亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要

本文研究了在信息時代,俄羅斯聯邦的各種官僚機構如何利用外交語言、宣傳和軍事信號,圍繞沖突和暴力實時地進行有利的敘述。這兩年的外交聲明和政治軍事行動共有約3000條記錄可供考慮,提供了大量的數據供評估。通過研究2019年和2020年這些聲明的頻率、預期信息和目標,本文確定了俄羅斯如何在口頭上介入全球事件的趨勢,并將這種做法與俄羅斯軍事干預的行動能力聯系起來。盡管作為國家活動的外交活動和軍事信號早在信息時代之前就已存在,但本文評估了這些工具在現代環境中的使用情況。了解俄羅斯將如何試圖干預或阻止外界對世界各地的政治和軍事危機的反應是至關重要的,因為政治限制可能仍然是信息時代軍事決策的最重要的限制因素,特別是對民主國家的軍隊,如北約成員。

引言

為了逆向設計顏色革命,俄羅斯的國策越來越多地利用其境外的社會裂痕和暴力來削弱其對手并夸大其作為大國的偽裝。本文利用2019-2020年俄羅斯言論數據庫,調查了俄羅斯國家宣傳如何利用海外暴力事件來推進這一議程;然后將這種言論與當代俄羅斯的軍事行動和現代化進行比較,以評估宣傳活動是否與俄羅斯的作戰能力相關。這允許對俄羅斯在世界各地的暴力事件中的言行進行比較。

本文沒有調查俄羅斯信息戰政策在每個暴力事件中的具體動機,而是局限于分析俄羅斯外交和軍事政策的表達。通過研究不同地域的宣傳和行動的頻率,不管是什么原因,本文突破了俄羅斯信息戰的刻意混淆性質,顯示了某些可量化的模式。

本文發現有證據表明,俄羅斯通過宣傳和軍事力量的展示,將歐洲挑出來進行恫嚇。如果排除烏克蘭這個例外情況,俄羅斯的宣傳和軍事示威的全球分布在地區和聯盟關系上都有相當強的相關性。同樣,與美國的主要非北約盟國(MNNA)、俄羅斯的盟國或不結盟國家相比,俄羅斯的憤怒似乎主要針對北約成員國。然而,如果將其分解到除美國以外的各個北約成員國的層面上,這種關聯性就不那么明顯了。

付費5元查看完整內容

相關內容

論文(Paper)是專知網站核心資料文檔,包括全球頂級期刊、頂級會議論文,及全球頂尖高校博士碩士學位論文。重點關注中國計算機學會推薦的國際學術會議和期刊,CCF-A、B、C三類。通過人機協作方式,匯編、挖掘后呈現于專知網站。

量子技術將量子物理學的原理轉化為技術應用。總的來說,量子技術還沒有達到成熟的程度;然而,它可能對未來的軍事傳感、加密和通信,以及對國會的監督、授權和撥款有重大影響。

1 量子技術的關鍵概念

量子應用依賴于一些關鍵概念,包括疊加、量子比特(qubits)和糾纏。疊加是指量子系統同時存在于兩個或多個狀態的能力。量子位是一種利用疊加原理來編碼信息的計算單元。(經典計算機用比特編碼信息,這些比特可以代表0或1的二進制狀態,而量子計算機用量子比特編碼信息,每個比特可以同時代表0、1或0和1的組合。因此,量子計算機的功率隨著每個量子比特的增加而呈指數級增長)。

美國國家科學院(NAS)將糾纏定義為 "一個系統中的兩個或更多的量子對象可以有內在的聯系,從而使對一個對象的測量決定了對另一個對象可能的測量結果,無論這兩個對象相距多遠"。糾纏是量子技術的一些潛在軍事應用的基礎。然而,由于量子狀態的脆弱性,疊加和糾纏都很難維持,它們可能會被微小的運動、溫度變化或其他環境因素所破壞。

2 量子技術的軍事應用

美國國防科學委員會(DSB),一個獨立的國防部(DOD)科學顧問委員會,已經得出結論,量子技術的三種應用對國防部來說最有希望:量子傳感,量子計算機,和量子通信。DSB的結論是,量子雷達,假設能夠識別物體的性能特征(例如,雷達截面,速度)--包括低可觀察性,或隱形飛機--"不會為國防部提供升級的能力"。

2.1 量子傳感

量子傳感在傳感器內使用量子物理學原理。根據國防部的說法,這是量子技術最成熟的軍事應用,目前 "準備用于任務"。量子傳感可以提供一些增強的軍事能力。例如,它可以提供替代性的定位、導航和計時選項,理論上可以使軍隊在GPS退化或GPS否認的環境中繼續全力以赴地工作。

此外,量子傳感器有可能被用于情報、監視和偵察(ISR)的作用。這種傳感器的成功開發和部署可能會導致潛艇探測的重大改進,并反過來損害海基核威懾力量的生存能力。量子傳感器還可以使軍事人員探測地下結構或核材料,因為它們預計 "對環境干擾極其敏感"。量子傳感器的敏感性同樣有可能使軍事人員探測到電磁輻射,從而增強電子戰能力,并有可能協助定位隱蔽的對手部隊。

2.2 量子計算機

根據美國國家航空航天局的說法,"量子計算機是唯一已知的計算模型,可以提供比今天的計算機更高的指數級速度。" 雖然量子計算機處于相對早期的發展階段,但其中許多進展是由商業部門推動的,可能對人工智能(AI)、加密和其他學科的未來產生影響。

例如,一些分析家認為,量子計算機可以使機器學習(人工智能的一個子領域)取得進展。這種進步可以刺激改善模式識別和基于機器的目標識別。這反過來又能促成更精確的致命自主武器系統的發展,或能夠選擇和打擊目標的武器,而不需要人工控制或遠程操作。啟用人工智能的量子計算機有可能與量子傳感器配對,以進一步加強軍事ISR應用。

此外,量子計算機有可能解密存儲在加密媒體上的機密或受控非機密信息,使對手能夠獲得有關美國軍事或情報行動的敏感信息。一些分析家指出,要打破目前的加密方法,可能需要在量子計算方面取得重大進展。他們的估計表明,要破解目前的加密方法,需要一臺具有約2000萬個量子比特的量子計算機;然而,目前最先進的量子計算機一般不超過256個量子比特。

量子計算機的實際應用可能只有在錯誤率提高和新的量子算法、軟件工具和硬件開發之后才能實現。雖然正如NAS所指出的,"不能保證[這些技術挑戰]將被克服",但一些分析家認為,能夠破解當前加密方法的初始量子計算機原型可能在2030至2040年的時間框架內開發出來。出于這個原因,NAS得出結論:"后量子密碼學的開發、標準化和部署對于最大限度地減少潛在的安全和隱私災難的機會至關重要"。(在部署后量子密碼學之前截獲的信息將不會受到保護)。

2022年5月,拜登政府發布了《關于促進美國在量子計算方面的領導地位,同時減少對脆弱的密碼系統的風險的國家安全備忘錄》(NSM-10),其中 "指示各機構在美國開始將脆弱的計算機系統遷移到抗量子密碼學的多年過程中采取具體行動"。NSM-10指出,國家標準和技術研究所所長和國家安全局局長正在制定并預計在2024年之前公開發布抗量子密碼學的技術標準,此外還列舉了一個國家 "在2035年之前盡可能多地緩解量子風險的目標"。

2.3 量子通信

量子通信--不包括量子密鑰分配([QKD],將在下文中討論)--正處于一個新興的發展階段。量子通信在理論上可以實現量子軍事傳感器、計算機和其他系統的安全聯網,從而提高單個量子系統或經典通信網絡的性能。聯網還可以加強這些系統在射程上的穩健性,從而擴大它們可以部署的潛在環境(即在維持脆弱的量子狀態通常需要的實驗室環境之外)。這可以大大擴展量子通信的軍事用途。

量子密鑰分配是量子通信的一個子集,它利用量子物理學原理對信息進行加密,然后通過經典網絡發送。QKD實現了安全通信,在傳輸過程中不能被秘密截獲。(然而,QKD通信可以在目前長距離傳輸所需的中繼站被截獲)。據報道,中國正在大力投資QKD,并在2016年完成了北京-上海約1250英里的量子網絡的建設。然而,DSB的結論是:"QKD的實施還沒有足夠的能力或安全性來部署給國防部的任務使用。"

3 資金和最近的立法活動

國會已經考慮了量子技術的管理和影響。例如,2019財年國防授權法(NDAA)(P.L. 115-232)第234條指示國防部長--通過國防部研究與工程副部長行事--與私營部門和其他政府機構協調,執行量子技術研究和開發計劃。

此外,FY2020 NDAA(P.L. 116-92)第220條要求國防部制定使用量子技術的道德準則,以及支持量子勞動力和減少與量子技術相關的網絡安全風險的計劃。它還授權每個軍事部門的部長建立量子信息科學(QIS)研究中心,可以 "與適當的公共和私營部門組織合作",以推進量子研究。迄今為止,海軍已指定海軍研究實驗室作為其QIS研究中心,而空軍已指定空軍研究實驗室作為空軍和太空部隊的QIS研究中心。陸軍說它目前不打算建立一個QIS研究中心。

2021財年NDAA(P.L. 116-283)第214條指示各部門編制并每年更新一份量子計算機在未來一到三年內可能解決的技術挑戰清單。該清單目前包括量子化學、優化和機器學習。第214條還指示各部門與中小型企業建立項目,為政府、工業和學術研究人員提供量子計算能力,以應對這些挑戰。第1722條指示國防部對量子計算機帶來的風險以及當前的后量子密碼學標準進行評估。

最后,2022財年NDAA(P.L. 117-81)第105條指示總統通過國家科學技術委員會建立量子信息科學的經濟和安全影響小組委員會,而第229條指示國防部長 "建立一套活動,以加速開發和部署雙重用途的量子能力"。

國防部在最近的預算請求中沒有提供量子研究的細目;然而,根據數據分析公司Govini,國防部在2021財政年度要求為量子技術和研究提供約6.88億美元。

4 給國會的潛在問題

  • 目前量子技術軍事應用的成熟度需要多少資金?如果有的話,美國政府應該在多大程度上投資和研究能夠實現量子軍事應用的技術(例如,材料科學、制造技術)?

