為了能夠在一個日益脆弱的世界中捍衛自己的生活方式和價值觀,團結在北約框架內的西方民主國家必須有能力在必要時 "以機器速度作戰"。為此,國防領域的數字化不能只局限于后勤、維護、情報、監視和偵察,而必須同樣能夠實現負責任的武器交戰。以歐洲未來戰斗航空系統(FCAS)為重點,我們討論了基于人工智能的武器系統的道德統一系統工程的各個方面,這可能會在國際社會中找到更廣泛的同意[1]。在FCAS計劃中,這是自二戰以來歐洲最大的軍備努力,有人駕駛的噴氣式飛機是一個網絡系統的元素,無人駕駛的 "遠程載體 "保護飛行員并協助他們完成戰斗任務。鑒于正在進行的辯論,德國國防部長已經強調。"歐洲戰略自主的想法走得太遠了,如果它被認為意味著我們可以在沒有北約和美國的情況下保證歐洲的安全、穩定和繁榮。那是一種幻覺[2]"。在這個意義上,FCAS與北約的目標是一致的。
"武器的殺傷力越大,影響越深遠,就越需要武器背后的人知道他們在做什么,"沃爾夫-馮-鮑迪辛將軍(1907-1993)說,他是1955年成立的二戰后德國聯邦國防軍的富有遠見的設計師(見圖1)。"如果沒有對道德領域的承諾,士兵就有可能成為一個單純的暴力功能者和管理者"。他深思熟慮地補充道。"如果僅僅從功能的角度來看,也就是說,如果要實現的目標在任何情況下都高于人,那么武裝部隊將成為一種危險[3]"。
弗朗西斯-培根(1561-1626)關于實現權力是所有知識的意義的聲明標志著現代項目的開始[4]。然而,自從人工智能(AI)在國防領域出現后,旨在造福人類的技術可能會反過來影響它。這種類型的工具性知識使現代危機像在聚光燈下一樣明顯。關于人的倫理知識,關于人的本質和目的,必須補充培根式的知識。有一種 "人的生態學",一位德國教皇提醒德國議員說。"他不制造自己;他要對自己和他人負責[5]"。因此,任何符合倫理的工程必須是以人類為中心的。這對于國防領域的人工智能來說是最迫切的。因此,數字倫理和相應的精神和道德是必不可少的技能,要與卓越的技術同時系統地建立起來。因此,領導哲學和個性發展計劃應鼓勵設計和使用基于人工智能的防御系統的道德能力。
北約STO的科技界如何在技術上支持負責任地使用我們從人工智能中收獲的巨大力量?為了更具體地論證,讓我們以德國聯邦國防軍的文件為指導,從它在20世紀50年代成立的時候,也就是人工智能這個詞真正被創造出來的時候,到最近的聲明。由于這些武裝部隊已經從暴政和以當時高科技為特征的 "全面戰爭 "中吸取了教訓,他們似乎在概念上已經為掌握數字挑戰做了準備。這一點更是如此,因為聯邦國防軍是一支載于《德國基本法》的議會軍隊,它完全按照聯邦議院的具體授權行事,即以德國人民的名義行事。
國防領域的人工智能旨在將軍事決策者從常規或大規模任務中解脫出來,并 "馴服 "復雜性,讓他們做只有個人才能做的事情,即智能地感知情況并負責任地采取行動。自動化對聯邦國防軍的重要性很早就被認識到了。馮-鮑迪辛在1957年提出:"然后,人類的智慧和人力將再次能夠被部署到適合人類的領域"[6]。從這個角度來看,武裝部隊作為基于人工智能的系統的使用者,并沒有面臨根本性的新挑戰,因為技術的發展一直在擴大感知和行動的范圍。
美國防部官網3月17日報道,2022年3月15日,美國防部副部長凱瑟琳·希克斯博士簽署了“聯合全域指揮與控制(JADC2)實施計劃”(2021年9月提交),同一天國防部官網公開了“聯合全域指揮與控制(JADC2)戰略概要”(2021年5月美國防部長簽署發布JADC2戰略,戰略全文為秘密級)。由于JADC2戰略和實施計劃的保密性,從此次放出的“戰略”摘要可看出其實施計劃的大致輪廓。
在當前的全球安全環境中,美國軍隊面臨著敏捷的對手,他們越來越多地試圖通過阻礙,并在可能的情況下拒絕我們(美軍)的指揮和控制(C2)能力來破壞戰略和行動優勢。美國軍隊重新獲得并保持信息和決策優勢的能力是國防部的首要任務之一。
美國國防部 (DOD)聯合全域指揮與控制 (JADC2) 戰略描述了迫切需要集中力量推動部門行動,以增強其的聯合部隊指揮官在所有作戰領域和整個電磁頻譜范圍內指揮聯合部隊所需的能力,以威懾、并在必要時在全球任何時間、任何地點擊敗任何對手。
JADC2 戰略為識別、組織和提供改進的聯合部隊指揮和控制 (C2) 能力提供了愿景和方法,并說明了對手已經關閉了其賴以取得作戰成功的許多能力和方法優勢。作為一種方法,JADC2 支持使用創新技術開發物資和非物資解決方案選項,同時愿意修改現有政策、權力、組織結構和作戰程序,從而為聯合部隊指揮官提供信息和決策優勢。
全球安全環境的快速變化給美國軍隊和聯合部隊抓住、保持和保護我們對對手的信息和決策優勢的能力帶來了新的重大挑戰。此外,我們必須預見到未來的軍事行動將在退化和有爭議的電磁頻譜環境中進行。這些挑戰要求部門作出一致和集中的努力,使我們開發、實施和管理C2能力的方式現代化,以便在所有作戰領域、跨梯隊和與我們的任務伙伴一起取得勝利。
JADC2為塑造未來聯合部隊的C2能力提供了一個連貫的方法,旨在在戰爭各個層次和階段、在各個領域以及與合作伙伴一起,產生感知、理解和行動的作戰能力,以便以相關的速度提供信息優勢。作為一種方法,JADC2超越了任何單一的能力、平臺或系統;它提供了一個機會來加速實施聯合部隊進行C2的方式中所需要的技術進步和理論變革。JADC2將使聯合部隊能夠使用越來越多的數據,采用自動化和人工智能,依靠安全和彈性的基礎設施,并在對手的決策周期內采取行動。
這一戰略的成功實施需要整個國防部(DoD)的明確決心。為此,JADC2戰略闡明了 "感知"、"理解 "和 "行動 "這三項指導性的C2功能,以及另外五條持久的努力方向(LOEs),以組織和指導提供JADC2的物資和非物資能力。這些工作重點包括 (1)建立JADC2數據企業;(2)建立JADC2人力企業;(3)建立JADC2技術企業;(4)將核C2和通信(NC2/NC3)與JADC2相結合;以及(5)使任務伙伴信息共享現代化。
這一戰略得到了JADC2戰略實施計劃的支持,該計劃確定了JADC2的最終狀態、關鍵目標和任務,并通過既定的部門授權、論壇和程序來同步和簡化工作,以確定JADC2能力的優先次序、資源、開發、交付和維持。現有的軍種和機構的開發和采購過程通常會產生特定領域的能力,無法滿足全領域C2的作戰需求。JADC2的方法將覆蓋這些現有的程序,目的是促進跨領域、聯合能力的發展。
該戰略提供了六項指導原則,以促進整個DoD在提供物資和非物資JADC2改進方面工作的一致性。這些原則是 (1) 信息共享能力的改進是在企業層面上設計和擴展的;(2) 聯合部隊C2的改進采用分層安全特性;(3) JADC2數據結構由高效、可發展和廣泛適用的通用數據標準和架構組成;(4) 聯合部隊C2必須在退化和有爭議的電磁環境中具有彈性;(5) 部門開發和實施過程必須統一,以提供更有效的跨域能力選擇;以及,(6) 部門開發和實施過程必須以更快速度執行。
