本書由計算理論領域的知名MichaelSipser所撰寫。他以獨特的視角,地介紹了計算理論的三個主要內容:自動機與語言、可計算性理論和計算復雜性理論。作者以清新的筆觸、生動的語言給出了寬泛的數學原理,而沒有拘泥于某些低層次的細節。在證明之前,均有“證明思路”,幫助讀者理解數學形式下蘊涵的概念。本書可作為計算機高年級本科生和研究生的教材,也可作為教師和研究人員的參考書。
//staff.ustc.edu.cn/~huangwc/book/Sipser_Introduction.to.the.Theory.of.Computation.3E.pdf
這本教科書強調了代數和幾何之間的相互作用,以激發線性代數的研究。矩陣和線性變換被認為是同一枚硬幣的兩面,它們的聯系激發了全書的探究。圍繞著這個界面,作者提供了一個概念上的理解,數學是進一步的理論和應用的核心。繼續學習線性代數的第二門課程,您將會對《高等線性代數與矩陣代數》這本書有更深的了解。
從向量、矩陣和線性變換的介紹開始,這本書的重點是構建這些工具所代表的幾何直觀。線性系統提供了迄今為止看到的思想的強大應用,并導致子空間、線性獨立、基和秩的引入。然后研究集中在矩陣的代數性質,闡明了它們所代表的線性變換的幾何性質。行列式、特征值和特征向量都可以從這種幾何觀點中獲益。在整個過程中,“額外主題”部分以廣泛的思想和應用擴大了核心內容,從線性規劃,到冪迭代和線性遞歸關系。每個部分都有各種層次的練習,包括許多設計用來用電腦程序解決的練習。
這本書是從線性變換和矩陣本身都是有用的對象的角度寫的,但它是兩者之間的聯系,真正打開線性代數的魔法。有時候,當我們想知道一些關于線性變換的東西時,最簡單的方法就是找到一組基然后看對應的矩陣。相反,有許多有趣的矩陣和矩陣運算家族,它們似乎與線性變換無關,但卻可以解釋一些基無關對象的行為。
線性與矩陣代數導論是線性代數的理想入門證明課程。學生被假定已經完成了一到兩門大學水平的數學課程,盡管微積分不是明確的要求。教師將會感激有足夠的機會選擇符合每個教室需求的主題,并通過WeBWorK提供在線作業集。
有很多介紹抽象代數概念。然而,對于那些在工程、計算機科學、物理科學、工業或金融領域需要數學背景的人來說,沒有哪一個比本書《代數:計算導論》更適合。作者用一種獨特的方法和演示,演示了如何使用軟件作為解決代數問題的工具。
多種因素使這篇文章與眾不同。它清晰的闡述,每一章都建立在前一章的基礎上,為讀者提供了更清晰的理解。首先介紹置換群,然后是線性群,最后是抽象群。他通過引入伽羅瓦群作為對稱群來謹慎地推動伽羅瓦理論。他包括了許多計算,既作為例子,也作為練習。所有這些都是為了幫助讀者更好地理解更抽象的概念。
//www.routledge.com/Algebra-A-Computational-Introduction/Scherk/p/book/9781584880646
通過仔細集成使用的Mathematica?在整個書中的例子和練習,作者幫助讀者發展一個更深的理解和欣賞材料。從互聯網上下載的大量練習和示例有助于建立有價值的Mathematica工作知識,并為在該領域遇到的復雜問題提供了很好的參考。
這本書調研了大約20世紀90年代末機器學習的許多重要課題。我的意圖是在理論和實踐之間尋求一個中間橋梁帶。筆記集中在機器學習的重要思想上——它既不是一本實踐手冊,也不是一個理論證明的概要。我的目標是為讀者提供充分的準備,使一些關于機器學習的廣泛文獻易于理解。草稿只有200多頁(包括扉頁)。
這本書集中在機器學習的重要思想上。對于我所陳述的許多定理,我并沒有給出證明,但對于形式的證明,我確實給出了可信的論據和引用。而且,我沒有討論許多在應用中具有實際重要性的問題;這本書不是機器學習實踐手冊。相反,我的目標是為讀者提供充分的準備,使大量關于機器學習的文獻易于理解。
