這項工作研究了在任務式指揮設備中嵌入模擬器的實用性和有效性。其目標是僅使用戰區作戰計劃作為模擬輸入,向操作員隱藏所有模擬器細節,使其無需學習新工具。本文討論了一種原型功能,該功能可根據 SitaWare 中生成的作戰計劃以及嵌入式無頭 MTWS 和 OneSAF 模擬器的模擬結果,生成行動方案(COA)分析。在輸入作戰計劃后,指揮官選擇要執行的模擬運行次數,并按下按鈕啟動模擬,模擬在后臺的運行速度比實時運行更快。模擬運行完成后,指揮官可通過圖形和圖表查看結果,對多次運行進行比較。預計未來的能力將允許指揮官模擬任何梯隊和命令,用于訓練和兵棋推演。
水下監視技術出現于冷戰時期。該技術解密后,學術界對其進行了深入研究,并取得了諸多進展。無人潛航器(UUV)的開發就是海洋領域的進步之一,它能夠增強作戰能力,同時降低人類生命危險。雖然這項技術已經商業化,但在海軍中的應用卻很有限。其有限的發展主要是由開發商和資助他們的政府推動的。然而,由于這項技術能為軍隊帶來諸多好處,因此需要盡快將其納入海軍。這實質上意味著,要想在海軍使用/應用中獲得更多認可,就必須將該技術融入海軍。反過來,這就需要回答許多問題,了解事實,以增強對該技術及其潛力的信心。因此,本文討論了其中一些有助于彌補知識差距的問題,以促進未來海軍對 UUV 技術的接受和應用。雖然本文試圖提供全面的答案,但這些答案并不完整,只能作為討論的起點。就目前而言,技術是存在的,但缺乏想象力卻阻礙了其使用。
圖 2 已詳細說明了 UUV 在軍事領域可發揮的廣泛作用,在此,將討論每種作用的可能任務概況。迄今為止,已知美國、俄羅斯和中國等國家運營著大量不同大小和形狀的軍用 UUV。圖 3 顯示了美國部分軍用 UUV 的范圍,圖 4 顯示了其他國家部分軍用 LDUUV 的范圍。
(a) 情報、監視和偵察。從海洋中收集關鍵的電磁和光電數據將有助于擴大被拒地區的信息范圍,特別是常規平臺無法進入的淺水區。UUV 可以輕松進入這些區域,提供所需的信息。
(b) 海洋學。為了在極端的海洋環境中實現更高的可操作性,必須收集實時情報數據并提供給操作人員,以便在進攻時更好地制定計劃。出于 "用戶舒適度和安全性 "的考慮,載人平臺收集此類數據的能力有限,因此無人平臺和固定平臺被認為是未來的一種可能(Agarwala,2020 年)。
(c) 通信/導航網絡節點(CN3)。通過在有人和無人平臺之間提供一個閉環網絡,CN3 系統有助于為水下平臺提供更強的連接性和控制性,否則這些平臺就必須浮出水面以刷新其全球定位系統進行導航。這樣的通信網絡可提高無人潛航器的安全性和控制能力,同時幫助它們在不被探測到的情況下輕松、長時間地開展 ISR 活動(Munafò 和 Ferri,2017 年)。
(d) 反水雷措施。為確保港口和航道可供軍艦安全作業,并確保敵方類似港口和航道無法使用,最簡單的進攻方式就是布設 "水雷"。為了在不危及人命的情況下做到這一點,UUV 得到了有效利用。在任何平臺上使用無人潛航器,都能提高在敵方水域布設水雷和在己方水域清除水雷的效率,從而無需依賴專門的掃雷艇。
(e) 反潛戰。為了 "遏制 "在狹窄水域、咽喉地帶或艦隊附近活動的潛艇,UUV 可以發揮巨大作用。在此過程中,UUV 可以為載人平臺提供必要的安全保障,同時限制敵方潛艇的行動。
(f) 檢查/識別。為了對船體、碼頭和停泊區及其周圍的密閉空間進行快速搜索,以排除反恐方面的顧慮,并確保在必要時進行爆炸物處理,UUV 可以得到廣泛而有效的使用。這些努力將確保港口、航道和泊位的安全。