JADC2戰略的結論是,迫切需要使用一個全企業的整體方法來實施物資和非物資的C2能力,以確保聯合部隊指揮官在整個競爭過程中獲得并保持對全球對手的信息和決策優勢。
JADC2戰略闡明了國防部為支持美國國家安全利益而推進聯合部隊C2能力的方法。國防戰略指示聯合部隊 "獲得并保持信息優勢,特別是在網絡空間、太空和電磁波譜方面"。將JADC2從指導聯合/整合能力發展的概念變為現實的巨大任務需要一個清晰的愿景、有效的戰略和靈活的流程。JADC2的成功實施將產生更好的聯合部隊C2能力,并需要加速應用技術解決方案來發展C2能力,以及調整管理政策和作戰程序。
圖1 JADC2邏輯圖
JADC2提供了一種方法來開發作戰能力,以在所有領域和合作伙伴的各個層面和階段感知、理解和行動,以相關的速度提供信息優勢。
圖1描述了實現全域C2的復雜性:聯合部隊指揮官依靠多年能力開發和實施的指導、技術、程序和能力,以便在行現實世界任務中使用有效的C2任務。
JADC2尋求優化信息的可用性和使用,以確保指揮官的信息和決策周期相對于對手的能力運行得更快。這種整體觀點將聯合部隊指揮官確定為軍種和機構C2能力發展工作的主要受益者,并將部門C2能力發展成果集中在提供聯合、全域操作C2性能和熟練程度。為實現這一目標,JADC2將覆蓋現有的基于軍種和機構的C2能力開發計劃框架,這些計劃目前向聯合部隊提供以領域為中心且經常重復的信息和決策管理能力。
這種“疊加”方法是一種協作方法,其中所有C2能力開發利益相關者都支持JADC2作為優化開發資源和優先級以及最大化作戰成果的統一方法。
JADC2戰略通過(1)聯合部隊指揮官在作戰環境中“感知”、“理解”和“行動”的需要,以及(2)使用五個職能領域來組織其改進聯合部隊C2的方法重點或LOE,以指導改進的C2聯合部隊能力的開發和實施。在這種方法中,JADC2整合了現有的部門、軍種、機構和運營需求和能力開發流程,以塑造未來物資和非物資C2能力的交付。
該戰略的實施由JADC2跨職能團隊(CFT)監督,該團隊是國防部副部長特許機構,由來自作戰司令部、軍種、國防機構、聯合工作人員和OSD工作人員。識別和實施優先C2改進的主要方法是執行JADC2實施計劃。
“感知和集成”是發現、收集、關聯、聚合、處理和利用來自全域(友好的、敵對的和中立的)數據的能力,并將信息作為理解和決策的基礎進行共享。JADC2通過使用聯合數據架構的各種情報傳感和信息共享網絡,支持聯合部隊和任務伙伴共享創新數據,利用遠程傳感器、情報設備和開放資源感知、集成全域內外信息,使聯合部隊指揮官能夠獲得信息和決策優勢。
“理解”指的是分析信息,以便更好地理解和預測作戰環境、對手的行動和意圖、以及自身和友軍的行動。JADC2將利用人工智能和機器學習幫助指揮官快速決策,其將直接從傳感基礎設施中提取、合并和處理大量數據和信息,以保證對作戰環境的可靠、持續、實時了解,并在整個聯合部隊和任務伙伴之間共享。這將要求聯合部隊調整和更新現有的戰略、戰役、戰術級的指控流程和能力,同時這些規程和技術的進步將大大增強聯合部隊在降級環境中的作戰能力。
“行動”指的是向聯合部隊及其任務伙伴做出決策并分發的過程。JADC2將使用規劃和決策支持工具,并依托先進、彈性和可靠的通信系統、無障礙和全面的信息基礎設施以及靈活的數據格式,確保快速、準確和安全地傳遞決策。同時,JADC2將使用任務式指揮的方法,下屬指揮官通過了解高級指揮官的行動意圖,可按照原則被授權自主采取行動,同時保留在通信中斷時或行動緊急情況下采取行動的能力。
JADC2戰略圍繞五個LOE組織,以指導部門在提供JADC2能力方面的行動,如下所示:1)數據體系;2)人力資源體系;3)技術體系;4)與核C2和C3集成;5)使任務伙伴信息共享現代化。每個LOE都由一個主要責任辦公室指導,該辦公室由高級標志/SES人員代表,他們有權通過其聯合能力委員會提出問題并與聯合需求監督委員會互動并提供支持。JADC2戰略實施計劃中描述了其他JADC2治理細節。
數據是一種戰略資產,必須由聯合部隊有效管理,使其能夠抓住、維護、并保護信息和決策優勢。為了加快決策速度,聯合部隊和我們的任務合作伙伴必須能夠發現和訪問來自所有作戰領域的任何數據和信息。以下關鍵數據標準化目標將直接影響聯合部隊指揮官管理和使用數據的能力:
作戰環境中不斷增加的數據和信息可用性有可能使聯合部隊收集和匯總此類信息的技術手段不堪重負。現有的組織結構和決策流程正在被趕超,需要新的方法來確保聯合部隊指揮官抓住機會和保持優勢的能力,從而加劇了這個問題。
LOE2特別關注人類在C2能力方面的表現,并解決了創新人工智能和機器學習工具的使用問題。反過來,此類創新將推動制定預先確定的、預先批準的、事件驅動的、捆綁式授權的需求,以實現快速、相關的決策從戰略層面到戰術邊緣。這可能需要改革、重新調整或創建具有結構、敏捷性和資源的組織,以更有效地融合聯合部隊及其任務伙伴的物理和信息力量,使他們能夠對聯合信息優勢(JIA)進行有效控制操作。 該LOE還解決了培訓和教育領導者精通所有作戰領域作戰所需的專業發展。它將指導和支持JADC2政策、作戰概念(CONOPS)、條令以及戰術、技術和程序(TTP)方面的發展,以優化通過JADC2新能力獲得的優勢。為此,兵棋推演、實驗、演示、評估、訓練和演習的設計必須集中在競爭和沖突期間作戰的C2方面。同樣,國防部員工必須精通識別制度變革,以實現和維持改進的JADC2能力開發流程和產品。
該LOE解決了增強的共享態勢感知、同步和異步全球協作、戰略和作戰聯合規劃、實時全球部隊可視化和管理、預測部隊戰備和后勤、動態和非動態聯合和遠程實時同步和整合?射程精確火力,以及評估聯合部隊和任務伙伴表現的增強能力。
聯合部隊指揮官需要具有足夠速度和帶寬的安全的全球通信網絡,以滿足國家司令部和作戰司令部的作戰需求。LOE3解決了JADC2生態系統的傳輸基礎設施,并提供了基本的最低功能確保持續C2能力所必需的,包括通信系統的彈性和多樣性、多級安全性以及消除單點故障。這些經過網絡強化的先進技術將顯著提高指揮官組織、理解、計劃、決定、指導和監控所有聯合部隊和任務伙伴在所有領域以及在電磁頻譜使用退化和競爭期間的所有行動的能力。
在適當的情況下,JADC2方法將與核C2和通訊。
聯合部隊指揮官通過與任務伙伴共享態勢感知,不斷努力建立和保持對作戰環境的共同理解。當來自每個合作伙伴的C2系統的數據可以被每個其他批準的合作伙伴訪問、查看和采取行動時,就可以實現理想的任務合作伙伴系統集成。然而,新興任務、大型聯盟和不斷發展的技術為實現這一目標帶來了持續的障礙。歸根結底,JADC2系統互操作性對于以速度、精度、相關性和安全性進行聯合和合作作戰至關重要。該LOE力求擴大和提高聯合部隊在所有類型的聯合作戰中交換信息和協調行動和效果的能力。