學習,就像智力一樣,涵蓋了如此廣泛的過程,很難精確定義。詞典的定義包括這樣的短語:“通過學習、指導或經驗獲得知識、或理解、或技能”和“通過經驗改變行為傾向”。動物學家和心理學家研究動物和人類的學習。在這本書中,我們關注的是機器學習。動物和機器學習之間有一些相似之處。當然,機器學習的許多技術都來自心理學家的努力,他們通過計算模型使動物和人類學習的理論更加精確。機器學習研究人員正在探索的概念和技術似乎也可能闡明生物學習的某些方面。
本書是信息論領域中一本簡明易懂的教材。主要內容包括:熵、信源、信道容量、率失真、數據壓縮與編碼理論和復雜度理論等方面的介紹。
本書還對網絡信息論和假設檢驗等進行了介紹,并且以賽馬模型為出發點,將對證券市場研究納入了信息論的框架,從新的視角給投資組合的研究帶來了全新的投資理念和研究技巧。
本書適合作為電子工程、統計學以及電信方面的高年級本科生和研究生的信息論基礎教程教材,也可供研究人員和專業人士參考。
本書是一本簡明易懂的信息論教材。正如愛因斯坦所說:“凡事應該盡可能使其簡單到不能再簡單為止。''雖然我們沒有深人考證過該引語的來源(據說最初是在幸運蛋卷中發現的),但我們自始至終都將這種觀點貫穿到本書的寫作中。信息論中的確有這樣一些關鍵的思想和技巧,一旦掌握了它們、不僅使信息論的主題簡明,而且在處理新問題時提供重要的直覺。本書來自使用了十多年的信息論講義,原講義是信息論課程的高年級本科生和一年級研究生兩學期用的教材。本書打算作為通信理論.計算機科學和統計學專業學生學習信息論的教材。
信息論中有兩個簡明要點。第一,熵與互信息這樣的特殊量是為了解答基本問題而產生的。例如,熵是隨機變量的最小描述復雜度,互信息是度量在噪聲背景下的通信速率。另外,我們在以后還會提到,互信息相當于已知邊信息條件下財富雙倍的增長。第二,回答信息理論問邀的答案具有自然的代數結構。例如,熵具有鏈式法則,因而,謫和互信息也是相關的。因此,數據壓縮和通信中的問題得到廣泛的解釋。我們都有這樣的感受,當研究某個問題時,往往歷經大量的代數運算推理得到了結果,但此時沒有真正了解問題的全莪,最終是通過反復觀察結果,才對整個問題有完整、明確的認識。所以,對一個問題的全面理解,不是靠推理,而是靠對結果的觀察。要更具體地說明這一點,物理學中的牛頓三大定律和薛定諤波動方程也許是最合適的例子。誰曾預見過薛定諤波動方程后來會有如此令人敬畏的哲學解釋呢?
在本書中,我們常會在著眼于問題之前,先了解一下答案的性質。比如第2章中,我們定義熵、相對熵和互信息,研究它們之間的關系,再對這些關系作一點解釋·由此揭示如何融會貫通地使用各式各樣的方法解決實際問題。同理,我們順便探討熱力學第二定律的含義。熵總是增加嗎?答案既肯定也否定。這種結果會令專家感興趣,但初學者或i午認為這是必然的而不會深人考慮。
在實際教學中.教師往往會加人一自己的見解。事實上,尋找無人知道的證明或者有所創新的結果是一件很愉快的事情。如果有人將新的思想和已經證明的內容在課堂上講解給學生,那么不僅學生會積極反饋“對,對,對六而且會大大地提升教授該課程的樂崆我們正是這樣從研究本教材的許多新想法中獲得樂趣的。
本書加人的新素材實例包括信息論與博弈之間的關系,馬爾可夫鏈背景下熱力學第二定律的普遍性問題,信道容量定理的聯合典型性證明,赫夫曼碼的競爭最優性,以及關于最大熵譜密度估計的伯格(回定理的證明。科爾莫戈羅夫復雜度這一章也是本書的獨到之處。面將費希爾信息,互信息、中心極限定理以及布倫一閔可夫斯基不等式與熵冪不等式聯系在一起,也是我們引以為豪之處。令我們感到驚訝的是.關于行列式不等式的許多經典結論,當利用信息論不等式后會很容易得到證明。