(g) 有效載荷交付。由于無人潛航器難以被探測到,而且可以在淺水區輕松作業,因此可用于秘密投放有效載荷。這種有效載荷可以是敵后補給品,也可以是摧毀敵方資產的彈藥。
(h) 信息作戰。由于 UUV 體型小,在淺水區也能輕松運作,因此是收集信息的有力平臺。此外,它們還可用作誘餌和通信網絡干擾器。
(j) 關鍵時刻打擊。能夠及時精確地投放彈藥并最大限度地減少敵方的反應時間是一項關鍵活動。用無人潛航器投放彈藥時,可將其投放到離海岸較近的地方,確保縮短敵方的反應時間。這種行為還有助于避免暴露大型有人駕駛平臺的位置,以免遭報復性打擊。
事后分析(AAR)在軍隊和組織中用于評估事件及其相應的培訓成果。團隊討論提供了一種以學習為中心的方法,用于評估表現、分析失敗或對未來活動可能的改進。有用的信息經常以非結構化文本和語音的形式嵌入這些 AAR 中。本文提出了一種對 AAR 進行數字分析和趨勢分析的解決方案。討論了使用手持設備采集數據的解決方案。此類設備可將音頻輸入數據管道,在管道中進行語音到文本的處理。音頻處理的操作方法是識別音素等原始語言成分,并對其關系進行上下文建模,以識別最有可能的文本輸出。然后,將討論語音到文本的轉換以及自然語言處理 (NLP) 在分析中的應用。NLP 技術可發現非結構化文本中的語義模式,然后將其與團隊績效指標相關聯。通過揭示 AAR 與團隊表現之間的成功促進因素,這種趨勢可以優化軍事訓練課程。
本研究提出了一個基于 MOOS-IvP 中間件的自主水下航行器控制算法構建框架。側掃聲納傳感器(SSS)通常用于生成聲納圖像,在圖像中可以識別類似地雷的物體。這里實施的基站社區可維護 SSS 的覆蓋置信度地圖,并為用戶提供二維和三維模擬以及實施高級控制方案的能力。開發可分三個階段進行: 1) 最簡配置,僅使用必要的應用程序來開發和測試外環控制;2) 包含模擬硬件的配置;3) 包含實際硬件的配置,該配置應從第 2 階段平滑、輕松地擴展而來。這樣做的好處是使用方便、開發速度更快、減少硬件測試和成本。
圖 1. 自動潛航器路徑及其側視聲納覆蓋的相應區域示例。
在擬議的 MAS 框架中,每個 AUV 和基站分別有一個獨立的社區。每個群落上都運行著幾個應用程序,其中一些包含在 MOOS-IvP 發行版中,另一些則由作者自行開發。
在擬議框架中,有三種可能的配置:1) 加速開發高級控制和規劃策略的簡約配置;2) 在最底層用變量替代實際傳感器和執行器數據的模擬配置[12];3) 實際硬件實施。
圖 6. 配置 1:2 個自動潛航器群落和 1 個基站群落,應用極少。
圖 8. 配置 2:硬件模擬包括所有傳感器和致動器應用。
全球形勢的變化(如 COVID-19、烏克蘭沖突)加劇了以前存在的與必需品采購和庫存管理相關的挑戰和風險。這次在軍事行動研究學會國家安全風險分析實踐社區的午餐演講介紹了國防分析研究所開發的一種工具:國防工業基地優化模型(DIBOpt)。
聯邦機構利用 DIBOpt 促進采購和投資決策,以最大限度地降低風險。更具體地說,美國政府利用 DIBOpt 編制了醫療對策的預算和采購計劃,國防部利用該工具審查了精確制導導彈供應鏈限制對提高軍事準備狀態的工作(和時間表)的影響。
DIBOpt 允許軍事規劃人員考慮各種因素,包括工業基礎能力、次級瓶頸、價格上漲、獨家制造商、產品現代化、所需數量變化、預算限制以及許多其他因素。這些庫存(包括醫療庫存和彈藥庫存)管理的復雜性和不斷變化的性質需要一個建模解決方案來有效地收集相關輸入數據并生成快速分析。
