dab97cf812135dc273

付費5元查看完整內容

雖然許多現有的圖神經網絡(gnn)已被證明可以執行基于?2的圖平滑,從而增強全局平滑,但在本工作中,我們旨在通過基于?1的圖平滑進一步增強GNN的局部平滑自適應。在此基礎上,提出了一種基于?1和?2圖平滑的彈性GNN。特別地,我們提出了一種新的、通用的消息傳遞方案。該消息傳遞算法不僅有利于反向傳播訓練,而且在保證理論收斂的前提下達到了預期的平滑特性。在半監督學習任務上的實驗表明,所提出的彈性GNN在基準數據集上具有較好的自適應能力,對圖對抗攻擊具有顯著的魯棒性。

//www.zhuanzhi.ai/paper/09bea7a76036948cbbba30e86af56ef8

付費5元查看完整內容

在統一魯棒半監督變分自編碼器(URSVAE)中,通過同時處理噪聲標簽和異常值,提出了一種新的噪聲魯棒半監督深度生成模型。輸入數據的不確定性通常是將不確定性優先于概率密度分布的參數,以確保變分編碼器對異常值的魯棒性。隨后,我們將噪聲轉換模型自然地集成到我們的模型中,以減輕噪聲標簽的有害影響。此外,為了進一步增強魯棒性,采用魯棒散度測度,推導并優化了新的變分下界來推斷網絡參數。通過證明對所提證據下界的影響函數是有界的,證明了所提模型在存在復合噪聲的情況下在分類方面的巨大潛力。通過對圖像分類任務的評價和與現有方法的比較,實驗結果表明了該框架的優越性。

//proceedings.mlr.press/v139/chen21a.html

付費5元查看完整內容

我們提出并分析了一種基于動量的梯度方法,用于訓練具有指數尾損失(例如,指數或logistic損失)的線性分類器,它以O (1/t2)的速率最大化可分離數據的分類邊緣。這與標準梯度下降的速率O(1/log(t))和標準化梯度下降的速率O(1/t)形成對比。這種基于動量的方法是通過最大邊際問題的凸對偶,特別是通過將Nesterov加速度應用于這種對偶,從而在原函數中得到了一種簡單而直觀的方法。這種對偶觀點也可以用來推導隨機變量,通過對偶變量進行自適應非均勻抽樣。

//www.zhuanzhi.ai/paper/9fd848dc95d2b0a9a5da37dbbd79d4ed

付費5元查看完整內容

多任務學習(Multi-task learning, MTL)旨在通過對多個相關任務的聯合學習來提高任務的泛化能力。作為對比,除了聯合訓練方案,現代元學習允許在測試階段進行一些不可見的、標簽有限的任務,希望能夠快速適應它們。盡管MTL和元學習在問題表述上存在細微的差異,但兩種學習范式都認為,現有訓練任務之間的共享結構可以導致更好的泛化和適應性。本文通過理論分析和實證調查,進一步了解了這兩種學習模式之間的密切聯系。理論上,我們首先證明了MTL與一類基于梯度的元學習(GBML)算法具有相同的優化公式。然后我們證明了對于具有足夠深度的過參數化神經網絡,MTL和GBML學習到的預測函數是接近的。特別是,這一結果表明,這兩個模型給出的預測是相似的,在相同的看不見的任務。通過實證,我們證實了我們的理論發現,通過適當的實現,MTL可以在一組少樣本分類基準上與先進的GBML算法相媲美。由于現有的GBML算法經常涉及代價高昂的二階兩級優化,我們的一階MTL方法在大型數據集(如微型imagenet)上快了一個數量級。我們相信,這項工作可以幫助彌合這兩種學習模式之間的差距,并提供一個計算效率高的替代GBML,也支持快速任務適應。

//www.zhuanzhi.ai/paper/5d6fac14a84a1a6163d80eb46284b0af

付費5元查看完整內容

Yang (2020a)最近指出,神經切線核(NTK)在初始化時具有無限寬的限制,適用于許多架構,包括現代的主要架構,如ResNet和Transformer。然而,他們的分析并不適用于訓練。在這里,我們展示了同樣的神經網絡(在所謂的NTK參數化中)在訓練過程中遵循函數空間中的核梯度下降動力學,其中核是無限寬NTK。這就完成了NTK行為體系結構通用性的證明。為了得到這個結果,我們運用張量程序技術:在一個張量程序中編寫整個SGD動態,并通過主定理分析它。為了便于證明,我們開發了一個張量程序的圖形符號。