JADC2方法的實施遵循以下總體原則。
在戰略層面設計和擴展信息共享能力
JADC2基于戰略層面設計和操作,依賴多個戰略節點和通信支撐網絡,提供傳遞重要信息所需的帶寬、功能和安全的全球鏈接能力。
安全
聯合部隊C2必須采用以強大網絡防御為先導的分層防御,以阻止可能威脅企業運營的惡意活動。聯合部隊必須有明確的政策指導、足夠的權力、充分的訓練、及時的情報以及在全球競爭環境中進行安全C2所需的技術。國防部必須在日常行動中采取戰時思維例如,邊打邊訓練并培養知識淵博的領導者和受過訓練的員工,以使用他們所掌握的工具和權威。
通用數據和互操作性標準
聯合部隊數據結構必須由高效、可演進和廣泛適用的通用數據標準和架構組成,并具有標準化的關鍵接口和服務,以便在具有各種不同類型的大型環境中訪問、聚合、管理、存儲、處理和共享數據合作伙伴和運營。
在降級的環境中保持彈性
聯合部隊必須能夠在降級或有爭議的C2環境中以最低限度的指導行動,指揮官和參謀人員必須在傳感和通信受到嚴重影響或完全癱瘓以及對手意圖不明確的情況下進行積極訓練。
在能力建設中保持統一
國防部必須改進其指揮控制能力開發和實施流程,以便更容易地采用跨域優先事項和解決方案選項。JADC2 CFT是部門能力開發人員討論、識別、協作和推薦機會的場所,以改進軍種和作戰領域內的C2信息共享和互操作性。
快速交付JADC2能力
國防部必須繼續發展其當前的C2開發和采購方法,并調整現有方法以更快地產生所需的能力。
全球安全環境的變化,包括針對美國的不斷增加的惡意行動和信息技術的廣泛進步,為聯合部隊帶來了緊迫的挑戰和機遇。JADC2戰略通過推進互連和企業范圍的方法來提供支持全球一體化作戰的物資和非物資能力,從而應對這些挑戰和機遇。這些能力將直接和顯著提高指揮官獲得和保持信息和決策優勢的能力。
JADC2戰略闡明了一種企業方法,用于在所有作戰領域和整個電磁頻譜中改進聯合部隊的C2。它解決了人類決策的獨特方面,并尋求新的機會來增強C2的認知方面。該戰略確定了關鍵的C2功能,即感知、理解和行動,以及組織和指導改進的C2能力的開發和實施的五個努力方向。
JADC2方法成功的核心是JADC2 CFT。該機構將協作推動整個國防部可衡量的積極變化,以實現全域C2所需的能力、能力、持久性和全球影響力。
指揮、控制和通信(C3)系統是所有軍事作戰的基礎,為國防部(DoD)的所有任務提供計劃、協調和控制部隊和作戰所需的關鍵信息。歷史上,美軍取得并保持了C3技術的主導優勢,但同行的競爭者和對手已經縮小了差距。國防部目前的C3系統沒有跟上威脅增長的步伐,也沒有滿足我們聯合作戰人員不斷增長的信息交流需求。聯合部隊必須配備最新的C3能力,為所有領域提供實時態勢感知和決策支持。
未來的沖突很可能由信息優勢決定,成功的一方將來自多個領域的分布式傳感器和武器系統的大量數據轉化為可操作的信息,以便更好、更快地做出決策并產生精確的效果。國防部(DoD)正在執行一項重點工作,通過綜合和同步的能力發展,在所有領域迅速實現靈活和有彈性的指揮和控制(C2),以確保對我們的對手的作戰和競爭優勢。這項工作被稱為聯合全域指揮與控制(JADC2),是決策的藝術和科學,將決策迅速轉化為行動,利用所有領域的能力并與任務伙伴合作,在競爭和沖突中實現作戰和信息優勢。JADC2需要新的概念、科學和技術、實驗以及多年的持續投資。
該戰略代表了國防部對實施國防部數字化現代化戰略中C3部分的設想,并為彌合今天的傳統C3使能能力和JADC2之間的差距提供了方向。它描述了國防部將如何創新以獲得競爭優勢,同時為完全網絡化的通信傳輸層和先進的C2使能能力打下基礎,以使聯合全域作戰同步應對21世紀的威脅。該戰略的重點是保護和保持現有的C3能力;確保美國、盟國和主要合作伙伴在需要的時候能夠可靠地獲得關鍵信息;提供無縫、有彈性和安全的C3傳輸基礎設施,使聯合部隊在整個軍事作戰中更具殺傷力。這一戰略的實施需要在作戰領域內和跨作戰領域內同步進行現代化工作,從完美的解決方案過渡到一個高度連接的、敏捷的和有彈性的系統。
本文件確定的目標為DOD的C3系統和基礎設施的現代化提供了明確的指導和方向。然而,現代化并不是一個終點,而是一項持續的工作。國防部將評估和更新該戰略,以適應在通往JADC2道路上的新的作戰概念和技術。
美國防部正面臨著幾十年來最復雜和競爭激烈的全球安全環境。在這個大國競爭的新時代,國防部必須提高聯合作戰人員的殺傷力,加強聯盟伙伴關系,吸引新的合作伙伴,并改革國防部以提高績效和經濟效益。
當我們建立一支更具殺傷力的部隊并加強聯盟和伙伴關系時,DOD必須專注于關鍵的有利工具,以有效地運用聯合多國部隊對抗大國競爭。有效的部隊使用始于有效的C2,即由適當指定的指揮官在完成任務的過程中對指定和附屬部隊行使權力和指導。在現代戰爭中,這可能是人對人、機器對機器(M2M)的循環,或者隨著自主程度的提高,M2M的循環中也有人類。在其最基本的層面上,成功的C2需要有可靠的通信、發送和接收信息的手段,以及其他處理和顯示可操作信息的能力,以幫助指揮官進行決策并取得決定性的信息優勢。
圖1:指揮、控制和通信現代化
該戰略的重點是支持有效的聯合和多國作戰的C3使能能力(圖1)。C3使能能力由信息整合和決策支持服務、系統、流程以及相關的通信運輸基礎設施組成,使其能夠對指定和附屬的部隊行使權力和指導。這些能力使指揮官和決策者能夠迅速評估、選擇和執行有效的作戰方案以完成任務。
具體而言,該戰略為2020-2025年的C3使能能力現代化提供了方法和實施指南。作為2018年國防戰略(NDS)實施的一部分,聯合參謀部正在制定聯合和任務伙伴網絡的工作概念,以便在有爭議的環境中執行全域聯合作戰。根據這些概念,負責研究和工程開發的國防部副部長辦公室(OUSD(R&E))正在開發和發展一個長期的(2024年及以后)全網絡化指揮、控制和通信(FNC3)架構。實施這些未來的概念和架構將需要時間來使得新的技術和多年的投資成熟可用。這個C3現代化戰略為彌合今天的傳統C3使能能力和未來的FNC3使能JADC2之間的差距提供了方向,以確保聯合部隊能夠 "今晚作戰(fight tonight)",同時為聯合全域作戰所需的未來技術創造一個可行的過渡路徑。
本戰略提出的C3現代化目標與國防部數字化現代化戰略(DMS)和其他更高層次的指導意見相一致,包括國家發展戰略、國防部2018年網絡戰略、聯合作戰的基石概念:《聯合部隊2030》和《國防規劃指南》。它實施近期的現代化作戰和創新解決方案,通過更安全、有效和高效的C3環境提供競爭優勢。為此,國防部必須解決這些C3現代化的目標:
1.開發和實施敏捷的電磁頻譜操作;
2.加強定位、導航和授時信息的交付、多樣性和彈性;
3.加強國家領導指揮能力;
4.提供綜合的、可互操作的超視距通信能力;
5.加速和同步實施現代化的戰術通信系統;
6.全面建立和實施國防部公共安全通信生態系統;