  • 量子技術的商業進展在多大程度上(如果有的話)可以被用于軍事應用?

  • 美國競爭者在開發量子技術的軍事應用方面的努力有多成熟?如果有的話,這種努力在多大程度上可以威脅到美國的先進軍事能力,如潛艇和隱形飛機?

  • 正在采取哪些措施來開發抗量子加密技術和保護用現有方法加密的數據?

  • 如果有的話,美國應該采取什么措施,以確保量子勞動力足以支持美國在量子技術方面的競爭力?

付費5元查看完整內容

毫無疑問,今天圍繞人工智能(AI)的最復雜的治理挑戰涉及國防和安全。CIGI正在促進戰略制定:人工智能對軍事防御和安全的影響項目將這一領域的主要專家與來自國防部的40多名公務員和加拿大武裝部隊的人員聚集在一起,討論人工智能對國家安全和軍事領域的力量倍增效應。

這一努力依賴于一系列的四次研討會,以產生關于數據驅動技術如何引發巨大的技術重組的前瞻性思考,這將對加拿大的國防規劃產生深遠影響。具體來說,這些研討會集中在數據治理和政策(道德、云計算、數據準備和互操作性);決策(可信賴性、人機一體化、生物技術和問責制);模擬工具(培訓、兵棋推演、人機合作、機器人、自主和可信的人工智能);以及信息時代的加拿大情報(將人工智能用于情報)。CIGI還主辦了一個研究生研討會,以激勵整個加拿大在全球公共政策、計算機科學和安全等領域學習的新興學者。

報告總結

本文探討了在人工智能(AI)和機器學習背景下的軍事特定能力的發展。在加拿大國防政策的基礎上,本文概述了人工智能的軍事應用和管理下一代軍事行動所需的資源,包括多邊參與和技術治理。

維持先進軍事能力的前景現在與人工智能的武器化直接聯系在一起。作為一項通用技術,人工智能代表著一種力量的倍增器,有能力重塑戰爭規則。事實上,在核彈頭仍然是一種單一的技術應用的情況下,人工智能有能力支持許多不同類型的武器和系統。正如北大西洋公約組織(NATO)的指導意見所指出的,人工智能和其他 "智能 "技術現在對加拿大及其盟國的未來安全至關重要。

新技術在改變戰爭的性質方面有著悠久的歷史。從馬匹和盔甲的使用到航空母艦和戰斗機的引進,人工智能和機器人只是代表了軍事技術發展的最新階段。常規武器與人工智能和機器學習的融合,必將重塑決策的性質和軍事戰略轉型中的武力應用。

即使當代人工智能系統的能力被限制在機器學習算法的狹窄范圍內,這種限制可能不會持續太久。與神經科學、量子計算和生物技術相重疊的發現領域正在迅速發展,代表了 "智能機器 "進化的未知領域。在這些新的研究領域中的科學和技術發現給加拿大的國防帶來了巨大的風險,但同時也代表著巨大的機遇。

顯而易見的是,新興技術已經成為高度緊張的地緣政治競爭的基礎,它與一系列商業產業和技術平臺相重疊。中國、俄羅斯、美國和其他國家和非國家行為者正在積極追求人工智能和其他前沿技術的軍事應用。競爭的領域包括云技術、高超音速和新導彈技術、空間應用、量子和生物技術以及人類增強。

盡管技術創新一直塑造著國家間沖突的性質,但新興和顛覆性技術(EDT)的規模和速度是前所未有的。加拿大的國防政策反映了這種擔憂,它呼吁使加拿大武裝部隊(CAF)適應不斷變化的地緣政治環境。加拿大國防規劃已著手擴大和發展加拿大武裝部隊,在新的軍事平臺整合中納入下一代偵察機、遙控系統和天基設施。

基于對不斷變化的技術環境的廣泛評估,加拿大國防部(DND)認識到,這個新時代的特點是全球力量平衡的變化。這包括在快速發展的創新經濟中大國競爭性質的變化。就像石油和鋼鐵為工業時代設定條件一樣,人工智能和機器學習現在也可能為數字時代設定條件。

這種規模的破壞是由技術和制度變化的融合所驅動的,這些變化可以以新的和不可預測的方式觸發復雜的反饋回路。在這個新的環境中,人工智能技術將迫使世界各國軍隊投射力量的能力倍增。確定軍事人工智能發展中的護欄對于避免未來危機至關重要。應用減少風險的措施來識別和減輕軍事人工智能可能帶來的一系列風險將是關鍵。事實上,在這些能力完全嵌入世界上目前和未來的軍隊之前,治理人工智能可能會更容易。

從整體上看,這種轉變預示著從初級機器到數據驅動技術和精密電子的巨大轉變。這種物理、數字和生物技術的加速融合代表了一場巨大技術革命的早期階段。在全球范圍內管理這些新興和顛覆性的技術,對于減少未來沖突的風險至關重要。

1 引言

從人工智能和機器人到電池存儲、分布式賬本技術(DLT)和物聯網(IoT),新興和顛覆性技術(EDT)現在正在激起一個商業創新的新時代。這一巨大的技術變革景觀正在醞釀一場社會和經濟變革,對中央銀行的發展具有巨大影響。正如北約最近的一份報告所指出的(北約新興和顛覆性技術咨詢小組2020),這些技術包括:

→ 人工智能和機器學習。人工智能/機器學習的發展及其對創新的潛在影響。這包括神經形態計算、生成式對抗網絡,以及人工智能從已經收集或尚未收集的數據中揭示出意想不到的見解的能力。

→ 量子技術。正在進行的從量子過程研究中獲得的知識轉化為量子技術的應用,包括量子計算、量子傳感、量子密碼系統,以及在量子尺度上對材料的操縱和開發。

→ 數據安全。用于保障和損害通信、數據交易和數據存儲安全的算法和系統的設計,包括量子證明加密方法、區塊鏈和分布式賬本架構,以及更廣泛的網絡安全領域。

→ 計算功能的硬件。微型化、電力采集和能源儲存方面的進展,包括在全球范圍內提供數字化關鍵基礎設施所需的物理系統(物聯網)和機器人的廣泛使用及其對全球系統和流程的持續影響。

→ 生物和合成材料。從原子/分子層面的材料設計、合成和操作到中觀和宏觀尺度的創新,支持生物工程、化學工程、基因層面的操作、增材制造和AI介導的生成設計。

正如蒸汽機和印刷術激發了工業革命一樣,人工智能和機器人技術現在也在軍事技術的性質和全球力量平衡方面引發了巨大變革。人工智能的興起并非沒有歷史先例,但伴隨著人工智能的變化表明,需要對國防規劃進行更精確的調整,以適應一個數據驅動的時代。

在大國競爭和多極體系的背景下,人工智能已經成為競爭的一個特別焦點。中國、俄羅斯、美國和其他許多國家都在積極追求人工智能能力,并把重點放在國防和安全方面。例如,中國希望到2030年在人工智能方面領先世界,并期望通過利用大量的豐富數據,擴大其在人工智能產業化方面的領先優勢(Lucas和Feng,2017年)。

事實上,數據和數據驅動的技術現在占據了全球經濟的制高點。整個全球數據經濟的競爭已經與大國競爭密不可分(Mearsheimer 2021)。盡管美國和中國的經濟深深地相互依存,但中國在整個歐亞大陸不斷擴大的投資將很快使其成為世界貿易的中心。

技術優勢仍然是北約國家的關鍵支柱,但中國正在迅速趕超。即使美國在人工智能發現方面建立了強大的領先優勢,中國也越來越有可能在人工智能驅動的應用產業化方面占據主導地位。中國不僅有先進的商業能力,而且還有一個連貫的國家戰略。中國的技術部門正在達到專業知識、人才和資本的臨界質量,正在重新調整全球經濟的指揮高度(Lucas and Waters 2018)(見圖1)。

中國產業部署的大部分技術創新都是 "漸進式 "的,而不是 "顛覆式 "的,但現在這種情況正在改變。將新興市場聚集在其軌道上,中國前所未有的經濟擴張現在對世界經濟產生了引力(The Economist 2018)。標志性項目,價值數萬億美元的 "一帶一路 "倡議(世界銀行2018年)為圍繞電動汽車、電信、機器人、半導體、鐵路基礎設施、海洋工程以及最終的人工智能的廣泛戰略轉變提供了一個全球平臺(McBride和Chatzky 2019年)。

毫不奇怪,中國已經是國際專利申請的世界領導者(世界知識產權組織2020)。隨著自主機器(Etzioni和Etzioni 2017)、可再生能源基礎設施、量子通信(?iljak 2020)、增強型腦機接口(Putze等人2020)和天基武器(Etherington 2020)的出現,重新思考加拿大國家安全,特別是加拿大國防的性質的壓力正在增加。鑒于技術創新的步伐不斷加快,以及亞洲作為世界貿易中心的崛起(Huiyao 2019),來自國外的技術的影響可能是巨大的。

圖1:按購買力平價計算的國內生產總值預測(以萬億美元計)

