亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

題目: Contextualized Graph Attention Network for Recommendation with Item Knowledge Graph

摘要: 近年來,圖神經網絡(GNN)被應用于知識圖譜(KG)的開發。現有的基于GNN的方法在KG中對實體與其本地圖上下文之間的依賴關系進行了建模。,但可能無法有效地捕獲其非局部圖上下文(例如,它的一階鄰居的集合),最相關的高階鄰居集)。在本文中,我們提出了一個新的推薦框架——上下文化的圖注意網絡(CGAT),它可以顯式地利用KG中實體的局部和非局部圖上下文信息。特別地,CGAT通過用戶特定的圖形注意機制捕獲本地上下文信息,考慮用戶對實體的個性化偏好。此外,CGAT采用了一個有偏隨機游走采樣過程來提取一個實體的非局部上下文,并利用遞歸神經網絡(RNN)來建模實體與其非局部上下文實體之間的依賴關系。為了捕捉用戶對物品的個性化偏好,本文還建立了物品特定注意機制,以模擬目標物品與從用戶歷史行為中提取的上下文物品之間的依賴關系。在真實數據集上的實驗結果驗證了CGAT的有效性,并與最新的基于KG的推薦方法進行了比較。

付費5元查看完整內容

相關內容

現有的基于注意力機制的推薦模型存在一些改進的余地。很多模型只在生成用戶的表示時應用了粗粒度的注意力機制,少數改進的模型盡管在注意力模塊中加入了物品的屬性(特征)信息,即融入了物品的相關知識,但仍然僅在用戶表示這一端應用了注意力機制。針對這些問題,本文提出了一種在用戶表示端與物品表示端協同應用(物品)屬性級注意力機制的深度推薦模型,簡稱ACAM(Attribute-level Co-Attention Model),其主要特性為: (1)物品與用戶的初始表示基于知識圖譜中物品屬性的表示(向量),而非單一的隨機初始化向量。 (2)內建協同注意力機制模塊,通過捕獲不同屬性之間的關聯來增強用戶和物品的表示,這是考慮到不同的物品屬性(特征)之間可能存在相關性。例如,電影的屬性中,演員史泰龍與動作題材高度相關,演員鞏俐與導演張藝謀也很相關。因此,基于屬性相關性來增強用戶/物品表示能夠更加精確地揭示目標用戶和候選物品之間的潛在關系,從而提升推薦性能。 (3)采用多任務學習的框架來訓練損失函數,融入知識(嵌入)表示學習的目標,以習得更優的物品和物品屬性的表示。

ACAM模型輸入為目標用戶和候選物品,輸出為兩者匹配的概率 ,其值越大表明越可能喜歡。模型的架構如下圖所示,可分為三個部分:嵌入層、協同注意力機制層與預測層,下面將分別介紹每層的設計細節。

付費5元查看完整內容

題目: KG-BERT: BERT for Knowledge Graph Completion

摘要: 知識圖譜是許多人工智能任務的重要資源,但往往是不完整的。在這項工作中,我們使用預訓練的語言模型來對知識圖譜進行補全。我們將知識圖譜中的三元組視為文本序列,并提出了一種新的框架結構——知識圖譜雙向編碼方向轉換器(KG-BERT)來對這些三元組進行建模。該方法以一個三元組的實體描述和關系描述作為輸入,利用KG-BERT語言模型計算三元組的評分函數。在多個基準知識圖譜上的實驗結果表明,我們的方法在三元組分類、鏈接預測和關系預測任務上都能達到最新的性能。

付費5元查看完整內容

題目: TAGNN: Target Attentive Graph Neural Networks for Session-based Recommendation

摘要:

基于會話的推薦在許多網站中扮演著重要的角色,其目的是基于匿名會話來預測用戶的行為。通過研究會話中項目的時間轉換,已經出現了許多將會話建模為序列或圖的研究。但是,這些方法將會話壓縮成一個固定的向量表示,而不考慮要預測的目標項。由于目標項目的多樣性和用戶興趣的不同,固定向量會限制推薦模型的表示能力。本文提出了一種新的目標注意圖神經網絡(TAGNN)模型,用于基于會話的推薦。在TAGNN中,目標感知注意力自適應地激發不同用戶對不同目標的興趣。學習興趣表示向量隨著目標項目的不同而變化,極大地提高了模型的表達能力。此外,TAGNN利用圖神經網絡的強大功能來捕捉會話中的豐富項轉換。在真實數據集上進行的綜合實驗證明了它優于最先進的方法。

付費5元查看完整內容

題目: A Survey on Knowledge Graph-Based Recommender Systems

摘要:

為了解決信息爆炸問題,提高用戶在各種在線應用中的體驗,人們開發了推薦系統來模擬用戶的偏好。盡管人們已經為更個性化的推薦做了很多努力,但是推薦系統仍然面臨著一些挑戰,如數據稀疏和冷啟動。近年來,以知識圖為輔助信息的推薦生成引起了人們的極大興趣。這種方法不僅可以緩解上述問題,使推薦更加準確,而且可以為推薦項目提供解釋。本文對基于知識圖的推薦系統進行了系統的研究。我們收集了最近在這一領域發表的論文,并從兩個角度對其進行了總結。一方面,我們通過研究論文如何利用知識圖進行精確和可解釋的推薦來研究所提出的算法。另一方面,我們介紹了這些工作中使用的數據集。最后,提出了該領域的幾個潛在研究方向。

付費5元查看完整內容

【導讀】2020 年 2 月 7 日-2 月 12 日,AAAI 2020 在美國紐約舉辦。Michael Galkin撰寫了AAAI2020知識圖譜論文相關研究趨勢包括:KG-Augmented語言模型,異構KGs中的實體匹配,KG完成和鏈路預測,基于kg的會話人工智能和問題回答,包括論文,值得查看!

Hiroaki Hayashi, Zecong Hu, Chenyan Xiong, Graham Neubig: Latent Relation Language Models. AAAI 2020

  • 潛在關系語言模型:本文提出了一種潛在關系語言模型(LRLMs),這是一類通過知識圖譜關系對文檔中詞語的聯合分布及其所包含的實體進行參數化的語言模型。該模型具有許多吸引人的特性:它不僅提高了語言建模性能,而且能夠通過關系標注給定文本的實體跨度的后驗概率。實驗證明了基于單詞的基線語言模型和先前合并知識圖譜信息的方法的經驗改進。定性分析進一步證明了該模型的學習能力,以預測適當的關系在上下文中。

付費5元查看完整內容

1、 Adversarial Graph Embedding for Ensemble Clustering

作者:Zhiqiang Tao , Hongfu Liu , Jun Li , ZhaowenWang and Yun Fu;

摘要:Ensemble Clustering通常通過圖分區方法將基本分區集成到共識分區(consensus partition)中,但這種方法存在兩個局限性: 1) 它忽略了重用原始特征; 2)獲得具有可學習圖表示的共識分區(consensus partition)仍未得到充分研究。在本文中,我們提出了一種新穎的對抗圖自動編碼器(AGAE)模型,將集成聚類結合到深度圖嵌入過程中。具體地,采用圖卷積網絡作為概率編碼器,將特征內容信息與共識圖信息進行聯合集成,并使用簡單的內積層作為解碼器,利用編碼的潛變量(即嵌入表示)重建圖。此外,我們還開發了一個對抗正則化器來指導具有自適應分區依賴先驗的網絡訓練。通過對8個實際數據集的實驗,證明了AGAE在幾種先進的深度嵌入和集成聚類方法上的有效性。

網址://www.ijcai.org/proceedings/2019/0494.pdf

2、Attributed Graph Clustering via Adaptive Graph Convolution

作者:Xiaotong Zhang, Han Liu, Qimai Li and Xiao-Ming Wu;