7.創造一個快速發展5G基礎設施和利用非美國5G網絡的環境;
8.提供有彈性和響應的C2系統;9.提供任務伙伴環境能力。提供任務伙伴環境能力和服務。
圖2:DOD數字現代化戰略
圖3:DOD C3現代化和數字現代化戰略的一致性
圖2和圖3分別顯示了本戰略中實施的DMS要素以及兩個戰略之間的目標和目的的一致性。
DOD C3依賴于一個復雜的、不斷發展的系統,從網絡基礎設施和核心服務到戰術邊緣的手持無線電和移動設備。本戰略中包含的九個目標是對圖2中強調的六個DMS目標的更細粒度的分解。C3現代化的其他關鍵因素包括聯合信息環境能力目標、數據中心化和數據分析,分別包含在DMS、國防部云戰略和國防部人工智能戰略中。有效的國防部事業管理將確保這些戰略的成功同步和實施。
今天的戰場正在經歷一場由建立在人工智能和機器學習等方法和手段上的智能系統(IS)帶來的軍事事務革命。這些技術有可能從根本上改變戰場的性質,為用戶提供更好的數據,使其能夠更好、更快地做出決定。雖然這些技術具有巨大的潛力,但它們在被作戰人員、軍事領導層和政策制定者廣泛采用方面面臨巨大障礙。
混合戰爭的戰場是一個危險的環境。基于信息系統的決策支持,提供計算機生成的預測或建議,必須與現實世界的巨大后果抗衡。不幸的是,智能系統所固有的復雜性和多維性往往使傳統的驗證和確認工作(如可追溯性分析)變得不可能。此外,由于智能系統的典型的不透明性,用戶經常面臨著可能有廣泛的道德和倫理問題的決策。戰士們可能不愿意將自己或他人的生命交到決策不透明的系統手中。將軍們可能會擔心為失敗承擔責任。政策制定者可能會擔心他們的政治前途。這些對信任和采用先進系統的挑戰,如果不直接理解和系統地克服,將可能使西方軍隊與那些對使用先進系統不那么擔心的對手相比處于非常不利的地位。
無數的研究工作提供了關于人們何時信任技術系統并采用它們的觀點。然而,這些觀點中很少有專門針對基于智能系統的技術的,更少的是針對軍事應用中的高風險環境和獨特需求,特別是混合戰爭的背景。
本文提供了一個關于信任和接受技術的混合模型概述,它將幫助開發者和設計者建立系統,以提高對軍事應用先進智能系統的信任和接受。具體來說,我們的方法借鑒了多個經驗證的計算行為科學信任模型,以及經驗證的技術接受框架。我們的混合模型旨在支持快速的現場測試,為提高先進軍事智能系統的信任度和接受度提供一個應用的、計算上有效的框架。
混合戰爭為沖突推波助瀾,以削弱對手的實力。相關的行動既發生在物理世界,也發生在媒體空間(通常被稱為 "信息空間")。防御混合戰爭需要全面的態勢感知,這需要在兩個領域,即物理和媒體領域的情報。為此,開源情報(OSInt)的任務是分析來自媒體空間的公開信息。由于媒體空間非常大且不斷增長,OSInt需要技術支持。在本文中,我們將描述對物理世界的事件以及媒體事件的自動檢測和提取。我們將討論不同類型的事件表征如何相互關聯,以及事件表征的網絡如何促進情景意識。
開源情報(OSInt)的任務是探索和分析可公開獲取的媒體空間,以收集有關(潛在)沖突的信息,以及其他主題。所謂 "媒體空間",我們指的是通過傳統媒體(如電視、廣播和報紙)以及社交媒體(包括各種網絡博客)傳播的非常龐大、快速且持續增長的多語種文本、圖像、視頻和音頻數據語料庫。社會媒體大多是平臺綁定的。平臺包括YouTube、Twitter、Facebook、Instagram和其他[1,2]。在很大程度上,媒體空間可以通過互聯網訪問。很多部分是對公眾開放的。然而,也存在一些半開放的區域,其中有潛在的有價值的信息,但并不打算讓所有人都能接觸到,例如Telegram和Facebook頁面。
媒體空間提供關于物理世界的信息:發生了什么?哪些事件目前正在進行?未來計劃或預測會發生什么?它對物理世界的事件反應非常快,也就是說,幾乎是立即提供信息[3]。因此,媒體空間似乎是物理世界中事件的一個有希望的 "傳感器"。然而,從鋪天蓋地的大量信息中檢索出特別相關的信息仍然是一個挑戰,因為到目前為止,所提供的大多數信息是完全不相關的,至少對軍隊來說是如此。此外,媒體空間并不一致--它包括真實和虛假信息,因此,事實核查是一個進一步的挑戰。
除了作為物理世界的傳感器,媒體空間還是意識形態、意見和價值觀的論壇。它是一個重要的空間,用于協商一個社會認為是允許的、規定的或禁止的東西,并用于表現情緒和偏見。因此,它已成為混合戰爭的戰場,即以 "通過暴力、控制、顛覆、操縱和傳播(錯誤的)信息"([4],第2頁)為目的進行的行動。(錯誤的)信息行動導致我們稱之為 "媒體事件"。媒體事件可以被觸發,以影響情緒、意識形態和公眾對物質世界的看法。
計算能力、數據收集和算法性能正以指數速度增長。人工智能 (AI) 的進步展示了在無數領域增強人類思想和行動的能力,其中包括聯合空中力量的指揮與控制 (C2)。為了在未來的戰爭中取得勝利,美國需要能夠以壓倒性的速度在多個領域對敵制造多重困境,同時防止敵人具備這種能力。人工智能將提供 C2 部隊所需的認知敏捷性。擁有信息優勢并能夠對高速決策需求做出反應的一方將決定未來戰爭的結果。
本文試圖讓讀者熟悉一些常見的人工智能類型和功能,探索具體的應用領域,并提供關于使用空中力量協助聯合目標選定的建議方案。針對配對系統的武器開發,使用一個AI 創建過程的示例揭示開發細節。除了解釋人工智能模型的構建之外,本文還提出了一個準備和驗證人工智能模型的過程以供作戰使用,并討論了基本的實施注意事項。在聯合空中力量 C2 中使用 AI 的最終理想狀態是高效的人機協作和較高的認知敏捷性。
Matthew “Jerry” Voke 少校在派遣到 ACSC、Air University、Maxwell AFB、AL時撰寫了這篇論文。在擔任 ACSC 之前,Voke 少校駕駛 U-28,同時駐扎在佛羅里達州赫爾伯特機場,擔任副駕駛、飛機指揮官、教官和評估飛行員。他在全球范圍內部署了十次支持美國的反恐活動。最近,他指導美國空軍武器學校的學生擔任佛羅里達州赫爾伯特機場第 14 武器中隊的 U-28 行動助理主任。他的正規軍事教育包括參加航空航天基礎課程、中隊軍官學校、美國空軍武器學校和 ACSC。他擁有美國空軍學院的物理學學士學位和國際三叉戟大學的工商管理碩士學位。他幫助撰寫了幾本空軍和多軍種出版物,并發表了一篇武器分類論文,旨在使用飛機引導海軍突擊部隊。
亨利·阿諾德 (Henry H. Arnold)將軍曾說過,第一次世界大戰靠體力打贏,第二次世界大戰靠后勤制勝。擁有信息優勢和及時控制沖突能力的一方將贏得“第三次世界大戰”。未來沖突的勝利將屬于能夠為其對手創造多重并發挑戰并以壓倒性的速度適應環境變化同時阻止敵人擁有這種能力的一方。通過在自動化和增強人類決策中利用人工智能 (AI),這些未來的超越是可能的。人工智能提供了將人類層面直觀問題解決能力與機器速度、準確性和持久性相結合的優勢。此外,人工智能的快速發展正在打造人機協作中的新應用。世界正處于人工智能競賽中,美國必須利用人工智能來主導未來的戰爭并威懾潛在的對手。