2 AI與軍事防御

2.1 AI定義

人工智能的概念已被廣泛討論,但該術語的精確定義仍然是一個移動的目標。與其說人工智能是一項具體的技術或特定的創新,不如說它是一個材料的集合。事實上,即使人工智能技術已經成為廣泛的主流商業應用的基礎,包括網絡搜索、醫療診斷、算法交易、工廠自動化、共享汽車和自動駕駛汽車,人工智能仍然是一個理想的目標。

盡管人工智能領域的研究始于20世紀40年代,但隨著機器學習和計算機處理能力的改進,過去十年對人工智能興趣的爆炸性增長已經加速。人工智能的持續進步被比喻為在人腦中發現的多尺度學習和推理能力。當與大數據和云計算相結合時,預計人工智能將通過將 "智能 "人工智能和機器學習系統與第五代(5G)電信網絡(即物聯網)上的大量聯網設備連接起來,使數字技術 "認知化"。

作為人工智能的一個子集,機器學習代表了人工智能的最突出的應用(見圖2)。機器學習使用統計技術,使機器能夠在沒有明確指令的情況下 "學習",推動許多應用和服務,改善一系列分析和物理任務的自動化。通過使用數據自動提高性能,這個過程被稱為 "訓練 "一個 "模型"。使用一種算法來提高特定任務的性能,機器學習系統分析大量的訓練數據集,以便做人類自然而然的事情:通過實例學習。

今天,機器學習的最常見應用是深度學習。作為更廣泛的機器學習家族的一部分,深度學習利用人工神經網絡層來復制人類智能。深度學習架構,如深度神經網絡、遞歸神經網絡和卷積神經網絡,支持一系列廣泛的研究領域,包括計算機視覺、語音識別、機器翻譯、自然語言處理和藥物設計。

圖2:人工智能的層級

2.2 加拿大國防部:將人工智能應用于國家安全

安全人工智能位于新興和顛覆性技術(EDT)星座的中心,包括機器人學、基因組學、電池存儲、區塊鏈、3D打印、量子計算和5G電信。在研究層面,美國仍然是人工智能的全球領導者。目前,國家科學基金會每年在人工智能研究方面的投資超過1億美元(國家科學基金會2018年)。國防高級研究計劃局(DARPA)最近宣布投資20億美元用于一項名為AI Next的計劃,其目標是推進上下文和適應性推理(DARPA 2018)。

與過去的原子武器或隱形飛機的技術發展不同,沒有國家會壟斷軍事人工智能。研究人員和領先的商業企業之間廣泛的全球合作意味著人工智能和機器學習的進步可能會在全球范圍內擴散。事實上,人工智能發展的大多數技術進步是由工業界而不是政府推動的。除了市場主導的技術公司,世界各地廣泛的網絡集群正在孵化新一代的商業創新(Li and Pauwels 2018)。因此,許多未來的軍事應用將可能是為商業產業開發的技術的改編。

幸運的是,加拿大一直是人工智能研究前沿的領導者,并繼續通過2017年推出的泛加拿大人工智能戰略下的幾個項目培育一個強大的人工智能生態系統。加拿大政府積極參與人工智能咨詢委員會和各種國際伙伴關系,包括2020年啟動的全球人工智能伙伴關系;人工智能國防伙伴關系,其第二次對話在2021年舉行;以及重疊人工智能驅動的安全和規劃的多邊協議(五眼,北約)。事實上,加拿大的國防政策,"強大、安全、參與"(SSE),反映了加拿大政府對增加年度國防開支的承諾,重點是技術。

目前的聯邦預算包括對人工智能發展的實質性承諾,承諾在10年內投入4.438億美元(Silcoff 2021)。在政府2021年的預算中,1.85億美元將支持人工智能研究的商業化;1.622億美元將用于在全國范圍內招聘頂尖的學術人才;4800萬美元將用于加拿大高級研究所;五年內4000萬美元將旨在加強埃德蒙頓、多倫多和蒙特利爾的國家人工智能研究所的研究人員的計算能力;五年內860萬美元將幫助推進人工智能相關標準的發展和采用(加拿大政府2021年,148)。

2.3 增強加拿大的情報能力

人工智能是一個影響廣泛的商業和軍事技術的模糊領域。像電力或化石燃料一樣,人工智能的廣泛應用意味著人工智能和其他通用技術有能力重新配置現代軍隊的步伐和組織(Bresnahan和Trajtenberg 1995)。從整體上看,人工智能代表了國家安全性質的結構性轉變。出于這個原因,SSE設想了一個未來的軍事態勢,更加注重開發、獲取和整合先進的變革性技術,包括網絡和自主系統。

即使加拿大在傳統聯盟(北美防空司令部、北約和五眼聯盟)中的持續作用仍然是國家安全的基礎,EDT正在從根本上改變沖突的性質。正如格雷格-菲夫(2021年)所觀察到的,人工智能作為戰爭工具的崛起與升級加拿大國家安全架構,特別是加拿大情報部門的日益增長的需求相重疊。技術變革和信息爆炸的復合周期,新的技能組合和新的數據分析戰略對國防規劃的演變變得至關重要。

在數字時代,戰爭正日益成為基于知識的戰爭。隨著沖突進入信息領域,軍事規劃開始重新聚焦于信息/虛假信息行動、網絡行動、情報行動和政治或經濟影響行動。事實上,這種混合戰爭作為一種戰爭工具由來已久,其目的是利用宣傳、破壞、欺騙和其他非動能軍事行動,從內部破壞對手(Bilal 2021)。

網絡仍然是潛在對手、國家代理人、犯罪組織和非國家行為者的一個關鍵目標。這包括對通信、情報和敏感信息的嵌入式監視和偵察。正如Amy Zegart(2021年)所解釋的那樣,技術正在通過極大地擴展數據和信息的獲取,使情報的性質民主化。事實上,今天驅動戰略情報的大部分信息實際上是開放源碼情報(OSINT)或在公共領域。

現代軍隊正變得嚴重依賴安全、及時和準確的數據。隨著數據的急劇膨脹,消化它變得不可能。這種數據爆炸正在推動對新的分析模式和新型網絡工具的需求。在數字時代,安全和情報人員需要新的平臺、新的工具和跨領域工作的新OSINT機構。在這方面,人工智能可能特別有幫助。

隨著數據的重要性增加,在廣闊的數字領域的對抗性競爭也在增加。人工智能和機器學習可以通過篩選巨大的數據庫來極大地提高加拿大的國家情報能力。人工智能不是銀彈。人工智能系統不能產生意義或提供因果分析。然而,人工智能和機器學習可以極大地增強人類在管理數據和數據驅動的分析方面的情報能力。

2.4 增強加拿大軍力

隨著決策者為數據驅動的世界調整其安全態勢,人工智能有望改變軍事沖突的既定模式。DND/CAF面臨的關鍵挑戰之一是數據驅動的網絡重塑指揮和控制系統的速度(Thatcher 2020)。集中式系統的優勢在于其協調人類活動的效率。在指揮系統中,人員和傳感器推動威脅檢測,將信息向決策堆棧上移,以便決策者可以做出適當的反應。數字技術深刻地加速了這個過程。

人工智能在軍事領域的應用可能被證明對傳統的指揮和控制系統具有挑戰性。例如,在美國,五角大樓的第一位首席軟件官最近辭職,以抗議技術轉型的緩慢步伐。在離開國防部職位后的一次采訪中,尼古拉-沙伊蘭告訴《金融時報》,美國未能對技術變革和其他威脅作出反應,使國家的未來面臨風險(Manson 2021)。

除了變化的速度緩慢,軍事指揮和控制系統的集中性意味著單點故障提供了脆弱的攻擊點。指揮機關和自動或人類控制者往往容易受到利用不良或欺騙性信息的對抗性技術的影響,甚至自上而下的決策在適應復雜的突發挑戰方面也會很緩慢。

神經形態計算、生成式對抗網絡(GANs)、人工智能決策支持、數據分析和情報分析方面的新創新在增強軍事行動的結構和進程方面可能會產生巨大影響。機器學習算法的快速發展已經在商業和軍事領域引發了一波投資熱潮。

超越對損耗和動能攻擊的傳統關注,轉向基于加速和適應的新方法,數據驅動的技術可能是促成國家安全性質徹底轉變的關鍵。人工智能不是一種單一的技術。相反,它是一類可以在一系列軍事和商業應用中整合的技術。這些技術不斷演變的基礎是數據。

數字技術現在由數據推動,并將繼續推動創造越來越多的數據驅動的技術--特別是人工智能。數據是訓練人工智能和先進機器學習算法的基礎。數據既是大規模運行的數字系統產生的 "操作廢氣",也是機器對數據輸入作出反應的過程,它現在推動了機器的 "自主性"。

數據驅動的技術支撐著現代社會的核心社會和經濟功能,涵蓋了基礎設施、能源、醫療保健、金融、貿易、運輸和國防。隨著5G網絡的全球推廣,預計在高度健全的全球信息網絡中創建、收集、處理和存儲的數據將出現爆炸性增長。根據市場研究公司IDC的數據,目前全球數據正以每年61%的速度增長(Patrizio 2018)。預計到2025年,數據將達到175 zettabytes(一萬億吉字節),改變數字經濟的性質和規模(同上)。

出于這個原因,DND/CAF將數據提升到國家資產的水平是明智的。這對經濟增長和加拿大國防都至關重要。將數據作為國家資產加以保護和利用,將意味著重新思考目前構成當代數據架構的大型集中式數字基礎設施。可以肯定的是,網絡時代的數據安全應該是分散的和聯合的,以避免集中式系統的脆弱性。

3 武器化AI:致命的自治系統

關于技術破壞的傳統預測往往會犯一個錯誤,即假設這種規模的系統變化只是以一對一的方式取代舊技術。在現實中,這種規模的顛覆往往會不成比例地取代舊的系統,使其具有巨大的新的架構、界限和能力(Arbib和Seba 2020)。