付費5元查看完整內容

GNN的表示能力和泛化能力得到了廣泛的研究。但是,它們的優化其實研究的很少。通過研究GNN的梯度動力學,我們邁出分析GNN訓練的第一步。具體來說,首先,我們分析線性化(linearized)的GNN,并證明了:盡管它的訓練不具有凸性,但在我們通過真實圖驗證的溫和假設下,可以保證以線性速率收斂到全局最小值。其次,我們研究什么會影響GNN的訓練速度。我們的結果表明,通過跳過(skip)連接,更深的深度和/或良好的標簽分布,可以隱式地加速GNN的訓練。實驗結果證實,我們針對線性GNN的理論結果與非線性GNN的訓練行為一致。我們的結果在優化方面為具有跳過連接的GNN的成功提供了第一個理論支持,并表明具有跳過連接的深層GNN在實踐中將很有希望。

//www.zhuanzhi.ai/paper/609aef10a18ac8eb66f1d1873c8ec445

付費5元查看完整內容

圖神經網絡(GNN)中缺乏各向異性核極大地限制了其表達能力,導致了一些眾所周知的問題,如過度平滑。為了克服這個限制,我們提出了第一個全局一致的各向異性核GNN,允許根據拓撲導出的方向流定義圖卷積。首先,通過在圖中定義矢量場,我們提出了一種方法應用方向導數和平滑投影節點特定的信息到場。然后,我們提出用拉普拉斯特征向量作為這種向量場。在Weisfeiler-Lehman 1-WL檢驗方面,我們證明了該方法可以在n維網格上泛化CNN,并證明比標準的GNN更有分辨力。我們在不同的標準基準上評估了我們的方法,發現在CIFAR10圖數據集上相對誤差減少了8%,在分子鋅數據集上相對誤差減少了11%到32%,在MolPCBA數據集上相對精度提高了1.6%。這項工作的重要成果是,它使圖網能夠以一種無監督的方式嵌入方向,從而能夠更好地表示不同物理或生物問題中的各向異性特征。

//www.zhuanzhi.ai/paper/f415f74f0c50433285945af702223eaf

付費5元查看完整內容

圖神經網絡(GNNs)是圖信號支持的信息處理體系結構。它們在這里作為卷積神經網絡(CNNs)的推廣提出,其中每個層包含圖卷積濾波器,而不是經典卷積濾波器。濾波器由點態非線性組成并分層堆疊。結果表明,GNN結構對排列的方差相等,對圖形變形的穩定性較好。這些特性提供了一個解釋的措施,可以觀察到的良好性能的GNNs經驗。如果圖收斂于一個極限對象,圖形,GNN收斂于一個相應的極限對象,圖神經網絡。這種收斂證明了GNN在不同節點數量的網絡之間的可遷移性。

//www.zhuanzhi.ai/paper/c2f153249a7ff16b6b73279c30e7b93f

付費5元查看完整內容

題目: Milking CowMask for Semi-Supervised Image Classification

摘要:

一致性正則化是一種用于半監督學習的技術,最近被證明可以在標記數據很少的情況下產生強大的分類結果。該方法通過增加或反例擾動輸入數據,并鼓勵所學習的模型對未標記數據的擾動具有魯棒性。在這里,我們評估了一種最近提出的增強方法,稱為CowMasK。在半監督一致性正則化中,使用CowMask作為增強方法,我們在Imagenet上建立了一個新的最優結果,標記數據為10%,前5位誤差為8.76%,前1位誤差為26.06%。此外,我們使用的方法比其他方法簡單得多。我們通過在小型圖像基準SVHN、CIFAR-10和CIFAR-100上運行許多較小規模的實驗,進一步研究了CowMask用于半監督學習的行為,在這些實驗中,我們獲得了與現有水平相當的結果,并且發現了CowMask擾動廣泛適用的證據。

付費5元查看完整內容
北京阿比特科技有限公司