人工智能在徹底改變空中力量作戰中從戰術到戰略的潛在能力。中國和俄羅斯是追求人工智能未來的國家之一,弗拉基米爾·普京 (Vladimir Putin) 在 2017 年表示,“誰成為人工智能和網絡空間的領導者,誰就成為世界的統治者。”中國領導人同樣表示,“快速發展人工智能將深刻改變人類社會和生活,改變世界。 中國必須在國際競爭新階段中牢牢把握人工智能發展的戰略主動權。”意識到這一啟示性潛力,美國必須努力保持主導地位,并啟動向發展和實施人工智能自動化和人機協作的態度轉變。
為了發展隨之而來的不對稱優勢,美國必須尋求人工智能在自主和增強決策方面的新應用。通過確保在人工智能方面的領先地位,美國可以恢復對任何潛在對手的日益減弱的優勢,從而加強威懾。人工智能和自主性的增強將使美軍能夠以壓倒性的速度在多個領域制造多重困境,使對手無法做出反應。這種超越要求只有 AI 才能獲得認知優勢,它可以學習、提高人類績效、更好地為人類決策者做好準備、促進聯網解決方案、應用智能設備、協調操作以及優化效果的選擇和傳遞。本文將專門研究如何在空戰指揮與控制(C2)內對聯合目標選定和評估提供幫助,作為初步實施領域。盡管本文的范圍有限,但美國應在 C2 的許多領域尋求更高水平的人工智能自主和增強,以實現最快和最實用的決策循環。
新穎而強大的人工智能解決方案呈指數級增長,美國軍方正努力跟上企業界發展步伐。美國防部 (DoD) 在 2017 年用于機器學習的預算為1.95 億美元,用于深度學習的預算為 2.38 億美元,用于語言處理的預算為 8200 萬美元。乍一看,這些數字似乎是用于人工智能研究的一大筆資金;然而,國防部投資和研究的增長速度明顯慢于企業部門。 2012 年至 2017 年期間,國防部在人工智能、大數據和云計算研究方面的總體投資以 5.7% 的復合年增長率 (CAGR) 增長。企業投資人工智能研究的復合年增長率約為 35%,人工智能推動了企業如何解讀數據和互動。企業對人工智能的投資大約每兩年翻一番。國防部對人工智能的投資跟不上企業投資或人工智能的指數增長。
歷史上,聯合空中力量C2 在針對能力較弱的對手進行蓄意規劃行動方面一直很有效,盡管可以說它效率不高。效率可能是對抗近乎對等的敵人或在高度動態的戰爭中的一項重要要求。 《美國國防戰略》指出,國防部“以犧牲為作戰人員提供及時決策、策略和能力為代價,為卓越性能進行了過度優化”,并且必須“以相關的速度交付性能。”具體而言,聯合目標選定已被證明有效但不是最有效地引導大量資產設施打擊預先計劃的目標,例如沙漠風暴、盟軍行動和持久自由行動。美國在相對較小的戰爭中以預先計劃的方式,對能力較弱的對手進行了這些蓄意行動。深思熟慮的計劃通常在作戰后 24 到 72 小時內開始,同時在動態目標選定方面允許一些例外情況。美國 C2 強化了從過去成功打擊能力較弱的對手中吸取的教訓,變得更加有效;然而,與在與近乎對等的對手作戰時所需的效率和敏捷性方面仍有待開發。
美國必須不斷努力保持空中力量使用的高效和靈活。正如約翰博伊德上校在《沖突模式》中所說,“為了獲勝,我們應該以比對手更快的節奏行動——或者,更好的是,進入對手的觀察-定向-決策-行動時間循環。 ”人工智能可以在許多領域以顯著的效果和速度補充人類工作。美軍必須啟動下一次空中力量演進,并利用人工智能來增強人類的決策和行動。人工智能解決方案對于促進速度、力量、平衡、靈活性和協調是必要的,以在未來的沖突中快速創建跨多個領域的多重困境。美國必須保持在空中、太空和網絡空間力量的領導地位,尤其是隨著俄羅斯和中國在這些領域的投資增長。
人工智能在企業界的能力和速度呈指數級增長,顛覆了從自然語言處理到癌癥診斷的各個領域。一些專家將人工智能的激增比作 19 世紀后期的電力發明,稱這可能會引發同樣重大的行業轉型。人工智能的進步使得許多長期以來被認為是機器不可能完成的任務讓給機器去表演。隨著機器對機器通信和人對機器協作解決方案的不斷成熟,人工智能將在人類密集型流程中變得越來越普遍。
人工智能貢獻最重要的領域之一在于它能夠從數據中提取相關性,而這對人類來說可能是不可見的。傳感器和感知器收集或創建數據,然后必須對其進行存儲、清理和結構化。將收集的原始數據處理轉化為可用的人工智能燃料。然后,算法可以為人類決策者或參與者創建模型、開發和測試洞察力、繪制相關性并檢測異常情況。
人工智能可以同時在人類無法理解的時間尺度上做出決策。人工智能可以幫助人類進行目標發現、情報融合、目標優先排序、指揮官分析、評估、部隊分配、任務規劃、任務監控和執行。人工智能將在人類無法超越的多個領域和多層次戰爭中實現快速決策。人工智能將聚合、整合、提煉和呈現常見的作戰圖,并幫助加速決策,實現當今人類無法掌握的效果。人工智能可能被證明能夠將冗長的聯合目標選定循環縮短為一個快速更新、對環境變化做出快速反應、敏捷和積極的循環。人類思想或行動的每一個領域都適合人工智能顛覆,包括空中力量的使用。
美國必須準備好對相關信息以高速決策響應。自動化和人機協作將改善和加快空中力量 C2 的決策和任務循環。未來戰爭的勝利將屬于能夠以壓倒性優勢的進行指揮、控制其部隊的領導人。未來的戰爭將有利于能夠快速處理信息并在各級戰爭中做出決策的交戰領導人。作戰目標不僅是迅速對敵人作出反應;但它也是按照自己選擇的方向和節奏推動戰斗。領先于敵方三步的交戰領導者,會使敵方“倒退”,不斷掙扎反應,無法取得主動權。
本文試圖讓讀者熟悉人工智能的潛力,并強調在空中力量 C2 中使用的關鍵考慮因素。本文的主要重點是展示美國在未來的戰斗中必須利用的潛在人工智能潛力。目標是通過具體的應用示例激發讀者的興趣。作者希望讀完本報告后讀者會對人工智能有所熟悉。開發和部署下一個不對稱優勢所需的先導是創新文化和適應愿景,這是通過鼓勵創造性地解決問題和激發整個聯合部隊創新熱情來培養的。
本文簡要介紹了一些基本的 C2 規范和流程——奠定了基礎——并強調了潛在的人工智能應用領域。其次,它描述了美國C2聯合空中力量的集權平衡和一些原則。第三,它調查了美國的聯合目標選定和目標選擇過程。第四,對 AI 基礎知識和 AI 應用示例的調查將提供概念基礎,然后是在軍事應用中使用 AI 的幾個示例。這允許討論武器-目標配對模型,該模型說明如何處理數據、算法選擇和模型輸出的決策。然后,本文討論了人工智能輔助評估,包括主導指標和反饋循環。最后,基本的實施考慮將涵蓋部署和變革所需的步驟,以成功建立信任并幫助決策者在空中力量中使用人工智能解決方案。
本節將簡要地讓讀者了解使用空中力量的一些 C2 基礎知識。簡而言之,C2 是“由指定指揮官針對需完成任務時對指派和附屬部隊行使指揮權力。”聯合空中作戰是由各軍種執行聯合空中任務部隊執行的行動。聯合空中作戰在作戰環境和軍事行動范圍內可能會有很大差異;然而,讀者對空中力量的 C2 有一個基本的了解是至關重要的。