正在進行的人工智能武器化正在助長一場全球軍備競賽,有望重塑加拿大國防戰略的輪廓。事實上,世界上許多國家在人員系統自動化、設備維護、監視系統以及無人機和機器人的部署方面已經遠遠領先(斯坦利和平與安全中心、聯合國裁軍事務廳和史汀生中心2019)。從美國到俄羅斯到以色列再到中國,軍事研究人員正在將人工智能嵌入網絡安全舉措和支持遠程手術、戰斗模擬和數據處理的機器人系統。

以先進的物流、半自動車隊、智能供應鏈管理和預測性維護系統的形式將人工智能應用于軍事行動代表了人工智能的近期應用(Perry 2021)。然而,能夠在陸地、海洋、空中、太空和網絡領域針對個人(無論是否需要人類干預)的自主武器的演變代表了軍事沖突的可能未來(見圖3)。事實上,近100個國家的軍隊目前擁有某種程度的武裝或非武裝無人機能力(Gettinger 2019)。

圖3:全球無人機激增

商業無人機技術在采礦、農業和能源領域的縱橫捭闔,正在助長無人機技術的廣泛擴散。正如最近亞美尼亞和阿塞拜疆之間的沖突所表明的那樣,一群相對便宜的自主和半自主無人機可以被利用來壓倒傳統的軍事系統,使一系列當代平臺變得過時(Shaikh和Rumbaugh 2020)。輕型、可重復使用的武裝無人機,如土耳其的Songar(Uyan?k 2021)可以配備一系列有效載荷,包括迫擊炮、手榴彈和輕機槍。最近對沙特阿拉伯的Abqaiq石油加工設施(Rapier 2019)和俄羅斯的Khmeimim空軍基地(Hambling 2018)的攻擊反映了軍事無人機在不同戰場環境中的應用越來越多。

致命自主武器系統(LAWS)被定義為可以在沒有人類授權的情況下選擇和攻擊目標的武器,它被設計為在獨立識別目標之前在指定的行動區域內長期徘徊。多個無人機或機器人可以并行運作,以克服對手的防御或摧毀一個特定目標。開發人員傾向于將致命性武器系統分為三大類,即觀察、定位、決定和行動(OODA)循環(見圖4)。這些類別包括。"循環中的人"、"循環中的人 "和 "循環外的人"。這種區分也被框定為 "半自主"、"受監督的自主 "和 "完全自主 "的技術系統。不幸的是,受監督的致命性自主武器系統和完全自主的致命性自主武器系統之間的區別,可能只是一個軟件補丁或一個監管程序。

圖4:OODA環

隨著致命性自主武器系統和其他數據驅動的技術變得更便宜和更廣泛,它們可能會給廣泛的國家和非國家行為者提供平臺和工具,以新的和破壞性的方式利用人工智能和機器學習。除了收緊OODA循環外,軍事人員將需要了解人工智能在加速OODA循環方面的影響,以確定在特定情況下哪種模式最合適。

3.1 網絡平臺

鑒于EDT的范圍和規模,認為我們可以簡單地保持從上個世紀繼承的系統和做法是錯誤的。正如英國查塔姆研究所2018年的一份報告所警告的那樣,美國、英國和其他核武器系統正變得越來越容易受到網絡攻擊(Unal and Lewis 2018)。這些擔憂是有根據的。人工智能和EDT的擴散一起,幾乎肯定會通過利用人工智能和自主系統的規模效應,為小國和非國家行為者帶來好處。

對于許多北約國家來說,網絡平臺已經成為多領域行動的關鍵--海、空、陸、網絡和空間。大規模的網絡使得在復雜環境中可視化和協調大量資源成為可能。在5G電信和云計算的基礎上,信息系統現在可以有效地收集、傳輸和處理大量的戰場數據,提供實時數據分析。

連接設備正在成為協調空襲、駕駛無人機、消化戰斗空間的實時視頻和管理高度復雜的供應鏈的關鍵。在英國,國防數據框架提供了一個結構,以解決軍事組織與數據驅動的企業需求相一致的挑戰(Ministry of Defence 2021)。從戰略到通信到后勤到情報,數字平臺現在是協調復雜軍事行動的基礎。數據現在是所有作戰領域的命脈。

在一個數字化的戰斗空間中,每個士兵、平臺和資源現在都是一個復雜軍事網絡中的節點。從20世紀90年代以網絡為中心的美國軍事行動開始,數字技術已經成為先進武器、戰術和戰略的基礎。從戰場態勢感知和自主無人機到精確制導彈藥和機器驅動的心理行動,網絡正在使戰爭進入網絡時代。

在集中式機構對工業時代至關重要的地方,平臺和網絡正在成為數字時代的關鍵。人工智能本質上是一種 "自下而上 "的技術,依靠不斷 "喂養 "大量的數據來支持機器學習作為 "學習引擎"。隨著數字生態系統的激增,網絡平臺和它們所依賴的數據管理系統成為管理不斷擴大的資源和人員的關鍵。

與金融部門一樣,DND應該尋求區塊鏈等DLT,以加速加拿大軍隊的數字化轉型。通過在分散的網絡中橫向分配數據,CAF區塊鏈可以幫助減少官僚化系統固有的限制和脆弱性。DLT提供了一個高度分散的驗證系統,可以確保所有的通信和數據傳輸免受對手的攻擊,同時消除集中式節點的潛在故障。

3.2 無人機群和機器人技術

人工智能在軍事規劃中的應用正在迅速推進,許多國家在部署無人機和機器人方面已經取得了很大進展。事實上,無人機技術的全球擴散正在順利進行中。

世界各地的軍隊正在加速開發或采購攻擊型無人機(見圖5)。俄羅斯的 "閃電"(BulgarianMilitary.com 2021)、西班牙的Rapaz8以及英國、9美國10和以色列11的各種無人機項目共同代表了軍事技術新時代的早期階段。與工業時代的軍事技術不同,無人機可以以低成本獲得,并需要相對較少的技術技能。

無人機群技術涉及微型/迷你無人機/無人駕駛飛行器或無人機群,利用基于共享信息的自主決策。事實上,當代軍用無人機已經可以被設計成在沒有人參與的情況下定位、識別和攻擊目標。利用蜂群技術,數以百計的非武裝無人機可以從現場收集信息,同時用各種武器(即火器、火炮和/或彈藥)引導數以千計的無人機。

正如簡短的視頻 "Slaugherbots "所展示的那樣,完全自主的武器將使瞄準和殺死獨特的個人變得非常容易和便宜。在面部識別和決策算法的基礎上,國家和非國家行為者都可以廣泛使用致命性武器。數以千計的相對便宜的無人機配備了爆炸性的彈頭,有可能壓倒防空系統,攻擊基礎設施、城市、軍事基地等等。

圖5:無人機對比

3.3 馬賽克戰爭

無人機群壓倒加拿大軍事設施的威脅,以及對關鍵基礎設施的網絡攻擊或在衛星傳感器檢測到威脅時自動發射的高超音速導彈,代表了一個令人不安但越來越可能的未來。從復雜性科學和對昆蟲的研究中產生的,使用無人機來支持 "集群情報 "代表了一個加速戰爭節奏的新工具集。

為了應對這種不斷變化的環境,DARPA提出了 "馬賽克戰爭"的概念。馬賽克戰爭的中心思想是,模塊化系統可以成為應對高度網絡化環境的廉價、靈活和高度可擴展的工具。就像馬賽克中的瓷片一樣,單個作戰平臺可以被設計成高度可配置的。編隊利用分散的代理在 "殺戮網 "上進行重新配置。殺戮網的目標是避免 "單體系統 "的結構僵化。

與傳統戰爭中需要的復雜棋局不同,馬賽克戰爭利用數字網絡,利用模塊的靈活性和增強的決策(時間壓縮)加快動態響應時間。像自然界中的復雜系統一樣,殺傷性網絡使用算法來消除單點故障,通過模塊化設計加速反應時間。

從主導地位(預測)轉向加速反應(適應),"馬賽克戰爭 "旨在支持混合軍事單位,利用 "決策棧 "上下的橫向網絡。人工智能、無人機、傳感器、數據和人員結合在一起,為地面上的作戰指揮官提供支持,使小型編隊能以更快的速度獲得情報、資源和后勤資產。

像 "馬賽克戰爭 "這樣的模塊化系統表明,未來的戰爭將越來越多地利用現在驅動戰爭游戲和模擬的計算、數據分析和算法。推動高度流動、游戲化和不可預測的環境,未來的人工智能系統可以將戰爭加速到一個隨著結果范圍的擴大而變得極其密集的計算速度和節奏。

DARPA最近的AlphaDogfight(2019-2020年)為這一新現實提供了一個窗口。使用復雜的F-16飛行模擬器讓計算機與有經驗的人類飛行員對決,試驗的目的是為DARPA的空戰進化計劃推進人工智能開發者。毫不奇怪,F-16人工智能代理通過積極和精確的機動性擊敗了人類飛行員,而人類飛行員根本無法與之相提并論,五局為零。

4 對抗性攻擊

人工智能的武器化也在激起對抗人工智能系統的新戰略和方法。正如網絡行動(無論是間諜活動還是攻擊)可以指示計算機網絡或機器以它們不打算的方式運行,對手也可以對人工智能系統使用同樣的策略。這個過程被稱為對抗性機器學習,旨在找出機器學習模型的弱點并加以利用。攻擊可能發生在開發或部署階段,包括通過提供欺騙性輸入(例如,"毒化"數據)或針對模型本身來誤導模型。

這些方法在國家安全環境中特別危險,因為在許多情況下,它們是微妙的,人類無法察覺。此外,具有挑戰性的是,對手不一定需要對目標模型的具體知識或直接訪問其訓練數據來影響它。隨著人工智能系統變得更加普遍,更多的人可以接觸到,對手的吸引力和攻擊機會將增加。