自從香農的奠基性論文面世以來,盡管信息論已有了相當大的發展,但我們還是要努力強調它的連貫性。雖然香農創立信息論時受到通信理論中的問題啟發,然而我們認為信息論是一門獨立的學科,可應用于通信理論和統計學中。我們將信息論作為一個學科領域從通信理論、概率論和統計學的背景中獨立出來因為明顯不可能從這些學科中獲得難以理解的信息概念。由于本書中絕大多數結論以定理和證明的形式給出,所以,我們期望通過對這些定理的巧妙證明能說明這些結論的完美性。一般來講,我們在介紹問題之前先描述回題的解的性質,而這些很有的性質會使接下來的證明順理成章。
使用不等式串、中間不加任何文字、最后直接加以解釋,是我們在表述方式上的一項創新希望讀者學習我們所給的證明過程達到一定數量時,在沒有任何解釋的情況下就能理解其中的大部分步,并自己給出所需的解釋這些不等式串好比模擬到試題,讀者可以通過它們確認自己是否已掌握證明那些重要定理的必備知識。這些證明過程的自然流程是如此引人注目,以至于導致我們輕視了寫作技巧中的某條重要原則。由于沒有多余的話,因而突出了思路的邏輯性與主題思想u我們希望當讀者閱讀完本書后,能夠與我們共同分亨我們所推崇的,具有優美、簡潔和自然風格的信息論。
本書廣泛使用弱的典型序列的方法,此概念可以追溯到香農1948年的創造性工作,而它真正得到發展是在20世紀70年代初期。其中的主要思想就是所謂的漸近均分性(AEP),或許可以粗略地說成“幾乎一切事情都是等可能的"
第2章闡述了熵、相對熵和互信息之同的基本代數關系。漸近均分性是第3章重中之重的內容,這也使我們將隨機過程和數據壓縮的熵率分別放在第4章和第5章中論述。第6章介紹博弈,研究了數據壓縮的對偶性和財富的增長率。可作為對信息論進行理性思考基礎的科爾莫戈羅夫復雜度,擁有著巨大的成果,放在第14章中論述。我們的目標是尋找一個通用的最矩描述,而不是平均意義下的次佳描述。的確存在這樣的普遍性概念用來刻畫一個對象的復雜度。該章也論述了神奇數0,揭示數學上的不少奧秘,是圖靈機停止運轉概率的推廣。第7章論述信道容量定理。第8章敘述微分熵的必需知識,它們是將早期容量定理推廣到連續噪聲信道的基礎。基本的高斯信道容量問題在第9章中論述。第il章闡述信息論和統計學之間的關系,20世紀年代初期庫爾貝克首次對此進行了研究,此后相對被忽視。由于率失真理論比無噪聲數據壓縮理論需要更多的背景知識,因而將其放置在正文中比較靠后的第10章。
網絡信息理論是個大的主題,安排在第巧章,主要研究的是噪聲和干擾存在情形下的同時可達的信息流。有許多新的思想在網絡信息理論中開始活躍起來,其主要新要素有干擾和反饋第16章講述股票市場,這是第6章所討論的博弈的推廣,也再次表明了信息論和博弈之間的緊密聯系。第17章講述信息論中的不等式,我們借此一隅把散布于全書中的有趣不等式重新收攏在一個新的框架中,再加上一些關于隨機抽取子集熵率的有趣新不等式。集合和的體積的布倫一閔可夫斯基不等式,獨立隨機變量之和的有效方差的熵冪不等式以及費希爾信息不等式之間的美妙關系也將在此章中得到詳盡的闡述。
本書力求推理嚴密,因此對數學的要求相當高·要求讀者至少學過一學期的概率論課程且有扎實的數學背景,大致為本科高年級或研究生一年級水平。盡管如此,我們還是努力避免使用測度論。因為了解它只對第16章中的遍歷過程的AEP的證明過程起到簡化作用。這符合我們的觀點,那就是信息論基礎與技巧不同,后者才需要將所有推廣都寫進去。
本書的主體是第2,3,4,5,7,8,9,10,11和巧章,它們自成體系,讀懂了它們就可以對信息論有很好的理解。但在我們看來,第14章的科爾莫戈羅夫復雜度是深人理解信息論所需的必備知識。余下的幾章,從博弈到不等式.目的是使主題更加連貫和完美。