美國條令規定使用集中式控制和分布式執行的原則進行聯合空中作戰。推動這一空中力量原則的一個過于簡單的概要是,集中式控制使高級梯隊指揮官能夠有效地控制、集結和領導部隊;執行權力下放使部隊能夠掌握主動權,應對不確定和不斷變化的環境,并提升下層的靈活性。
技術發展經常改變空中力量這一原則的平衡。強大的通信連接提高了各層級的共同作戰圖景,但它也使高級領導層能夠參與最細微的工作細節。這種雙重性在政治控制的必要性與領導者必須高效完成任務的必要性之間造成了內在張力。 盡管在許多情況下集中式控制和執行是可能的,但有意識地適當下放執行權力將確保美國空中力量敏捷性的維持。
集中式權力和分布式權力的平衡可以在沖突之間和沖突期間發生變化,領導人必須努力提高空中力量使用中的“敏捷性”。空軍未來作戰概念將敏捷性定義為對情況做出快速反應的能力。敏捷性是靈活性、速度、協調性、平衡性和力量的結合。分布式通常有利于靈活性和速度,而集中式通常有利于協調性和力量。對敏捷性的理解可能意味著身體能力,但敏捷性還包括對動態對手、移動目標或變化環境做出反應的認知能力。在空中力量 C2 中使用人工智能,在于它可以協同帶來的認知速度和力量,朝著敏捷性目標前進。
C2 系統控制聯合空中作戰,通常圍繞軍種司令部指揮官的 C2 系統構建,該系統擁有大量空中資產設施和最出色的控制能力。空中作戰中心 (AOC) 是戰區高級單位空中控制系統,確保空中、太空和網絡空間行動的有效規劃和實施。當與聯合或聯軍伙伴作為聯合空戰中心或聯軍空戰中心作戰時,AOC 架構也可能適用。 AOC 的規模從幾個工作人員到上千名軍官、入伍和文職人員之間可能存在很大差異。每個 AOC 的組織各不相同,但他們的共同目標是匹配可用的手段來實現軍事任務目標。 AOC 的職責通常包括規劃和控制聯合空中作戰,提出空中分配、空域協調、防空協調、空間協調和網絡空間協調的優先事項建議。
計算、通信和信息共享方面的技術改進打亂了C2 分層架構,造成了從作戰計劃到戰術執行的中斷。 AOC 領導層能夠做出歷史上在較低層的作戰或戰術梯隊中進行決策。例如,今天,最高級別的作戰 C2 可能不會授予目標識別和武器釋放權限,而這曾經只能在戰術邊緣進行。面對能力較弱的對手時,相對優勢明顯,對平民傷亡的厭惡可能使美國陷入自滿,并錯誤地假設未來的戰爭將在相同的良性環境中發生。通過在 AOC 之外分配控制權、分散空中資產執行以及在 C2 的多個級別利用 AI 的速度和認知能力,可以提高擊敗近端對手所需的效率和敏捷性。
空中力量的 C2 具有利用人工智能增強和自動化提高認知敏捷性的巨大潛力。下一節將討論空中力量 C2 中 AI 應用的一個示例——聯合目標選定。目前,在規劃和執行聯合空中作戰時,目標選定循環內存在數據缺口和效率低下,使關鍵信息的有效傳輸變得復雜。下一節將介紹人工智能如何幫助決策者更好地了解他們的作戰環境、將戰場數據過濾融合為相關信息,提高決策速度。
聯合目標選定旨在將提供給聯合部隊指揮官(JFC)的可用手段與利用空中、太空和網絡空間力量實現軍事和政治目的的方式相匹配。這是一個選擇目標并確定其優先順序并匹配相應響應的過程,同時考慮到作戰需求和能力。聯合目標選定可以發生在實現 JFC 目標所需的任何戰爭級別。聯合目標選定,將所需效果與這些目標相匹配,最后選擇能夠提供所需效果的手段。
戰爭迷霧和摩擦、目標重復、未知數、整合要求、二階和三階效應以及可用資源的缺乏,使得方式方法與目標匹配工作變得復雜化。聯合出版物 (JP) 3-30文件(聯合空中作戰的指揮和控制),強調了效率的重要性,并指出:“有效和高效的目標開發過程與聯合空中任務循環相結合,對于聯合空中部隊指揮官( JFACC)規劃和執行聯合空中作戰至關重要。聯合目標選定過程應整合國家機構、作戰司令部、下屬聯合部隊和組成司令部的情報數據庫、分析能力和數據收集工作。”本節將討論人工智能如何幫助實現聯合作戰所需的效率目標循環。
為了在聯合目標選定循環(joint targeting cycle)中提高效率,流程中的各個步驟和步驟的自動連接必須提高效率。如圖 1 所示,聯合瞄準的六個階段包括:
1.結束狀態和指揮官的目的開發,
2.目標開發和優先排序,
3.能力分析,
4.指揮官的決定和兵力分配,
5.任務規劃和部隊執行,
6.評估
圖1:聯合目標選定循環(JP 3-60)
人工智能可能會加速和優化目標開發和優先級,提供近乎即時的能力分析,快速迭代規劃目標,并自動制定攻擊計劃。
C2 參謀人員在聯合空中任務循環中進行聯合目標選定,這是經過精心設計的,但允許在循環外執行一些動態目標。JFACC 可以更改流程以匹配環境;然而,空中力量任務循環本身仍然是經過深思熟慮的,并且通常在持續時間上是固定的。在空中任務循環內快速或有效的動態目標或時間敏感性目標的請求與過去的能力和時效性有關。任何“彈出式目標”通常需要至少 12 小時才能在空中任務指令 (ATO) 流程中采取行動。在沒有特定目標的情況下規劃或啟動,并且能夠對實時機會做出反應。在 12 小時窗口內使用 ATO 流程重新部署刻意分配任務的資產靈活性通常很小,當前的作戰部門可能會在正常的空中力量任務分配流程之外提供任務分配。盡管有嚴格的聯合空中任務循環,但在時間敏感或高度動態的目標中需要靈活性和速度,而不是在它的幫助下。
目標選定的最大困難之一是在不同時間尺度上有效和全面地融合目標。聯合部隊針對不同時間執行的目標集,實施探索發現、優先排序和匹配效果。此外,目標開發循環以不同的速度發生,并且傳感器可能會在硬性目標過程的后期發現高優先級目標。美國要求有能力盡快適應環境和敵人的行動。由人工智能輔助的聯合目標選定循環可以有意識地和動態地繼續尋求目標,并且能夠使用不斷更新的循環來匹配效果并對目標進行優先級排序。當 C2 將資產設施與高價值“彈出式”目標配對時,其原始目標應立即流回目標解決方案,重新確定優先級,并可能移交給另一個打擊資產。進行這種目標循環的規模和速度只有通過人工智能的認知速度和強度才能實現。由人工智能推動的聯合空中目標選定循環是動態和不斷迭代的。
目標的定義是任何人、地點或事物,考慮采取可能的行動來改變、降低或抵消它為對手執行的功能。 聯合空中部隊指揮官(JFACC)根據對聯合部隊目標的貢獻程度、實現預期效果的可能性、交戰成本和許多其他因素對目標進行優先級排序。目標可以是人員、設備或基礎設施;相反,目標也可能具有數字能力或者是網絡空間中的實體。聯合目標選定中的目標分析不僅定義了目標,還定義了它們的優勢、劣勢和相互聯系。
規劃者必須詳細記錄目標特征,以便他們可以開發、關聯和融合目標。特證是特定于目標類型的,但通常可以包括諸如位置、大小、詳細外觀、目標構成、分散、硬化、電磁特征、發射器和移動性等細節。目前,人類通過低魯棒性的機器對機器通信的數據庫,來手動輸入目標特征、編譯目標、關聯目標、消除冗余并確定目標優先級。