DIBOpt 還允許決策者探索支持關鍵物品的供應鏈,以確定:1)存在瓶頸的地方;2)這些瓶頸對建立庫存能力的影響;3)降低與庫存不足相關的風險所需的緩解策略。
在空戰中,斗狗提出了錯綜復雜的挑戰,需要同時了解戰略機動和敏捷戰斗機的空中動態。在本文中,我們介紹了一種新穎的長短時間融合變換器 TempFuser,該變換器旨在學習空中斗狗中的戰術和敏捷飛行動作。我們的方法采用兩種不同的基于 LSTM 的輸入嵌入來編碼長期稀疏和短期密集狀態表征。通過變壓器編碼器對這些嵌入進行整合,我們的模型捕捉到了戰斗機的戰術和靈活性,使其能夠生成端到端的飛行指令,從而確保優勢位置并超越對手。在高保真飛行模擬器中與各種類型的對手飛機進行廣泛訓練后,我們的模型成功地學會了執行復雜的戰斗機機動動作,性能始終優于幾個基線模型。值得注意的是,我們的模型即使在面對具有超強規格的對手時,也能表現出類似人類的戰略機動能力,而這一切都無需依賴明確的先驗知識。此外,它還在極具挑戰性的超音速和低空環境中表現出強大的追擊性能。演示視頻請訪問 //sites.google.com/view/tempfuser。
圖 8:評估結果。(A): 針對對手的歸一化傷害率的學習曲線。(B): 與對手交戰的結果(左:F-15E,中:F-16,右:蘇-27)。圖中顯示了本機(藍色)和對手(紅色)從開始到獲勝時刻的三維飛行和水平投影軌跡。(C): 與高規格飛機(蘇-30)對抗時學習到的機外戰術機動的量化結果。(D): 與 F/A-18A 對手進行近音速對抗的量化結果。所有駕駛艙和外部視圖均由 Tacview [36] 可視化。
空對空作戰是操縱戰斗機智能體到達瞄準對手位置的戰術藝術。它也被稱為 "斗狗",因為在大多數情況下,每架戰斗機都會在短距離戰斗中追擊對方的機尾。
要想成功地進行斗狗,智能體需要從長期和短期角度出發,將態勢感知、戰略規劃和機動性能結合起來。
首先,智能體要通過了解對手的長期軌跡來規劃自己的戰術位置。天真地追逐對手的近期位置可能會帶來暫時的優勢,但最終會使自己在日后處于弱勢地位。因此,智能體應不斷評估對手的長期操縱,對其行動做出反應,并對自己進行戰略定位,以獲得對對手的優勢。
其次,智能體需要具備從短期動力學角度理解飛機敏捷機動性的能力。現代戰斗機具有很高的機動性,能夠迅速改變方向和速度,從而使交戰情況迅速發生變化。因此,為了在與對手的交戰中保持優勢地位,智能體應及時從動態角度把握對手的敏捷動作和自身的潛在機動。
長短期時態融合變換器(或稱 TempFuser)是一種網絡架構,專為空中激戰中的策略模型而設計。該架構使用基于 LSTM 的輸入嵌入和變換器編碼器。它處理兩種類型的狀態軌跡:代表機動級狀態轉換的長期時間軌跡和表示動態級狀態轉換的短期時間軌跡。每種軌跡都使用基于 LSTM 的管道進行嵌入,然后通過變換器編碼器進行整合。隨后,使用多層感知器(MLP)模塊和高斯策略架構將編碼器輸出轉換為飛行指令。
在數字戰斗模擬器(DCS)中使用深度強化學習(DRL)解決空中狗斗問題,DCS 被認為是最真實、最逼真的戰斗機模擬環境之一。DCS 提供了一個獨特的平臺,可以配置各種高質量的飛機和空中場景。我們將斗犬問題表述為一個強化學習框架,并設計了一個可以學習戰略性斗犬演習的獎勵函數。
我們用各種對手飛機(如 F-15E、F-16、F/A-18A 和 Su-27)對我們的網絡進行了廣泛的訓練和驗證。結果表明,TempFuser 能夠以端到端的方式學習具有挑戰性的飛行動作,并在性能上優于各種對手飛機,包括那些具有卓越規格的飛機。此外,它還在低空和 1 馬赫以上的高速飛行場景中表現出強大的追擊性能。