摘要:Attributed Graph聚類是一項具有挑戰性的工作,它要求對圖結構和節點屬性進行聯合建模。圖卷積網絡的研究進展表明,圖卷積能夠有效地將結構信息和內容信息結合起來,近年來基于圖卷積的方法在一些實際屬性網絡上取得了良好的聚類性能。然而,對于圖卷積如何影響聚類性能以及如何正確地使用它來優化不同圖的性能,人們的了解有限。現有的方法本質上是利用固定低階的圖卷積,只考慮每個節點幾跳內的鄰居,沒有充分利用節點關系,忽略了圖的多樣性。本文提出了一種自適應圖卷積方法,利用高階圖卷積捕獲全局聚類結構,并自適應地為不同的圖選擇合適的順序。通過對基準數據集的理論分析和大量實驗,驗證了該方法的有效性。實驗結果表明,該方法與現有的方法相比具有較好的優越性。

網址:

3、Dynamic Hypergraph Neural Networks

作者:Jianwen Jiang , Yuxuan Wei , Yifan Feng , Jingxuan Cao and Yue Gao;

摘要:近年來,基于圖/超圖(graph/hypergraph)的深度學習方法引起了研究者的廣泛關注。這些深度學習方法以圖/超圖結構作為模型的先驗知識。然而,隱藏的重要關系并沒有直接表現在內在結構中。為了解決這個問題,我們提出了一個動態超圖神經網絡框架(DHGNN),它由兩個模塊的堆疊層組成:動態超圖構造(DHG)和超圖卷積(HGC)。考慮到最初構造的超圖可能不適合表示數據,DHG模塊在每一層上動態更新超圖結構。然后引入超圖卷積對超圖結構中的高階數據關系進行編碼。HGC模塊包括兩個階段:頂點卷積和超邊界卷積,它們分別用于聚合頂點和超邊界之間的特征。我們已經在標準數據集、Cora引文網絡和微博數據集上評估了我們的方法。我們的方法優于最先進的方法。通過更多的實驗驗證了該方法對不同數據分布的有效性和魯棒性。

網址:

4、Exploiting Interaction Links for Node Classification with Deep Graph Neural Networks

作者:Hogun Park and Jennifer Neville;

摘要:節點分類是關系機器學習中的一個重要問題。然而,在圖邊表示實體間交互的場景中(例如,隨著時間的推移),大多數當前方法要么將交互信息匯總為鏈接權重,要么聚合鏈接以生成靜態圖。在本文中,我們提出了一種神經網絡結構,它可以同時捕獲時間和靜態交互模式,我們稱之為Temporal-Static-Graph-Net(TSGNet)。我們的主要觀點是,利用靜態鄰居編碼器(可以學習聚合鄰居模式)和基于圖神經網絡的遞歸單元(可以捕獲復雜的交互模式),可以提高節點分類的性能。在我們對節點分類任務的實驗中,與最先進的方法相比,TSGNet取得了顯著的進步——與四個真實網絡和一個合成數據集中的最佳競爭模型相比,TSGNet的分類錯誤減少了24%,平均減少了10%。

網址:

5、Fine-grained Event Categorization with Heterogeneous Graph Convolutional Networks

作者:Hao Peng, Jianxin Li, Qiran Gong, Yangqiu Song, Yuanxing Ning, Kunfeng Lai and Philip S. Yu;