然后,JFACC 的參謀人員對目標進行優先級排序,將其與效果相匹配,并利用可用資產、輸入和來自各組成部分指揮官的協調來執行任務。為了關閉目標選定中的反饋循環,評估小組需要分析行動對實現軍事目標的影響。評估提供了成功的衡量標準,這些衡量標準可以反饋到培訓人類決策者中,并且可以應用于人工智能系統的教學。這個迭代循環強化了最佳行為并減弱了不良行為。
實施人工智能輔助情報融合和目標優先級排序可以比任何大規模的人工過程更快地動態推薦重新分配軍事資產設施。目前 AOC 中采用的深思熟慮和動態的目標選定循環包含最低限度的自動化,充斥著多余的人力,并且缺乏有效的交叉溝通。在目標選定循環內將人工密集型任務實現自動化,可以加強觀察、定位和決策循環。即使是促進目的、任務、目標、特征和武器在循環步驟之間有效流動的基本自動化,也會減少流程的時間。更全面的人工智能實施將促進目標特征的近乎瞬時融合、匹配目標的優先級、彈藥匹配和空中任務調整。人工智能實施的一個目標是將聯合空中目標選定過程從目前的三到五天減少到沒有固定持續時間的過程,該過程還可以迭代適應實時變化的作戰環境和威脅。
當數據中存在潛在模式或相關性時,人工智能會很好地工作。因此,人們應該在可能存在相關性的地方尋求使用機器學習,并且有足夠數量的訓練數據來繪制這些相關性。其次,試圖解釋潛在相關性的模型應該足夠簡單,以快速解決未來的問題。這些概括也有例外,但這些確定是探索的良好起點。人工智能需要包含相關性的數據來??對環境和預測做出結論。人類目前在解決新穎或非結構化問題方面更有效;人工智能在高度相關的環境中茁壯成長。
人工智能目前在多個領域表現出優于人類的優勢。首先,機器學習在人類無法確定管理數據或關系的規則的情況下表現出色。當存在大量變量、變量之間存在復雜的相互聯系或人類無法“標記”數據時,這種確定是可能的。這方面的一個例子是基于 DNA 預測疾病。在沒有幫助的情況下,人類將無法處理一個人類基因組中的所有數據,更不用說來自數千個示例的關聯相關性了。
機器學習擅長的另一個領域是人類可以理解相關性,但規則無法通過蠻力編碼來解釋它們。人類很容易識別手寫字符,但要使用識別手寫所需的所有規則對計算機進行編程卻非常困難。在這種情況下,人工智能的優勢在于能夠以相對便宜的方式擴展應用程序。 AI 讀取并自動發送郵件,減少郵政服務人員的需求并降低消費者的成本。機器學習潛力的另一個領域是執行人類可以完成的任務。然而,情況經常發生變化,人類不斷對機器進行重新編程的成本過高。人工智能可以根據數十億個數據點幾乎瞬間更新感知。這方面的一個例子是亞馬遜的推薦系統。使用人工智能,亞馬遜近乎實時地更新產品推薦,明確為數億人量身定制。在有太多實例無法單獨理解或編程的情況下,人工智能會迭代地適應和學習不斷變化的數據。人工智能在人類不了解管理數據的規則、他們理解規則但無法準確編碼解決方案,或者擴展或迭代調整解決方案成本過高或不切實際的領域非常有用。
人類在創造力、獨創性、責任感和同理心方面保持相對優勢。雖然人工智能可以原創十四行詩并繪制出獨特杰作(評委無法將其與人類藝術家區分開來的),但它們的創造力和獨創性始終是有爭議的問題。這些人工智能本質上是通過學習模仿人類的例子來模仿創造力和獨創性。然而,這些優勢領域可能正在逐漸消失。這種侵蝕的一個例子是從 DeepMind 的 AlphaGo(通過分析人類棋局學會熟練地下圍棋)到 AlphaGo Zero 的轉變,后者僅通過強化學習和自我博弈(而不是觀察人類下棋)來學習。機器正在迫使人類重新評估原創性和創造力的定義。責任可能是目前人類主導的最“黑白”的領域。
在戰爭事務中,人類不應將責任委托給機器,因為他們無法對自己的決定和行為負責。最后,人工智能無法理解人類同理心、道德、信仰、價值觀或隱含目的的復雜性。人工智能可以學習模擬道德或遵守參與規則;然而,人工智能不太可能很快內化人類的同理心,或者批判性思考人類道德、價值觀和某些行為的能力。
由于這些原因,在可預見的未來,戰爭本質決定了很可能仍然靠人類努力。人類將在作戰設計和更接近“戰爭藝術”特征的領域中保持優勢。人工智能將在數據處理、信息融合、優先排序、分析、處理和通常被稱為“戰爭科學”的程序方面出現激增。人工智能將在戰爭的各個層面為人類提供幫助——從援助到完全自主——每一個補充對方的優勢,不對稱地應用于對手的弱點。
前面的部分為讀者在空中力量 C2 和 AI 基礎知識中進行聯合目標選定奠定了基礎;下一步是創建一個建立在該基礎之上的 AI 框架。有無數種方法可以處理每個 AI 應用程序,本節將為非技術讀者解釋一個通用框架——不涉及任何數學或編程!這個通用框架將按時間順序逐步執行:
1.如何確定 AI 的使用領域,
2.如何查找和準備數據,
3.如何選擇算法并生成模型,
4.如何創建適當的決策規則并使用輸出。
武器-目標配對模型作為示例包含在每個步驟中,以增加對概念的一些特異性和理解。
創建機器學習解決方案的第一步顯然是確定應用領域,例如工時密集型或高度重復性任務。 AI 擅長解決包含強相關性或示例案例的問題。此外,重要的是要記住不要僅僅為了獲得 AI 解決方案而將 AI 解決方案強加于問題。在解決問題時,人工智能應該提供準確性、速度和/或更高的效率。
在分析應用領域時,最好從相對簡單的問題開始實施,向復雜的問題努力。哪些問題由人類解決相對容易,但需要大量時間或經常重復?聯合目標選定是人類很容易將特定目標與預期效果聯系起來的領域,但該過程經常變化并且需要大量人力。在聯合目標選定中,幾個領域將受益于人工智能:武器-目標配對、任務-飛機配對、目標優先級排序、戰場態勢感知、藍軍和紅軍跟蹤、系統節點分析、空襲計劃制定、ATO 開發和目標情報融合。本文AI 示例將側重于武器-目標配對的使用領域。
數據是人工智能需要學習的燃料。每個應用程序所需的數據類型會有所不同,哪些數據對人類認知是必要的是收集的一個很好的起點。單個推測可能會為數據收集提供一個起點,但可能會產生一些錯誤的相關性,同時也會丟失人類不可見的相關性。如果數據中沒有任何已知的相關性,無監督學習可能會在沒有人類直覺的情況下初步確定關系。
在武器-目標模型的例子中,要收集的基本數據是目標、武器和使用環境的特征數據。每種武器所需的一些數據將包括武器殺傷概率 (Pk) 和損壞概率 (Pd)、致命影響半徑、風險估計距離、可靠性率、圓形誤差概率 (CEP)、制導要求和可用性。一些目標特征數據將包括目標類型、大小、數量、分散、硬化、障礙物、機動性、防御能力和反射率。環境數據可能包括區域威脅狀況、光電能見度、紅外能見度、全球定位系統 (GPS) 狀態以及與人員和建筑物距離有關的附帶損害。有些數據很容易獲得,有些數據需要研究或模擬,有些數據可能需要新收集。