在tempfuser為基礎的空中斗狗在DCS模擬器的快照。
不同類型的飛機為對手:F- 15e, F/A-18A, F-16,蘇-30,蘇-27。
圖:與F-15E交戰
圖:飛行軌跡與水平投影
圖:與F-16交戰
圖:飛行軌跡與水平投影
圖:與蘇-27交戰
圖:飛行軌跡與水平投影
圖:對蘇-30對手的定量結果
圖:對F/A-18A對手的定量結果
該項目為與使用無人系統支持分布式海戰(DMO)有關的作戰概念和系統設計決策提供信息。研究通過系統地改變仿真模型中的系統設計特征和作戰活動,支持對無人系統(UVC)進行能力級分析。分析結果表明,UVC 可提高各種無人系統的作戰可用性(Ao)和使用時間(TOS),因為它可隨時進入維護、加油和重新武裝設施,而無需長時間前往岸基設施或分布式支援艦艇。在比較使用 UVC 的配置與在自適應兵力包 (AFP) 中分配無人系統支持的配置時,單個無人系統的 Ao 提高了 6% 到 31%。仿真模型分析確定了 UVC 架構,其中包括至少 8 個無人機發射回收站、至少 3 個船舷托架和至少 5 個甲板井托架,以最大限度地提高 Ao。
在支持分布式海上作戰(DMO)時,無人系統有可能發揮兵力倍增器的作用,在提高殺傷力的同時降低有人系統的風險。然而,無人系統到岸基維護、加油和重新武裝設施的轉運時間減少了可用于支持執行 DMO 的自適應兵力包(AFP)的總體駐扎時間(TOS)。本項目研究了無人水面艦艇 (USV)、無人水下航行器 (UUV) 和無人機 (UAV) 在美國海軍現有艦艇上的集成問題,該艦艇已被重新改裝為無人載具 (UVC)。在本報告中,"UxV "一詞用于描述無人系統這一類別。
如 Van Bossuyt 等人(2019 年)所述,項目團隊采用了系統定義、系統建模和系統分析的通用系統工程流程序列。在系統定義過程中,項目團隊重點開發了作戰概念(CONOPS),并定義了 UVC 的系統要求。系統建模活動的重點是構建 UVC 的離散事件仿真模型。在系統分析階段,團隊利用所開發的模型來評估 UVC 的各種設計參數對每種無人系統類型的運行可用性(Ao)的影響。
A. 系統定義
在系統定義階段,從自上而下和自下而上的角度開發和考慮了 UVC 要求。從自上而下的角度來看,團隊分析并確定了滿足總體任務有效性目標所需的能力,而與任何現有的候選平臺無關。從自下而上的角度來看,團隊評估了一艘登陸直升機船塢(LHD)艦,以確定該平臺可實現的最大 UVC 能力。通過查閱文獻和分析利益相關者的需求,項目團隊確定了 UVC 的以下關鍵能力:指揮與控制 (C2)、UxV 發射、UxV 維護和 UxV 回收。根據設想,UVC 將包括著陸甲板無人機發射和回收站、無人機維護/布防/燃料艙、用于大型 USV/UUV 操作的船舷艙或站,以及用于小型 USV/UUV 操作的井甲板艙。
B. 系統建模
項目構想將 UVC 視為針對地面和岸上敵對兵力實施 DMO 的 AFP 的一部分。UVC 的作用是支持 UxV 對敵方岸基導彈基地進行偵察和打擊。在打擊階段之前、期間和之后,UxV 提供全天候的情報、監視和偵察(ISR)、目標定位和戰損評估服務。UVC 的總體目標是通過消除到岸基支持設施的較長運輸時間來增加 UxV 的全時服務時間。為實現這一總體目標,研究小組選擇 "航程 "和 "持續停留時間 "作為性能指標(MOP),并選擇 "UxV 任務時間"、"UxV 停機時間 "和 "維護灣利用率 "作為效果指標(MOE)。