4.1 攻擊數據

攻擊者可能試圖修改訓練數據或測試數據。這是通過創造對抗性樣本來實現的,這些樣本被故意 "擾亂 "或改變并提供給模型,從而導致錯誤。例如,通過改變洗衣機圖像的分辨率,研究人員能夠欺騙一個模型,將機器分類為 "安全 "或 "擴音器"(Kurakin, Goodfellow and Bengio 2017)。對人的眼睛來說,對抗性圖像看起來幾乎是一樣的。

在國家安全方面,對手可能會試圖使用同樣的技術來暗示武器系統實際上是一個社區中心。如果這是在孤立的情況下發生的,那么這個問題很可能被識別和解決。如果對手的樣本被長期大規模使用,這可能成為一個重大的挑戰,并影響對情報收集系統的信任。

此外,一些對手可能并不精確--或有技能--并可能試圖迫使一個模型對整個類別而不是特定類別進行錯誤分類。由于我們在國家安全環境中越來越依賴計算機圖像,并不總是能夠實時或在有爭議的空間進行驗證,因此在這種攻擊中出現誤判的風險是很大的。

高后果的人工智能系統并不是對抗性攻擊的唯一目標。受對抗性樣本影響的人工智能系統可以包括生物識別,其中假的生物特征可以被利用來冒充合法用戶,語音識別中攻擊者添加低量級的噪音來混淆系統(Zelasko等人,2021)和計算機安全(包括在網絡數據包中混淆惡意軟件代碼)。

由于DND/CAF尋求通過部署人工智能系統來提高效率--如軍艦上的語音助手(McLeod 2019)--必須在部署前評估對抗性使用的風險并制定對策。

4.2 攻擊模型

除了改變輸入,另一種攻擊方法可用于逆向工程模型以獲取訓練數據(Heaven 2021)。由于機器學習模型對訓練數據的表現比新的輸入更好,對手可以識別目標模型預測的差異,并與包括個人身份信息在內的已知數據相匹配(Shokri等人,2017)。隨著機器學習即服務變得越來越多--而且在許多情況下,被用作開發更復雜的能力的基礎--DND將需要仔細審查國家安全系統的數據泄漏風險。這甚至適用于看似無害的系統,如語音助手。

人工智能系統的弱點的例子很多(Hadfield-Menell等人,2017)。這些例子包括吸塵器將收集到的灰塵彈回它剛打掃過的地方,以便它能收集更多的灰塵,或者數字游戲中的賽艇在原地循環以收集分數,而不是追求贏得比賽的主要目的。雖然這些例子沒有生命危險,但同樣的技術--被稱為獎勵黑客(當一個模型被指示使其目標函數最大化,但卻以非故意的方式進行)--可以被用于更嚴重的效果。

從旨在用固定的訓練數據解決 "單步決策問題 "的機器學習過渡到解決 "順序決策問題 "和更廣泛的數據集的深度機器學習,將使對抗性攻擊更難發現。這種威脅是如此之大,以至于美國情報高級研究項目活動正在資助一個項目,以檢測木馬人工智能對已完成系統的攻擊。令人擔憂的是,政府可能會在不知情的情況下操作一個產生 "正確 "行為的人工智能系統,直到出現 "觸發 "的情況。例如,在部署過程中,對手可能會攻擊一個系統,并在更晚的時候才導致災難性的故障發生。這些類型的攻擊可能會影響到圖像、文本、音頻和游戲的人工智能系統。

4.3 防御和反制措施

正如對抗性樣本可以用來愚弄人工智能系統一樣,它們可以被納入訓練過程中,以使它們對攻擊更加強大。通過對最重要的國家安全人工智能系統進行清潔和對抗性數據的訓練--要么給它們貼上這樣的標簽,要么指示一個模型將它們分離出來--更大的防御是可能的。但是,復雜的對手很可能會自行躲避這種防御方法,而使用額外的戰術進行深度防御將是必要的。

GANs有各種各樣的用例,從創建深度假說到癌癥預后(Kim, Oh and Ahn 2018)。它們也可用于防御對抗性攻擊(Short, Le Pay and Ghandi 2019),使用一個生成器來創建對抗性樣本,并使用一個判別器來確定它是真的還是假的。一個額外的好處是,使用GANs作為防御,實際上也可能通過規范數據和防止 "過度擬合 "來提高原始模型的性能(IBM云教育2021)。

對抗性攻擊和防御模型進行基準測試--如使用GANs--是一種全面的對策,可以對AI系統進行比較。這種方法為制定和滿足安全標準提供了一個量化的衡量標準,并允許評估人工智能系統的能力和限制。

作為這個測試和評估過程的一部分,博弈論可能有助于建立對手的行為模型,以確定可能的防御策略。由于人工智能系統無法在傳統的信息安全意義上進行 "修補",因此在部署前應仔細分析針對國家安全人工智能系統的對抗性攻擊的風險,并定期進行審查。此外,訓練有素的模型--特別是那些關于機密數據和最敏感應用的模型--應該得到仔細保護。

5 關于人工智能的全球治理

數據驅動的戰爭的速度和范圍表明,我們正在進入一個新的時代,其中致命性武器系統的潛力--無論是否有人類參與--都可能極大地改變全球力量平衡。從殺手級無人機和人機合作到增強的軍事決策(殺手2020),人工智能技術將使世界各國軍隊投射力量的能力大大增加。正在進行的人工智能武器化也與空間武器化相重疊(《經濟學人》2019年),因為低地球軌道(LEO)日益成為軍事監視、遙感、通信、數據處理(Turner 2021)和彈道武器(Sevastopulo和Hille 2021)的操作環境。

人工智能與低地軌道和致命性自主武器系統的興起,代表了全球安全性質的一個關鍵轉折點。為此,世界各地的學術研究人員、技術企業家和公民都對人工智能的軍事化所帶來的危險表示擔憂。正如他們正確地指出的那樣,在規范負責任地開發和使用人工智能的規范和法律方面缺乏國際共識,有可能造成未來的危機。

5.1 戰爭法則

除了我們在科幻小說中經常看到的對人工智能的夸張描述,重要的是建立適當的制衡機制,以限制人工智能技術可能提供的權力集中。關于管理人工智能和其他數字技術的共同國際規則和條例將塑造未來幾十年的戰爭和沖突的輪廓。在軍事人工智能的發展中制定護欄,對于減少未來沖突的可能性至關重要。

加拿大和其他北約國家積極參與這一討論可能是未來全球和平與安全的關鍵。在發動戰爭的條件(jus ad bellum)和戰爭中的人工智能行為(jus in bello)方面,規范人工智能使用的戰爭法仍有待確定。鑒于美國和中國之間不斷擴大的競爭,需要制定關于致命性自主武器系統的使用及其擴散的條約是再及時不過了。

正如北約所觀察到的,加拿大及其盟國應尋求促進、參與和建立合作機會,以支持開發和應用人工智能和其他EDT的廣泛、全面的架構(北約新興和顛覆性技術咨詢小組2020)。盡管面臨著艱巨的挑戰,全球治理在規范軍事人工智能方面可以發揮重要作用。盡管對人工智能及其武器化有不同的看法,但過去的談判可以作為未來條約的基礎,特別是在定義戰爭規則方面。這包括關于常規武器、核軍備控制、生物和化學武器、地雷、外層空間和平民保護的條約(見圖6)。

到目前為止,《聯合國特定常規武器公約》(CCW)已經監督了一個討論應對自主武器帶來的人道主義和國際安全挑戰的進程。已經提出了一系列監管致命性自主武器系統的潛在方案,包括《特定常規武器公約》下的一項國際條約,一個不具約束力的行為準則,宣布各國承諾負責任地開發和使用致命性自主武器系統。在聯合國之外,2013年發起了 "停止殺手機器人 "運動,目標是完全禁止致命性自主武器系統。

聯合國秘書長安東尼奧-古特雷斯強調了人工智能和其他數字技術的風險和機遇(聯合國2020),并呼吁禁止致命性自主武器系統(古特雷斯2021)。不幸的是,聯合國成員國,特別是聯合國安理會的觀點存在分歧,一些國家認為監管是民族國家的專屬權限,而另一些國家則側重于更多部門的做法。除了人工智能的武器化,在圍繞人權、算法偏見、監控(公共和私人)以及國家支持的或國家支持的網絡攻擊等問題上也存在廣泛的分歧。

對于世界上的主要軍事大國來說,缺乏互信仍然是追求人工智能集體軍備控制協議的一個重大障礙。即使相當多的國家支持提供新的具有法律約束力的條約,禁止開發和使用致命性自主武器,但世界上大多數主要軍事大國都認為人工智能的武器化具有重大價值。鑒于這些分歧,致命性自主武器系統的多邊管理將需要建立信任措施,作為打開政治僵局的軍控進程的手段。

走向平凡的監管 也許制定管理人工智能的政策和監管制度的最具挑戰性的方面是難以準確地確定這些制度應該監管什么。與生物和化學武器不同,人工智能大多是軟件。事實上,人工智能是一個移動的目標:40年前被定義為人工智能的東西,今天只是傳統的軟件。

人工智能是一個模糊的技術領域,影響著廣泛的商業和軍事應用。例如,機器學習算法是搜索引擎(算法排名)、軍用無人機(機器人技術和決策)和網絡安全軟件(算法優化)的成分。但它們也支撐著平凡的行業,甚至兒童玩具(語義分析、視覺分析和機器人技術)、金融軟件和社交媒體網絡(趨勢分析和預測分析)。