摘要:事件在現實世界中實時發生,可以是涉及多個人和物體的計劃和組織場合。社交媒體平臺發布了大量包含公共事件和綜合話題的文本消息。然而,由于文本中事件元素的異構性以及顯式和隱式的社交網絡結構,挖掘社會事件是一項具有挑戰性的工作。本文設計了一個事件元模式來表征社會事件的語義關聯,并構建了一個基于事件的異構信息網絡(HIN),該網絡融合了外部知識庫中的信息,提出了一種基于對偶流行度圖卷積網絡(PP-GCN)的細粒度社會事件分類模型。我們提出了一種基于事件間社會事件相似度(KIES)的知識元路徑實例,并建立了一個加權鄰域矩陣作為PP-GCN模型的輸入。通過對真實數據收集的綜合實驗,比較各種社會事件檢測和聚類任務。實驗結果表明,我們提出的框架優于其他可選的社會事件分類技術。

網址:

6、Graph Contextualized Self-Attention Network for Session-based Recommendation

作者:Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua Fang and Xiaofang Zhou;

摘要:基于會話的推薦旨在預測用戶基于匿名會話的下一步行動,是許多在線服務(比如電子商務,媒體流)中的關鍵任務。近年來,在不使用遞歸網絡和卷積網絡的情況下,自注意力網絡(SAN)在各種序列建模任務中取得了顯著的成功。然而,SAN缺乏存在于相鄰商品上的本地依賴關系,并且限制了其學習序列中商品的上下文表示的能力。本文提出了一種利用圖神經網絡和自注意力機制的圖上下文自注意力模型(GC-SAN),用于基于會話的推薦。在GC-SAN中,我們動態地為會話序列構造一個圖結構,并通過圖神經網絡(GNN)捕獲豐富的局部依賴關系。然后,每個會話通過應用自注意力機制學習長期依賴關系。最后,每個會話都表示為全局首選項和當前會話興趣的線性組合。對兩個真實數據集的大量實驗表明,GC-SAN始終優于最先進的方法。

網址:

7、Graph Convolutional Network Hashing for Cross-Modal Retrieval

作者:Ruiqing Xu , Chao Li , Junchi Yan , Cheng Deng and Xianglong Liu;

摘要:基于深度網絡的跨模態檢索近年來取得了顯著的進展。然而,彌補模態差異,進一步提高檢索精度仍然是一個關鍵的瓶頸。本文提出了一種圖卷積哈希(GCH)方法,該方法通過關聯圖學習模態統一的二進制碼。一個端到端深度體系結構由三個主要組件構成:語義編碼模塊、兩個特征編碼網絡和一個圖卷積網絡(GCN)。我們設計了一個語義編碼器作為教師模塊來指導特征編碼過程,即學生模塊,用于語義信息的挖掘。此外,利用GCN研究數據點之間的內在相似性結構,有助于產生有區別的哈希碼。在三個基準數據集上的大量實驗表明,所提出的GCH方法優于最先進的方法。

網址:

付費5元查看完整內容

論文摘要:知識圖譜嵌入是一種將符號實體和關系投影到連續向量空間的方法,越來越受到人們的重視。以前的方法允許對每個實體或關系進行單一的靜態嵌入,忽略它們的內在上下文性質,即。,實體和關系可能出現在不同的圖上下文中,因此,它們具有不同的屬性。該工作提出了一種新的基于上下文的知識圖譜嵌入(CoKE)范式,該范式考慮了這種上下文性質,并學習了動態的、靈活的、完全上下文化的實體和關系嵌入。研究了兩類圖的上下文:邊和路徑,它們都被表示為實體和關系的序列。CoKE采用一個序列作為輸入,并使用Transformer編碼器獲得上下文化的表示。因此,這些表現形式自然地適應輸入,捕捉實體的上下文含義和其中的關系。通過對各種公共基準的評估,驗證了CoKE在鏈路預測和路徑查詢應答方面的優越性。在幾乎所有情況下,它的性能始終比當前的技術水平更好,或者至少與之相當,特別是在H@10的路徑查詢應答方面提高了19.7%。

代碼鏈接:[ /tree/develop/PaddleKG/CoKE]( /tree/develop/PaddleKG/CoKE)

付費5元查看完整內容

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.

北京阿比特科技有限公司