設計并開發了一個離散事件仿真模型,用于分析 UVC 設計參數對 MOP 和 MOE 的影響。該模型是通過 ExtendSim10 建模程序開發的。該模型包括 UxV 發射和回收、UxV 維護活動以及 UxV 重新武裝和加油活動。UxV 的發射時間表和總模擬運行時間是根據擬議的 UVC CONOPS 制定的。目前,該模型并未考慮 UxV 的損失或故障;這是未來可能開展工作的一個領域。模型的主要輸出是每種 UxV 的 Ao。
C. 系統分析
為了廣泛探索實驗空間,同時減少試驗總數和模型運行時間,我們專門設計了一個填充空間的拉丁超立方設計。每次試驗重復模擬 30 次并收集結果。合并所得的 Ao 值,得出每個試驗的統計平均值。
分析結果表明,UVC 可隨時提供維護、加油和重新武裝設施,而無需在岸基設施或分布式支援艦艇之間進行長時間的轉運,從而改善了每種 UxV 的 Ao 值和 TOS 值。對于任何特定的 UxV,通過增加 UVC 發射、回收和維護站的數量,從而消除或減少這些服務的排隊時間,可獲得最大的 Ao。分析表明,UVC 在設計時應至少配備 8 個無人機發射/回收站、至少 3 個船舷托架和至少 5 個焊接甲板托架。這些參數沒有確定上限,這也是未來研究的一個潛在領域。
有趣的是,雖然 UVC 的存在改善了大型無人水面艦艇(LUSV)的航速,但 UVC 的實際設計似乎對 LUSV 的航速沒有影響。這可能是由于 LUSV 的假定任務持續時間長,假定維護間隔長,因此不可能出現任何排隊現象。單個船側停泊區似乎足以為多艘 LUSV 提供服務,但即使是單個船側停泊區,也可通過消除到岸基設施的轉運時間來改善 Ao。
這項工作提出了一個在歐盟項目FOLDOUT中開發的融合和跟蹤系統,旨在通過融合不同的傳感器信息和提出對監視區域內檢測到的目標自動跟蹤來促進邊防工作。FOLDOUT的重點是歐盟內部和外部地區的穿透式樹葉檢測。融合多個傳感器信號可以提高檢測的有效性,特別是在森林和其他被樹葉遮擋的地區。我們使用加權地圖(也稱為熱圖)來結合多傳感器信息;對所產生的融合目標進行跟蹤;根據對融合檢測的時間關聯的成本計算來創建或更新跟蹤。我們比較了來自單個傳感器的跟蹤結果和來自融合目標的跟蹤結果,這些數據是在模擬邊界收集的,代表了保加利亞的實際歐盟邊界。結果表明,如果根據融合后的數據而不是單個傳感器的信息進行追蹤,追蹤效果會得到加強。
邊防軍的主要興趣是在全球地圖上對監視區域內檢測到的人員進行定位和跟蹤。為了實現這一目標,首先要將不同傳感器系統觀察到的單個人的探測結果進行融合。當檢測結果相互關聯并保持一致時,就可以在一個共同的地圖上對單獨的目標進行跟蹤。
圖2:指導動作(紅線),扮演一個非法越境的場景:1.一個人通過步行越過邊境。2.該人沿著邊境小路向大路走去。3.此人停下腳步,在路上停留很長時間(可能是在等待汽車中的走私者)。4.在某一時刻離開道路,躲進樹叢中。5. 在樹葉中,該人再次回到路上(可能再次尋找汽車)
RGB和熱像儀中的人員檢測
基于深度學習的綜合物體檢測被應用于相機圖像上。深度學習方法已被證明優于以前的最先進的機器學習技術。深度神經網絡(DNNs)模仿了大腦感知和處理信息的方式。與以前的方法相比,DNNs學習了諸如人物檢測等任務所需的特征。近年來,DNN在物體檢測和分類任務上表現出突出的性能[9, 10]。在這項工作中,物體檢測是基于一個著名的DNN實現,即YOLO檢測器[11]。
PIR傳感器中的人員檢測
探測器經過調整,使被動紅外傳感器在PIR周圍7.5米的半徑內觸發人的存在。
