多模態機器學習(MMML)是一個充滿活力的多學科研究領域,通過整合和建模多種交流模態(包括語言、聲音和視覺信息)來實現人工智能的一些原始目標。隨著對視聽語音識別的初步研究,以及最近的語言和視覺項目,如圖像和視頻字幕,這個研究領域給多模態研究人員帶來了一些獨特的挑戰,因為數據的異質性和模式之間經常發現的偶然性。本課程將教授與MMML相關的基本數學概念,包括多模態對齊與融合、異質表示學習和多流時間建模。我們還將回顧最近描述最先進的MMML概率模型和計算算法的論文,并討論當前和即將面臨的挑戰。
本課程將介紹機器學習和深度學習中與多模態機器學習中的五個主要挑戰相關的基本數學概念:(1)多模態表示學習,(2)平移與映射,(3)模態對齊,(4)多模態融合和(5)協同學習。這些包括但不限于,多模態自動編碼器,深度典型相關分析,多核學習,注意力模型和多模態遞歸神經網絡。本課程還將討論MMML的許多最新應用,包括多模式的情感識別、圖像和視頻字幕以及跨模式的多媒體檢索。
課程目錄:
以深度神經網絡為代表的“深度學習”系統正越來越多地接管所有人工智能任務,從語言理解、語音和圖像識別,到機器翻譯、規劃,甚至是游戲和自動駕駛。因此,在許多高級學術機構中,深度學習的專業知識正從深奧的要求迅速轉變為強制性的先決條件,并成為工業就業市場的一大優勢。
在本課程中,我們將學習深度神經網絡的基礎知識,以及它們在各種人工智能任務中的應用。在本課程結束時,預計學生將對這門學科非常熟悉,并能夠將深度學習應用于各種任務。他們也將被定位去理解關于這個主題的許多當前的文獻,并通過進一步的學習來擴展他們的知識。
如果你只對課程感興趣,你可以在YouTube頻道上觀看。
因此,在許多高級學術機構中,深度學習的專業知識正從深奧的要求迅速轉變為強制性的先決條件,并在工業就業市場上成為一大優勢。
在本課程中,我們將學習深度神經網絡的基礎知識,以及它們在各種人工智能任務中的應用。在本課程結束時,預計學生將對這門學科非常熟悉,并能夠將深度學習應用于各種任務。他們也將被定位去理解關于這個主題的許多當前的文獻,并通過進一步的學習來擴展他們的知識。
//www.math.arizona.edu/~hzhang/math574.html
隨著信息技術的飛速發展,在各個領域產生了大量的科學和商業數據。例如,人類基因組數據庫項目已經收集了千兆字節的人類遺傳密碼數據。萬維網提供了另一個例子,它擁有由數百萬人使用的文本和多媒體信息組成的數十億Web頁面。
本課程涵蓋了現代數據科學技術,包括基本的統計學習理論及其應用。將介紹各種數據挖掘方法、算法和軟件工具,重點在概念和計算方面。將涵蓋生物信息學、基因組學、文本挖掘、社交網絡等方面的應用。
本課程著重于現代機器學習的統計分析、方法論和理論。它是為學生誰想要實踐先進的機器學習工具和算法,也了解理論原理和統計性質的算法。主題包括回歸、分類、聚類、降維和高維分析。
理想情況下,我們希望將兩個幾何對象插入到一個函數中,然后通過函數來說明它們之間的相似性。這將允許我們回答關于下游應用程序中幾何數據的不同層次上的各種問題。然而,對于高級任務,如計算樣式相似度或三維形狀之間的頂點到頂點映射,直接在原始幾何數據上進行這些操作是困難的,因為更抽象的任務需要更結構化的聚合信息。實現這種相似性函數的一種方法是首先計算這些數據到嵌入空間的映射,從而對不同幾何元素之間的有意義的關系進行編碼,例如在風格上,更相似的形狀嵌入得更緊密。通過利用這個嵌入空間,我們可以計算并輸出相似度度量。然而,手工構建保存這些屬性的映射是很困難的,因為為越來越抽象的任務制定顯式規則或模型變得越來越具有挑戰性。因此,我們使用了由人類提供的與任務相關的元信息的幾何數據集合。這允許我們通過使用神經網絡靈活地制定地圖計算,而不用對映射圖本身的形式做太多假設。為了從廣泛可用的機器學習技術中獲益,我們必須首先考慮如何選擇合適的幾何數據表示作為各種學習模型的輸入。具體來說,根據數據源的可用性和任務的特定需求,我們從圖像、點云和三角形網格計算嵌入。一旦我們找到了對輸入進行編碼的合適方法,我們就會探索不同的方法來塑造學習到的中間域(嵌入),這超越了直接的基于分類分布的交叉熵最小化方法。
//sites.google.com/view/geometry-learning-foundation/schedule#h.p_am99P6ELk_gL
【導讀】DeepMind開設了一系列深度學習課程。本次課講述了深度學習自然語言處理。
這個報告由DeepMind研究科學家菲利克斯·希爾(Felix Hill)主持,分為三個部分。首先,他討論了用ANN建模語言的動機:語言是高度上下文相關的,典型的非組合性的,依賴于協調許多競爭的信息來源。本節還涵蓋了Elman的發現結構在時間和簡單遞歸網絡,上下文和transformers的重要性。在第二部分,他探索了從Word2Vec到BERT的語言的無監督和表征學習。最后,Felix討論了情景語言理解,基礎和具體化語言學習。。
深度學習自然語言處理
簡單易懂,讀起來很有趣,介紹Python對于初學者和語言新手都是理想的。作者Bill Lubanovic帶您從基礎知識到更復雜和更多樣的主題,混合教程和烹飪書風格的代碼配方來解釋Python 3中的概念。章節結尾的練習可以幫助你練習所學的內容。
您將獲得該語言的堅實基礎,包括測試、調試、代碼重用和其他開發技巧的最佳實踐。本書還向您展示了如何使用各種Python工具和開放源碼包將Python用于商業、科學和藝術領域的應用程序。
主題: Introduction to Machine Learning
課程簡介: 機器學習是指通過經驗自動提高性能的計算機程序(例如,學習識別人臉、推薦音樂和電影以及驅動自主機器人的程序)。本課程從不同的角度介紹機器學習的理論和實用算法。主題包括貝葉斯網絡、決策樹學習、支持向量機、統計學習方法、無監督學習和強化學習。本課程涵蓋理論概念,例如歸納偏差、PAC學習框架、貝葉斯學習方法、基于邊際的學習和Occam的剃刀。編程作業包括各種學習算法的實際操作實驗。這門課程的目的是讓一個研究生在方法論,技術,數學和算法方面有一個徹底的基礎,目前需要的人誰做的機器學習的研究。
邀請嘉賓: Hal Daumé III,紐約市微軟研究院的研究員,是機器學習小組的一員;他也是馬里蘭大學的副教授。他主要從事自然語言處理和機器學習。
Matt Gormley,卡內基梅隆大學計算機科學學院機器學習部(ML)助教。
Roni Rosenfeld,卡內基梅隆大學計算機學院機器學習系教授兼主任,個人主頁://www.cs.cmu.edu/~roni/。等