與屬于這些平凡的監管領域的產品和流程一樣,人工智能技術不是被設計成最終實體,而是被設計成在廣泛的產品、服務和系統中使用的成分或組件。例如,一個 "殺手機器人 "不是一種特定技術的結果。相反,它是人工智能 "成分 "重新組合的結果,其中許多成分也被用來檢測癌癥或增加駕駛者的安全。

雖然人們傾向于使用一個專門的不擴散鏡頭來監管人工智能,但雙重用途的挑戰仍然存在。與核擴散或轉基因病原體不同,人工智能不是一種特定的技術。相反,它更類似于一個材料或軟件成分的集合。與大多數二元的核不擴散鏡頭相比,可以在食品監管中找到更相關(盡管不那么令人興奮)的監管模式的靈感,特別是食品安全和材料標準(Araya和Nieto-Gómez 2020)。

5.2 治理人工智能

鑒于對人工智能進行全面監管存在重大的概念和政治障礙,治理仍然是一項艱巨的挑戰。一方面,如果我們把人工智能理解為一系列復制人類活動的技術實踐,那么就根本沒有一個單一的領域可以監管。相反,人工智能的治理幾乎重疊了每一種使用計算來執行任務的產品或服務。另一方面,如果我們將人工智能理解為大幅改變人民和國家之間權力平衡的基礎,那么我們就會面臨重大挑戰。

幸運的是,這并不是民族國家第一次面臨影響全球安全的新技術。在第二次世界大戰之后,世界上最強大的國家--美國、英國、蘇聯、中國、法國、德國和日本--對核武器、化學制劑和生物戰的全球治理進行監督。當時和現在一樣,世界必須采取集體行動來治理人工智能。

與冷戰時期一樣,包括定期對話、科學合作和分享學術成果在內的建立信任措施可以幫助減少地緣政治的緊張。為管理軍事人工智能帶來的風險制定一個共同的詞匯,可以為隨著時間的推移制定更有力的人工智能多邊條約提供基礎。

在這方面,經濟合作與發展組織(OECD)已經公布了其關于人工智能的建議,作為一套政府間標準,于2020年2月啟動了人工智能政策觀察站。加拿大和法國政府還與經合組織一起領導了一個全球人工智能伙伴關系(GPAI),旨在成為一個人工智能政策的國際論壇。GPAI的成員專注于以 "人權、包容、多樣性、創新和經濟增長原則 "為基礎的負責任的人工智能發展。

除了GPAI,一些歐洲國家已經呼吁歐盟成員開始一個關于負責任地使用新技術的戰略進程--特別是人工智能。美國已經邀請盟國討論人工智能的道德使用問題(JAIC公共事務2020)。北約已經啟動了一個進程,鼓勵成員國就一系列道德原則和具有軍事用途的電子技術關鍵領域的國際軍備控制議程達成一致(Christie 2020;NATO 2020)。認識到EDT對全球安全的深遠影響,北約于2019年12月推出了EDT路線圖(北約科技組織2020)。

從整體上看,二十一世紀需要進行正式監管。從長遠來看,這很可能包括尋求與禁止生物武器、化學武器和殺傷人員地雷一樣的人工智能條約。然而,鑒于人工智能的創新速度和世界超級大國之間日益擴大的分歧,就人工智能的全球治理進行談判的機會之窗可能正在關閉。

圖6:人工智能的全球治理

6 結論:走向國家創新體系

即使在工業時代即將結束的時候,技術創新也在加速進行(Araya 2020)。自從大約80年前誕生以來,人工智能已經從一個神秘的學術領域發展成為社會和經濟轉型的強大驅動力。人工智能在戰爭中的整合被一些軍事分析家描述為一個不斷發展的 "戰場奇點"(Kania 2017)。在 "技術奇點"(Schulze-Makuch 2020)的概念基礎上,人們越來越多地猜測,人工智能和機器人將超越人類的能力,有效地應對算法驅動的戰爭。

人工智能和其他EDT的演變正在將先進的數據、算法和計算能力匯集起來,以 "認知 "軍事技術。在這種新環境下,現代軍隊正變得嚴重依賴提供安全、及時和準確數據的網絡。數據已經成為數字系統的 "作戰用氣 "和驅動 "智能機器 "的原料。隨著數據重要性的增加,在廣闊的數字領域的對抗性競爭也在增加。事實上,數據的真正價值在于其推動創新的數量和質量。

正如北約關于EDT的年度報告(北約新興和顛覆性技術咨詢小組2020)明確指出,要想跟上技術變革的步伐,就必須在技術的開發、實驗和應用方面保持靈活性和快速迭代。整個CAF的創新能力必須是一個更廣泛的創新生態系統的一部分,該系統有效地整合了公共和私人生態系統的研究和實施。這包括與加拿大工業界合作利用雙重用途的GPT的明確目標,以便利用已經存在的技術。

這種多領域的合作在歷史上被定義為國家創新體系(NSI)(OECD 1997)。事實上,NSI政策和規劃可以采取多種形式,從松散的協調到高度整合的伙伴關系。在美國(Atkinson 2020)、中國(Song 2013)和歐洲(Wirkierman, Ciarli and Savona 2018)應用的各種NSI規劃模式表明,在最大化政府-產業-研究伙伴關系方面可以找到大量的經濟和社會回報。政府應通過稅收優惠、采購和研究資金以及戰略規劃,努力建設加拿大的技術能力。但它不能單獨行動。

國家創新必然取決于機構參與者在一個共享的生態系統中進行合作。出于這個原因,一個協調的加拿大國家統計局將需要在推動長期創新的過程中,人們和機構之間的技術和信息的相互流動。鑒于EDT的許多創新是由工業界主導的,推進公私伙伴關系對加拿大軍隊的發展至關重要。對于國防部/加拿大空軍來說,要推進適合數字時代的軍隊,政府、工業界和學術界將需要以更綜合的方式進行合作。

建立一個強大的加拿大創新生態系統將意味著更廣泛的公私合作和持續的知識和資源的再培訓、培訓和孵化。盡管開發尖端人工智能需要人力資本投資,但大多數人工智能應用現在可以通過開源許可獲得,即使核心學習算法可以在公共平臺和整個學術生態系統中獲得。這種 "開放一切 "環境的影響是對封閉的等級制度和深思熟慮的官方機構的實質性挑戰。

政府程序和規劃將需要適應加速的創新生命周期,以配合EDT積極的淘汰周期。除了與網絡技術相關的巨大的不對稱安全風險外,向數據驅動型軍隊的轉變將需要大量關注數據安全和數據治理。與進行傳統的國家間沖突所需的大量成本和規劃不同,網絡攻擊的破壞性影響可以由僅有一臺個人電腦的小團體對關鍵基礎設施發動。鑒于未來不斷增加的挑戰,大型官僚機構(公司、政府、學術和軍事)的設計變化是不可避免的。

除了對新的和不同的知識、資源和專長的需求,加拿大政府和加拿大軍方將需要平衡硬實力和不斷變化的地緣政治格局的需求。在美國占主導地位的時代之外,二十一世紀正被一個以技術民族主義和后布雷頓森林體系為特征的多極體系所塑造。面對一個快速發展的數字時代,國際合作將是確保和平與安全的關鍵。信息共享、專家會議和多邊對話可以幫助世界各民族國家及其軍隊更好地了解彼此的能力和意圖。作為一個全球中等國家,加拿大可以成為推動這一努力的主要伙伴。

國際治理創新中心(CIGI)

國際治理創新中心(CIGI)是一個獨立的、無黨派的智囊團,其經同行評議的研究和可信的分析影響著政策制定者的創新。其全球多學科研究人員網絡和戰略伙伴關系為數字時代提供政策解決方案,目標只有一個:改善各地人民的生活。CIGI總部設在加拿大滑鐵盧,得到了加拿大政府、安大略省政府和創始人吉姆-巴爾西利的支持。

付費5元查看完整內容

摘要

混合行動由多個行動領域的協調攻擊完成,包括網絡戰和信息戰。檢測混合型威脅的一個關鍵挑戰是如何識別個別事件是對手(精心策劃的)措施的結果,并將所謂不相關的事件聯系起來。由于物理和網絡及信息領域的行動可能發生在不同的時間、不同的地點、不同的速度,作為短期或長期的活動,并且可能是低強度的,因此連接這些點的任務變得更加困難。為了確定與具體任務規劃和執行相關的信息,混合威脅的風險評估必須始終在具體任務的背景下進行,包括其任務目標、行動區域和任務時間范圍。

在本文中,我們描述了兩種情況,在這兩種情況下,對手可能在物理以及網絡和信息空間中進行攻擊,以干擾行動。接下來,我們描述了一個演示器的高級架構,顯示了不同類型的傳感器和信息源是如何連接在一起的。為了應對混合威脅并充分發揮對分析員和決策者的支持潛力,有必要在不同的細節水平上實現態勢感知--從原始數據到高度聚合的風險評估--在不同的領域中共享信息,并在聚合水平上融合它們。

引言

多域作戰(MDO)并不是一個新現象。在戰爭中,長期以來一直在多個領域開展行動。從陸、海、空行動開始,空間和網絡領域補充了對手的組合。為了對付這些,需要不同部門的深入合作。同樣,混合威脅這個詞也不是2020年的發明。一開始是混合戰爭,它與非對稱戰爭、非正規部隊和信息行動等概念混雜在一起。