在這項工作中,我們使用加權地圖來提供傳感器數據的層次(也稱為HeatMaps),并以邏輯和數學的方式組合它們。它的動態是完全使用不同傳感器模式的傳感器檢測假設的事件驅動。這些傳感器假設包括位置(WGS84基準)、時間戳(Unix時間戳)和權重(例如,從傳感器檢測中獲取的信心)。為了實現這一點,有兩個組件是必不可少的:加權分布圖(HeatMaps);線性意見庫。圖3顯示了這種方法的基本概念。
圖3:融合方法的基本概念(左),作為使用兩個加權分布圖(熱力圖)的例子。應用不同的衰減函數(右)來建立加權分布圖的時間動態行為。
加權分布圖(熱圖)
加權分布圖是我們數據融合方法的兩個基本組成部分中的第一個。加權地圖的基本思想是,保持和更新關于不同傳感器探測假設的時空信息。加權地圖來自于概率占用網格,但以加權的形式解釋傳入的數據。此外,還采用了時間上的衰減來模擬傳感器數據的及時行為。權重被存儲在一個可選擇分辨率的數組中,代表WGS84坐標中感興趣的矩形區域。圖3展示了用于模擬加權分布圖動態行為的可能衰減函數。
通常,加權分布圖對應于任何一種傳感器數據或傳感器模式(例如,從攝像機圖像中檢測人的邊界框)的時空。傳感器數據被攝取到一個專門的加權圖中,這導致加權圖的值根據傳入的傳感器假設的權重而增加(替換)。相對而言,衰減將及時應用到加權分布圖的值矩陣中。每次傳感器假設被攝入分布圖,它將通過重新計算加權分布圖的權重和衰減以前狀態的值來更新。
最后,線性意見庫允許我們結合多個加權分布圖,從而結合多傳感器模式,目的是減少傳感器系統的整體錯誤發現率。
線性意見庫(LOP)
我們融合方法的第二個重要組成部分是線性意見庫[8]。
每當一個加權分布圖的狀態由于新的傳感器檢測假設而被更新時,就會應用LOP。在評估了LOP之后,閾值處理使我們能夠產生警報。為了確定警報的位置,在組合值矩陣中超過閾值的區域使用分割算法(blob檢測)。這些警報是由多個傳感器假設產生的,用于為跟蹤提供必要的輸入數據,這將在下一節中描述。
為了跟蹤越境進入禁區或敏感區域的入侵者的行動,我們開發了一種基于空間和時間上關聯目標檢測的成本計算的定制算法。該跟蹤系統的工作原理是完全基于目標的位置和時間戳建立一個模型。
在第一次檢測目標時,該模型以該檢測的位置和時間戳進行初始化。軌跡模型是用以下元組定義的:???? = (????,????,????)。
如果幾個目標檢測同時發生,那么創建的模型模板數量與同時收到的檢測數量相同。后續的檢測被添加到一個給定的軌道模型中,這取決于將檢測添加到軌道中的成本。該成本被定義為傳入的檢測和軌跡候選者之間的距離。
在有多個傳入的檢測和多個軌跡候選者的情況下,已經實施了匈牙利算法[12],使檢測和軌跡之間的關聯產生最小的成本。
北約科技組織(STO)應用車輛技術(AVT)329 "NexGen旋翼機對軍事行動的影響 "評估了2035+時間框架內適用科學技術(S&T)發展對軍事行動的潛在影響。對預計的未來任務進行的兩次作戰分析(OA)評估時,評估采用了基于風險的主題專家判斷。
利用定義的任務小插曲,參與評估的主題專家確定了利用當前北約軍用直升機能力實現各項任務的風險。然后評估每個風險發生的可能性和對實現任務的影響。對于每個風險,確定的緩解措施包括技術的應用、戰術的改變和其他措施。隨后對確定的風險緩解措施的行動影響進行了評估,以確定其軍事價值。
基于風險的評估框架使來自多個北約和伙伴國的具有軍事行動、需求和技術專長的主題專家能夠進行定性評估。由于所有參與者以前都熟悉風險評估過程,該框架很容易被調整為進行貿易空間業務需求和關鍵技術的審計。