這本書系統性講述了統計學理論,包括概率理論、分布式理論與統計模型,基本統計理論、貝葉斯理論、無偏點估計、最大似然統計推斷、統計假設與置信集、非參與魯棒推斷。
第一門課程以對統計中有用的測量論概率論的概念和結果的簡要概述開始。隨后討論了統計決策理論和推理中的一些基本概念。探討了估計的基本方法和原理,包括各種限制條件下的最小風險方法,如無偏性或等方差法,最大似然法,以及矩法和其他插件方法等函數法。然后詳細地考慮了貝葉斯決策規則。詳細介紹了最小方差無偏估計的方法。主題包括統計量的充分性和完全性、 Fisher信息、估計量的方差的界、漸近性質和統計決策理論,包括極大極小和貝葉斯決策規則。
第二門課程更詳細地介紹了假設檢驗和置信集的原理。我們考慮了決策過程的表征,內曼-皮爾森引理和一致最有力的測試,置信集和推理過程的無偏性。其他主題包括等方差、健壯性和函數估計。
除了數理統計的經典結果外,還討論了馬爾可夫鏈蒙特卡洛理論、擬似然、經驗似然、統計泛函、廣義估計方程、折刀法和自舉法。
本書圍繞虛擬化、并發和持久性這三個主要概念展開,介紹了所有現代系統的主要組件(包括調度、虛擬內存管理、磁盤和I/O子系統、文件系統)。全書共50章,分為3個部分,分別講述虛擬化、并發和持久性的相關內容。作者以對話形式引入所介紹的主題概念,行文詼諧幽默卻又鞭辟入里,力求幫助讀者理解操作系統中虛擬化、并發和持久性的原理。本書內容全面,并給出了真實可運行的代碼(而非偽代碼),還提供了相應的練習,很適合高等院校相關專業的教師開展教學和高校學生進行自學。?
本書具有以下特色:
這是一本關于理論計算機科學的本科入門課程的教科書。這本書的教育目的是傳達以下信息:
? 這種計算出現在各種自然和人為系統中,而不僅僅是現代的硅基計算機中。 ? 類似地,除了作為一個極其重要的工具,計算也作為一個有用的鏡頭來描述自然,物理,數學,甚至社會概念。 ? 許多不同計算模型的普遍性概念,以及代碼和數據之間的二元性相關概念。 ? 一個人可以精確地定義一個計算的數學模型,然后用它來證明(有時只是猜測)下界和不可能的結果。 ? 現代理論計算機科學的一些令人驚訝的結果和發現,包括np完備性的流行、交互作用的力量、一方面的隨機性的力量和另一方面的去隨機化的可能性、在密碼學中“為好的”使用硬度的能力,以及量子計算的迷人可能性。
自Goodfellow等人2014年開創性的工作以來,生成式對抗網(GAN)就受到了相當多的關注。這種關注導致了GANs的新思想、新技術和新應用的爆炸。為了更好地理解GANs,我們需要理解其背后的數學基礎。本文試圖從數學的角度對GANs進行概述。許多學數學的學生可能會發現關于GAN的論文更難以完全理解,因為大多數論文是從計算機科學和工程師的角度寫的。這篇論文的目的是用他們更熟悉的語言來介紹GANs。
這本受歡迎的教科書的第一版,當代人工智能,提供了一個學生友好的人工智能介紹。這一版完全修訂和擴大更新,人工智能: 介紹機器學習,第二版,保留相同的可訪問性和解決問題的方法,同時提供新的材料和方法。
該書分為五個部分,重點介紹了人工智能中最有用的技術。書的第一部分涵蓋了基于邏輯的方法,而第二部分著重于基于概率的方法。第三部分是涌現智能的特點,探討了基于群體智能的進化計算和方法。接下來的最新部分將提供神經網絡和深度學習的詳細概述。書的最后一部分著重于自然語言的理解。
適合本科生和剛畢業的研究生,本課程測試教材為學生和其他讀者提供關鍵的人工智能方法和算法,以解決具有挑戰性的問題,涉及系統的智能行為在專門領域,如醫療和軟件診斷,金融決策,語音和文本識別,遺傳分析等。