在早期,重點是傳統的軍事沖突。戰場是傳統的地面,坦克、飛機和艦艇與人員一起是主要的行為者。通信是決定勝負的一個關鍵因素。數字化的開始提供了新的好處和選擇,但也給戰爭帶來了新的脆弱性。今天被稱為網絡和信息領域(CID)的使用在軍事能力方面是一個很大的推動。隨著社交媒體的出現,信息領域發生了巨大的變化,因為它使對手更容易影響公眾輿論和關鍵人物的意見。此外,隨著物聯網中相互連接的設備越來越多,網絡威脅的重要性也在增加。今天的關鍵基礎設施(用于能源、交通、衛生等)比過去更容易受到信息技術的威脅,它們是現代戰爭中的熱門目標。這為敵對勢力的攻擊打開了大門。他們的工具箱不再局限于經典的軍事資產。當然,新興的技術導致了反擊和反擊的措施,以及一場永恒的競爭。

在軍事和民用領域,對信息交流的使用和依賴日益增加,產生了新的攻擊載體,同時也產生了防御這些攻擊的新需求。在今天的沖突中,威脅影響到政治、軍事、經濟、社會、信息和基礎設施等領域。不同的威脅可能是由正規和非正規部隊造成的。這些可能是不利的國家,也可能是出于非政府考慮的團體。

一個關鍵的挑戰是如何在戰術層面上認識到個別事件是對手(精心策劃的)措施的結果,并將所謂不相關的事件聯系起來。在任務規劃或任務執行的風險評估中,這個問題的答案可能會導致對自己的措施無動于衷的決定,如使用通信渠道、部隊保護、路線規劃或反網絡行動。由于物理和網絡及信息領域的行動可能發生在不同的時間,以不同的速度,作為短期或長期的活動,并且可能是低強度的,因此連接這些點的任務變得更加困難。

付費5元查看完整內容

摘要

混合沖突的分析、評估和決策是復雜的,原因有很多:混合活動的信號是多維的;結合多種類型的信息是必要的;許多混合沖突是隱蔽的,或者很難從正常的國家與國家的關系中分辨出來。對混合沖突的評估需要包括對手行為者的戰略目標、被利用的社會脆弱性和背景事件、跨社會領域的活動,以及對目標社會的影響。在早期的工作中,我們根據混合沖突的這五個要素提出了一個分析過程。在本文中,我們在這項工作和更廣泛的情報文獻的基礎上,解決如何進行混合沖突評估的問題。具體來說,我們概述了一個詳細的評估過程,為決策者提供對形勢的了解,以選擇對混合威脅的預防性和反應性反應。所提議的程序的優點在于它對混合沖突的綜合評估,結合了目標社會的觀點和對手行為者的觀點。此外,所提出的評估功能依賴于人類產生的分析性見解--考慮到背景、模糊性、規范性--和從傳入數據中產生的信號--考慮到結構化和結合來自多個來源的信息--之間的持續互動。這種綜合視角超越了傳統的分析方法。我們提出的評估很適合引導人類和自動化情報的結合,并提供了一個分析方法和工具的藍圖,以應對混合沖突中的決策挑戰。

引言

混合沖突是國家之間的一種沖突,大多低于公開戰爭的門檻(見歐盟等的定義,2018年,北約,2019年和荷蘭層面的定義,NCTV,2019年)。混合沖突中的國家使用許多國家權力的措施來影響其他社會。這些措施包括外交、信息、軍事、經濟、金融、情報和執法手段。戰略層面上的混合沖突案例研究需要敘事和社交媒體操縱、針鋒相對的金融和經濟制裁、外交威脅、大規模軍事演習和許多其他全社會的互動。許多類型的混合威脅在前些年的經驗中是已知的。例如,美國的選舉影響,中國通過基礎設施投資的影響,以及俄羅斯在破壞烏克蘭穩定方面的努力。

混合沖突給決策者帶來了不同的挑戰。這是因為公開的軍事對抗大多被避免,只有低于武裝沖突的法律門檻的活動才被應用。網絡領域和信息領域是針對政府和社會的影響活動發生的主要領域。由于混合沖突中許多活動的隱蔽性或模糊性,在將活動歸于國家行為者方面存在很大問題。最后,混合沖突是對各種手段和方法的創造性安排,它創造了新的情況,對分析來說具有內在的挑戰性。在這篇文章中,更詳細地研究了在面臨上述挑戰時對混合沖突的評估。

圖1 - 運動評估功能及其輸入的示意性概述
付費5元查看完整內容

摘要

為了能夠在一個日益脆弱的世界中捍衛自己的生活方式和價值觀,團結在北約框架內的西方民主國家必須有能力在必要時 "以機器速度作戰"。為此,國防領域的數字化不能只局限于后勤、維護、情報、監視和偵察,而必須同樣能夠實現負責任的武器交戰。以歐洲未來戰斗航空系統(FCAS)為重點,我們討論了基于人工智能的武器系統的道德統一系統工程的各個方面,這可能會在國際社會中找到更廣泛的同意[1]。在FCAS計劃中,這是自二戰以來歐洲最大的軍備努力,有人駕駛的噴氣式飛機是一個網絡系統的元素,無人駕駛的 "遠程載體 "保護飛行員并協助他們完成戰斗任務。鑒于正在進行的辯論,德國國防部長已經強調。"歐洲戰略自主的想法走得太遠了,如果它被認為意味著我們可以在沒有北約和美國的情況下保證歐洲的安全、穩定和繁榮。那是一種幻覺[2]"。在這個意義上,FCAS與北約的目標是一致的。

引言

"武器的殺傷力越大,影響越深遠,就越需要武器背后的人知道他們在做什么,"沃爾夫-馮-鮑迪辛將軍(1907-1993)說,他是1955年成立的二戰后德國聯邦國防軍的富有遠見的設計師(見圖1)。"如果沒有對道德領域的承諾,士兵就有可能成為一個單純的暴力功能者和管理者"。他深思熟慮地補充道。"如果僅僅從功能的角度來看,也就是說,如果要實現的目標在任何情況下都高于人,那么武裝部隊將成為一種危險[3]"。

弗朗西斯-培根(1561-1626)關于實現權力是所有知識的意義的聲明標志著現代項目的開始[4]。然而,自從人工智能(AI)在國防領域出現后,旨在造福人類的技術可能會反過來影響它。這種類型的工具性知識使現代危機像在聚光燈下一樣明顯。關于人的倫理知識,關于人的本質和目的,必須補充培根式的知識。有一種 "人的生態學",一位德國教皇提醒德國議員說。"他不制造自己;他要對自己和他人負責[5]"。因此,任何符合倫理的工程必須是以人類為中心的。這對于國防領域的人工智能來說是最迫切的。因此,數字倫理和相應的精神和道德是必不可少的技能,要與卓越的技術同時系統地建立起來。因此,領導哲學和個性發展計劃應鼓勵設計和使用基于人工智能的防御系統的道德能力。

北約STO的科技界如何在技術上支持負責任地使用我們從人工智能中收獲的巨大力量?為了更具體地論證,讓我們以德國聯邦國防軍的文件為指導,從它在20世紀50年代成立的時候,也就是人工智能這個詞真正被創造出來的時候,到最近的聲明。由于這些武裝部隊已經從暴政和以當時高科技為特征的 "全面戰爭 "中吸取了教訓,他們似乎在概念上已經為掌握數字挑戰做了準備。這一點更是如此,因為聯邦國防軍是一支載于《德國基本法》的議會軍隊,它完全按照聯邦議院的具體授權行事,即以德國人民的名義行事。

國防領域的人工智能旨在將軍事決策者從常規或大規模任務中解脫出來,并 "馴服 "復雜性,讓他們做只有個人才能做的事情,即智能地感知情況并負責任地采取行動。自動化對聯邦國防軍的重要性很早就被認識到了。馮-鮑迪辛在1957年提出:"然后,人類的智慧和人力將再次能夠被部署到適合人類的領域"[6]。從這個角度來看,武裝部隊作為基于人工智能的系統的使用者,并沒有面臨根本性的新挑戰,因為技術的發展一直在擴大感知和行動的范圍。

圖1:"最高度機械化的戰斗需要[......]讓士兵意識到他們的責任,讓他們體驗到他們的行為和不行為的后果。"沃爾夫-馮-鮑迪辛(1954)? 聯邦國防軍
付費5元查看完整內容

摘要

信息戰依賴于能夠識別敵人的行動和可能的進攻性信息活動地點。在一個全球數百萬人產生數百萬條信息的世界里,純粹的人類對信息景觀的監視是注定要失敗的。我們通過對阿塞拜疆/亞美尼亞沖突的案例研究表明,通過關注各種起作用的敘述,人工智能輔助的人類分析有可能將監視目標縮小到一個可管理的規模,并識別武裝沖突中敵對者部署的自動化。

引言

信息戰從根本上說是關于敘事的塑造。這可以采取以下兩種形式:(1)戰術性敘事塑造,即關于部隊位置/人數和傷亡的敘事;(2)戰略性敘事塑造,即關于戰爭的有效性/對部隊/平民士氣的影響的敘事。信息戰領域的一個關鍵問題是要能夠快速識別和了解敵人的信息活動,以便準確應對。

鑒于敘事在信息戰中的核心地位,敘事不能說謊。因此,我們應該通過仔細觀察支持敵人更廣泛議程的敘述來尋找敵人的活動。通過他們所宣傳的敘事來尋找敵人的活動,敵人就不能在不破壞自己的效力的情況下隱藏活動;這是信息戰的雙刃劍,也適用于圍繞同一作戰網絡空間的公共外交。

在本文中,我們提出了一種具體的方法,利用信息戰的這種敘事特性來識別信息戰活動。特別是,我們強調了這樣一個過程:(1)識別相關的敘事和敘事信號,(2)根據敘事信號以結構化的方式收集數據,(3)調查敵人敘事中的行為者和故事。在本文的其余部分,我們將通過一個案例研究來展示這種方法的具體用途,然后我們將強調一些正在進行的技術改進,我們正在努力提高這種方法在實地使用的便利性和效率。本文的目標是為在無處不在的信息戰環境中利用社交媒體獲取情報提供一種工作方法。