數字工程和數字設計是美國空軍(USAF)的一個新興重點領域,特別是用于現代復雜系統。高復雜度系統的一個例子是網絡合作自主彈藥群(NCAM),它優先考慮廣域搜索和多視角目標確認。首先,本研究討論了在基于模型的系統工程(MBSE)工具中建立行為模型的方法。然后,本研究介紹了NCAM在兩個環境中的并行建模工作:Cameo系統建模器中的MBSE模型,以及仿真、集成和建模高級框架(AFSIM)中的基于物理學的模型。每個數字模型在其環境中都為設計過程中的利益相關者提供了不同的好處,所以這些模型必須呈現出一致和平行的信息。因此,這項研究也提出了在模型之間翻譯設計信息的自動化方法。總的來說,這對協同工作的模型通過系統認知和數字場景模擬對自主過程的理解,與決策部門建立信任關系。
在始于1903年萊特兄弟首次飛行的重于空氣的飛行歷史中,美國軍隊促進了空對地攻擊能力的持續和快速發展。最初,飛行在軍事上的應用僅限于1909年美國陸軍信號部隊的偵察和監視;然而,第一次世界大戰和后來的第二次世界大戰的爆發創造了軍用飛機技術和理論的繁榮。到1946年,簡單的偵察雙翼飛機被可以超過音速的噴氣機所取代。美國看到了這種快速發展的技術的可行性,并在1947年創建了獨立的美國空軍(USAF)服務。空中力量的勢頭一直持續到現在,現代美國空軍的飛機可以隱藏他們的雷達信號,并精確地投擲制導彈藥,在地面上的同一個洞里投擲5枚炸彈!這就是美國空軍。
在美國空軍這個令人難以置信的組合中,一個合乎邏輯的下一個能力是合作和自主的彈藥,它利用相互通信來尋找、識別和打擊一個目標,同時評估對目標的損害。國防部研究與工程助理部長(USD(R&E))對這種能力有兩個關鍵定義。
"自動化。該系統的功能沒有或很少有人類操作者的參與。然而,系統的性能被限制在它被設計為做的具體行動上。通常,這些都是定義明確的任務,有預先確定的反應(即基于規則的簡單反應)。
自主性。系統有一套基于智能的能力,使其能夠對系統部署前沒有預先編程或預期的情況做出反應(即基于決策的反應)。自治系統具有一定程度的自治和自我指導行為(由人類代理決策)"。[4]
目前的制導彈藥非常嚴格地遵循自動化的定義。通過激光或全球定位手動指定目標,然后彈藥執行程序化的行動以擊中指定位置。在這種情況下,控制權被操作者緊緊抓住,對目標開火的決定需要多個人為步驟。這些人為步驟使操作者對自動化有一種信任感,因為扣動扳機時風險最小化;與操作者使用無制導彈藥相比,彈藥利用其自動化技術更準確地擊中目標。當討論下一步的自主化發展時,人們有一種理性的擔心,即人類通常控制的決定將由自主系統的機器大腦來代替。這種不信任導致人們對部署旨在自主摧毀目標的武器猶豫不決。
理解與系統自主決策相關的行為是建立對自主性信任的絕佳方式。有多種方法可以將行為理解傳達給人類評估者:首先是提供描述系統各個方面的正式文件,接下來是創建一個數字模型,用圖表表示系統結構和行為,另一個是運行涵蓋廣泛場景的模擬,最后演示可以證明物理系統在測試和評估中的能力。文檔方法一直是所有國防部采購的標準,可以追溯到手繪示意圖的設計時代。然而,最近,國防部對使用建模和仿真來記錄和管理系統表示了興趣。已經出現的一個概念是數字孿生,系統的每個方面都被虛擬建模,以實現快速的修改原型和精確的配置控制。[5]這種數字孿生的焦點也為它所代表的系統的物理結構和行為創造了清晰的、可瀏覽的數據,從而使系統得到合理的理解。
如Reed[6]所示,基于模型的系統工程(MBSE)已經迅速被美國空軍的數字工程工作所采用,用于程序和系統結構建模項目。然而,復雜系統的行為MBSE建模在美國空軍的相同項目中并不常見。對于自主系統,算法的復雜性和這些自主系統協作時出現的突發行為使得評估邏輯行為和性能影響變得困難。對系統行為進行建模的能力是MBSE過程所固有的,但MBSE模型通常缺乏提供詳細的基于物理學的模型的能力,無法對系統的運行情況進行性能評估。有一些專門建立的基于物理的仿真平臺,如高級仿真、集成和建模框架(AFSIM),就是為了這后一種目的而存在的,但它們往往與MBSE工具中的定義模型脫節[3]。一種將復雜系統的MBSE行為模型和同一復雜系統的基于物理學的仿真模型聯系起來的方法和工具是必要的。要確保這對模型之間的行為一致,需要有能力在建模平臺之間傳輸設計數據。
本研究的目的是建立一個復雜的合作彈藥系統的行為MBSE模型,并建立一個自動和可重復的方法,將數據從MBSE模型轉移到AFSIM場景中,以執行相同的合作彈藥行為的模擬。MBSE模型將足以驗證單個自主彈藥的邏輯行為,以及在合作概念中同一彈藥的數量。AFSIM模擬將反過來為建模者提供反饋,以便對彈藥模型進行潛在的修改,從而實現更高的性能。
合作彈藥模型的研究問題包括:
SysML在行為建模中的優勢和劣勢是什么?
哪些MBSE元素和/或屬性適合翻譯成AFSIM的原生語言用于情景模擬?
SysML數字模型在多大程度上可以代表AFSIM模擬中使用的合作彈藥的行為?
在SysML模型和AFSIM場景之間可以利用哪些自動和可重復的方法進行數據交換?
這項研究必須首先確定連接點和集成到AFSIM的所需變量,這將有助于定義合作彈藥的MBSE系統模型的邏輯接口。這些接口有助于定義合作彈藥的MBSE模型的邊界,并為整合到AFSIM的場景模型提供數據點。設計和測試的關鍵領域是:為AFSIM實體所需的變量和基本方程建模;提供從MBSE模型到AFSIM的彈藥和場景參數的自動導出可用性;以及確定MBSE模型中會影響模擬的可修改區域。基于對連接點的評估,研究將轉向創建一個MBSE模型,以保持連接點,同時建立與AFSIM模型平行的行為。MBSE模型中的行為將根據AFSIM模型的情況進行評估。
本研究僅限于虛擬彈藥的建模和模擬。此外,本研究定義的合作彈藥概念是名義上的;因此,彈藥模型將由名義上的數據填充。
第2章是對與彈藥建模、AFSIM集成、自主無人機系統行為建模和美國空軍先進彈藥的歷史應用有關的出版物的文獻回顧。第3章介紹了合作彈藥概念的設計方法和將數據自動傳輸到AFSIM場景模擬的方法。第4章討論了已完成的網絡化合作自主彈藥(NCAM)MBSE模型的行為分析、自動轉換結果和平行模型之間的比較。第5章總結了研究的重要發現,并推薦了未來的研究課題。
本研究的目的是設計一個用于電子戰應用的認知雷達(CRr)目標識別系統的現場可編程門陣列(FPGA)實現。這篇論文對稱為加權能量概率(PWE)的閉環自適應匹配波形傳輸技術進行了擴展。這項工作還研究了在功能性數字硬件實現中應用PWE技術的可行性。最初,在Verilog硬件描述語言中開發了一個PWE蒙特卡洛仿真模型,在Xilinx Vivado環境中進行仿真。然后,在蒙特卡羅模型中開發的Verilog模塊組件被整合到利用賽靈思VCU118評估板的CRr目標識別系統實驗中。VCU118具有Virtex UltraScale+高性能FPGA,可完成CRr自適應波形生成和傳輸、數字信號處理要求和目標分類。羅德與施瓦茨公司的SMW200A矢量信號發生器和FSW信號與頻譜分析儀分別作為雷達系統的發射器和接收器,而FPGA實現了CRr使用的封閉反饋回路。