圖1:阿塞拜疆數據集的主要轉發量
付費5元查看完整內容

摘要

混合戰爭為沖突推波助瀾,以削弱對手的實力。相關的行動既發生在物理世界,也發生在媒體空間(通常被稱為 "信息空間")。防御混合戰爭需要全面的態勢感知,這需要在兩個領域,即物理和媒體領域的情報。為此,開源情報(OSInt)的任務是分析來自媒體空間的公開信息。由于媒體空間非常大且不斷增長,OSInt需要技術支持。在本文中,我們將描述對物理世界的事件以及媒體事件的自動檢測和提取。我們將討論不同類型的事件表征如何相互關聯,以及事件表征的網絡如何促進情景意識

引言

開源情報(OSInt)的任務是探索和分析可公開獲取的媒體空間,以收集有關(潛在)沖突的信息,以及其他主題。所謂 "媒體空間",我們指的是通過傳統媒體(如電視、廣播和報紙)以及社交媒體(包括各種網絡博客)傳播的非常龐大、快速且持續增長的多語種文本、圖像、視頻和音頻數據語料庫。社會媒體大多是平臺綁定的。平臺包括YouTube、Twitter、Facebook、Instagram和其他[1,2]。在很大程度上,媒體空間可以通過互聯網訪問。很多部分是對公眾開放的。然而,也存在一些半開放的區域,其中有潛在的有價值的信息,但并不打算讓所有人都能接觸到,例如Telegram和Facebook頁面。

媒體空間提供關于物理世界的信息:發生了什么?哪些事件目前正在進行?未來計劃或預測會發生什么?它對物理世界的事件反應非常快,也就是說,幾乎是立即提供信息[3]。因此,媒體空間似乎是物理世界中事件的一個有希望的 "傳感器"。然而,從鋪天蓋地的大量信息中檢索出特別相關的信息仍然是一個挑戰,因為到目前為止,所提供的大多數信息是完全不相關的,至少對軍隊來說是如此。此外,媒體空間并不一致--它包括真實和虛假信息,因此,事實核查是一個進一步的挑戰。

除了作為物理世界的傳感器,媒體空間還是意識形態、意見和價值觀的論壇。它是一個重要的空間,用于協商一個社會認為是允許的、規定的或禁止的東西,并用于表現情緒和偏見。因此,它已成為混合戰爭的戰場,即以 "通過暴力、控制、顛覆、操縱和傳播(錯誤的)信息"([4],第2頁)為目的進行的行動。(錯誤的)信息行動導致我們稱之為 "媒體事件"。媒體事件可以被觸發,以影響情緒、意識形態和公眾對物質世界的看法。

可能的圖表實例
付費5元查看完整內容

摘要

應對氣候變化對北約具有戰略意義。對可能的氣候措施和后果進行充分知情的決策支持分析將決定北約如何很好地應對這一挑戰。環境科學和軍事行動分析的結合將使各國和聯盟能夠做出明智的決定,有可能減少溫室氣體排放和成本,并提高行動效率。

挪威國防部已責成挪威國防研究機構(FFI)在軍事要求規定的范圍內研究挪威武裝部隊減少溫室氣體排放的潛力。

我們對挪威武裝部隊未來的排放量進行了建模,并對七項措施的減排量和成本進行了量化。總的來說,這些措施有可能使溫室氣體排放相對于未來排放的基線減少15-30%,平均估計為22%。此外,我們還確定了幾個同樣重要的措施,這些措施的減排量可能難以量化。

武裝部隊的軍事平臺有很長的服務壽命。現在投資于能源效率低下的解決方案將在未來許多年內產生排放和成本。因此,我們建議,排放預測在采購決策和長期國防規劃過程中得到更突出的作用。

引言

挪威武裝部隊的活動對環境產生了一些負面影響。鑒于武裝部隊任務的性質,其中一些影響是不可避免的。對環境的影響進行了持續的調查,并每年進行報告。國防部門的溫室氣體排放在國際和國內得到了越來越多的關注,挪威國防部責成挪威國防研究機構(FFI)研究減少挪威武裝部隊溫室氣體排放的潛力。

本文的目的是在軍事要求規定的范圍內,對這種潛力進行建模。這項研究并不包含國防部門可能的環境措施的完整清單。我們已經優先考慮了目前知識缺乏的領域。我們還考慮了一個新提出的海上戰爭替代概念的排放效應。這不應該被理解為一種減排措施,它是一種提高能力和降低成本的措施。然而,我們希望證明這樣一個概念的排放后果,并將其作為一個例子,說明如何在國防部門利用技術來實現更多的氣候效率解決方案。

在本章中,我們將簡要地討論氣候變化和對挪威武裝部隊可能產生的后果。在接下來的章節中,我們將說明我們的分析方法和數據、結果和結論。

圖1-1:根據目前的長期計劃,挪威武裝部隊未來排放的模擬基線。
付費5元查看完整內容

摘要

當今日益不穩定的地緣政治環境為暴力組織的發展提供了機會--無論是恐怖分子、犯罪分子、叛亂分子還是好戰分子。因此,對北約及其國家來說,監測和了解潛在的威脅性組織是非常重要的,因為它們在不斷發展。同時,數字化導致了開源信息量的爆炸性增長,帶來了分析機會,但也帶來了信息過載的挑戰,而人工智能(AI)的發展為應對這一挑戰提供了新的技術。在本文中,我們以組織理論和人工智能的知識為基礎,提出了一個從大量開放源中自動提取威脅性組織信息的方法的第一步。具體來說,我們使用一個現有的暴力組織數據庫作為起點,并結合三種不同的人工智能方法來提取幾個特定的組織特征。(1) 監督機器學習(ML)用于提取活動類型和目標類型;(2) 無監督ML用于提取意識形態;以及(3) 自然語言處理(NLP)用于提取組織規模、領導人數量以及攻擊中的死傷人數。我們評估了這些方法的性能,并對它們的普遍性進行了思考。通過這樣做,我們向自動監測威脅性組織及其演變過程中的定義特征的工具邁出了一步。我們討論了未來的步驟,例如實施模型來"填補"缺失或不完整的信息,以及在新的威脅性組織出現時自動檢測它們。

引言

今天的威脅環境是由一系列復雜和不斷演變的暴力組織組成的--無論是恐怖分子、犯罪分子、叛亂分子還是好戰分子。北約及其國家需要監測和了解這些組織,以確保其社會的安全和保障。有幾個因素使這些努力變得復雜。首先,沖突的混合性質越來越強,這意味著經常作為國家行為者代理人的組織不斷出現、演變和消失,有時速度很快(Treverton, 2014)。這些組織在公開軍事對抗的門檻下運作,往往是隱蔽的,跨越地理邊界或在網絡空間,這使得將活動歸于這些組織成為一種挑戰(Cullen,2018;NATO,2019)。復蘇的大國競爭促成了不穩定的地緣政治環境,而COVID-19大流行病等全球危機和氣候變化帶來的日益明顯的壓力只會使這種環境更加復雜(Bekkers, Meessen & Lassche, 2018)。同時,數字化產生了超負荷的潛在相關信息,以了解暴力組織。因此,北約及其國家為了解不斷變化的威脅所做的努力面臨著足夠的挑戰。

需要創新的方法來克服這些挑戰,并提高我們了解暴力組織的能力,因為它們在不斷發展。任何建議的方法都需要能夠處理可以從公開來源收集到的見解,并處理相關的信息過載問題。傳統的情報方法是人力密集型的,而且不適合復雜和不斷變化的行動環境和其中的對手(Eisler,2012)。為了支持分析員改善指揮官的情報狀況,我們探索自動方法來提取、更新和構建傳入的開放源信息。

任何新的方法都應該認識到,關于暴力組織的大量(歷史)知識已經存在,包括在公開的知識庫中(例如,NCTV, 2021; Stanford CISAC, 2021)。這些資源的價值不僅在于其信息價值,而且還在于信息的結構是有意義的,是基于為其做出貢獻的分析人員的定性專業知識。例如,這些知識庫的結構與暴力組織的重要特征相對應,如其運作方式、規模、意識形態、結構等。(van der Vecht & Keijser, 2018)。這種現有的結構化知識在指導分析和監測大量傳入的非結構化且通常不完整的信息方面可能非常有用。方法上的挑戰在于將這種現有的結構化知識與傳入的信息相結合。換句話說:將分析師驅動的見解與數據驅動的見解相融合,以提高對暴力組織的情況了解。

在本文中,我們旨在解決這一挑戰,同時借鑒現有的工作,將數據驅動(數據科學和人工智能)和分析師驅動(定性、理論驅動)的見解結合起來(Pherson & Pherson, 2020;Westerveld, Powell & Eles, 2020)。其結果是圖示的方法,它使用了人工智能(AI)技術的組合,從公開來源中提取關于暴力組織在一段時間內的定義性特征的信息。通過這樣做,我們希望支持分析師處理信息過載的問題,并向為國防從業人員提供決策支持工具邁出一步,以了解不斷變化的威脅。具體來說,我們以組織理論、情報分析和人工智能方面的文獻為基礎并加以擴展,以解決以下研究問題:

  • 問題1:哪些人工智能技術很適合提取暴力組織的重要特征?這個問題由第1.1到1.4節中回顧的文獻來解決。
  • 問題2:自動提取的特征是否準確代表了它們所來自的知識庫?這個問題由第2節的方法和第3節的結果中概述的方法來解決。
  • 問題3:這些人工智能技術在多大程度上可以推廣到從其他公開來源提取和監測暴力組織的特征?這個問題將在第4節的討論中討論。


圖1 - 我們分析方法中的組織特征和人工智能方法概述

付費5元查看完整內容
北京阿比特科技有限公司