數據劃分分為兩個基本類別:觀察數據(輸入)和結果數據(輸出)。如果數據代表目標或環境特征,則為觀測數據。如果數據表示結果,則它是結果數據,例如武器 Pk 或 Pd。接下來,工程師必須按要求清理異常數據,填寫缺失數據,并規范格式。清理和結構化數據通常是一個困難且費力的過程。工程師必須將數據結構化為可用的形式來訓練 AI 模型,而不會犧牲過多的“好”數據。在數據收集、清理和結構化之后,工程師選擇算法以從數據中創建預測模型。
尋找“最佳”算法可能是復雜且耗時的。好的是,數據科學家和工程師對于在每個應用領域中哪種算法更強或更弱都有經驗法則。選擇算法的目標是找到一個在給定觀察數據的情況下最準確、最容易預測正確輸出的算法。考慮算法選擇的簡單方法類似于選擇正弦波、直線或對數曲線(或它們的某種組合)是否可以表示二維繪制的數據。在算法選擇中,如果時間和計算能力允許,可以訓練和測試多種類型的算法。對于示例武器目標問題,神經網絡或最近鄰模型可能是最準確和最可靠的預測器,因此將開發這兩種方法。
神經網絡是鏈接到前一行的神經元的若干系列神經元,這些神經元鏈接到前一行并最終鏈接回輸入數據。訓練調整每個神經元之間鏈接的權重和/或導致神經元觸發的閾值。神經元網絡的一側是前面討論過的輸入(每個獨特的觀察數據類別),而神經網絡的另一側是輸出(每種武器和融合組合的 Pk 或 Pd)。為了訓練神經網絡,神經元最初接收隨機權重,數據通過最小化輸出誤差來調整神經元。圖 5 描述了神經網絡訓練,它將每個預測與已知結果進行比較,然后使用它們之間的誤差來調整神經網絡參數。
圖5:訓練神經網絡
訓練迭代最小化預測和現實之間的誤差。這種迭代調整的方法提供了更高的準確性,但需要一些透明度,并且人類可能難以理解神經網絡權重的含義。
相反,最近鄰是最簡單的機器學習類型之一。在這個武器-目標配對示例中,程序員可以使用它來比較神經網絡的性能。最近鄰模型將目標示例的特征與已知示例的特征進行比較,以確定哪種情況最能代表測試目標特征。這類似于警察如何根據他或她最近的鄰居的隸屬關系來預測個人的幫派隸屬關系。該模型擅長根據之前收集的數據對新病例進行分類。
武器-目標示例的維度可能會增加 10 個維度。每個維度代表一個目標或環境特征,包括:大小、類型、機動性、裝甲、GPS 可用性等。有關高維最近鄰渲染的表示,請參見圖 6。
圖6:最近領表示
一旦算法生成經過訓練的模型,模型就會針對工程師之前從訓練數據中分離出來的數據進行測試(這可以防止模型過度擬合訓練數據)。如果效率相當,工程師會選擇最準確的模型。如果模型產生相似的性能,工程師通常會選擇最有效的模型。訓練完成后,模型可以根據需要重新訓練新數據。人工智能開發是一個持續的過程,運營商和信息保障經理應與工程師一起維護和完善人工智能解決方案。
然后,該模型必須轉化為決策或行動。人類必須決定如何對模型的輸出采取行動。例如,該模型將產生一個分類或可能性,它可以為決策提供 if-then 場景或規則。在武器-目標示例中,模型將為每個武器和目標融合輸出 Pk 或 Pd。適用于模型輸出的有用規則包括相稱性、附帶損害最小化或武器稀缺性。這些規則可以對所需武器進行排序,并限制 AI 建議對每個目標使用核武器(核武器在圖 7 中表示為 1.00 輸出)。
圖7:武器-目標配對神經網絡
此外,人類必須決定授予 AI 的權限級別。如果人工智能準確可靠并且在相對低風險的領域運行,則它可以在沒有人工監督的情況下運行。例如,如果人類僅在 80% 的時間里找到“最佳”決策,那么如果該模型在 95% 的時間里做出“最佳”決策,則人類應該遵循武器目標模型的建議。為了幫助做出這一決策,許多各種類型的人工智能可以用他們的預測來表達置信度。置信度可以表示為測試示例與用于訓練 AI 的數據的接近程度。如果訓練數據不足,或者 AI 不知道如何解釋示例,則置信度可能較低。人類應該將置信度和準確性與人類和其他模型進行比較,以決定授予人工智能多少權限,這可能取決于具體情況。
關于模型何時足夠準確以供使用的決定可能很困難,在訓練場景中讓模型模仿人類可能是明智的,這樣他們就可以評估自己的表現并發現潛在的弱點。決定授予人工智能多少權限應該取決于風險、置信度和時間。領導者應該在低風險領域授權需要速度的決策,同時在不那么緊急的高風險決策時可以暫緩授權——見圖 8。
圖8:考慮風險與時間下的自主級別
戰時評估是收集和理解信息以更新戰爭信念或觀點的行為。評估過程是每個戰爭級別、每個領域的要求,領導者應有意識地努力確保評估過程中提出的建議準確性。Scott Gartner 在 Assessing War 中寫道,使評估變得困難的三個因素包括“戰時信息的積累速度快于戰時分析能力,領導者需要在清楚了解正在發生的事情之前做出決策,以及信息環境包含巨大的不確定性和噪聲。”人工智能可以在速度和大型計算領域為人類提供幫助,例如那些具有挑戰性的評估。目前的評估“反映了準確性和速度之間的權衡”。人工智能可以提高評估速度;但是,它并不能消除信息滯后。由于需要集中評估以及收集和融合數據的要求,總會存在固有的延遲。人工智能增強的評估可以根據數據不斷迭代分析。除了人工智能在速度和準確性方面的幫助外,本節還將討論人類如何利用人工智能來減輕人類在感知和處理數據方面的偏見。
目標評估是一個持續的過程,用于評估實現預期效果的有效性。評估試圖衡量行動產生的影響。但影響往往難以衡量。例如,領導者如何衡量敵人的士氣或戰斗意愿?衡量成功和目標成就需要具體的成功衡量標準。 Scott Gartner 建議定義代表預期效果的主要指標,這些指標更容易識別和衡量,而不是試圖衡量效果本身。
主導指標是可以輕松識別觀察者看不到的模糊的潛在事實和趨勢標志。主要指標側重于戰時績效指標,使用基于時間的定量績效衡量指標來反映組織的任務完成情況。如本文前面所述,人工智能通常優于人類的領域之一是確定數據中的潛在相關性。使用有監督或無監督學習,機器人團隊可以開發出與性能和效果在統計上相關的主導指標。人工智能可以統計顯示哪些變量與目標成就及其重要性水平相關聯,而不是僅僅依靠人類的啟發式、偏見和認知捷徑來確定評估者認為哪些是成功的。 AI 顯示了與數據相關的主要指標,而不是猜測反饋的定量方法。
軍事評估的目的不僅是為決策者提供對作戰進展情況的衡量標準,而且評估的目的還在于創建一個可操作的反饋循環,用于調整對未來作戰的看法、假設和信念。評估關閉了反饋循環。評估在人類決策中至關重要,但可以說在人工智能應用中更為關鍵。反饋是人工智能能夠適應和改進環境變化的唯一途徑。人工智能系統的評估與人類的評估方式非常相似,調整先前的預測,進行學習和適應。
對于人工智能來說,評估的結果應該不斷地反饋到訓練模型中。在武器與目標配對示例中,規劃人員或機器接收針對特定目標使用的武器的炸彈損壞評估 (BDA),并將在適用時更新 Pk 和 Pd 模型。例如,如果模擬顯示特定彈頭能夠穿透硬化結構,但現實顯示不同的結果。人類將觀察返回的 BDA 報告并調整他們對該特定彈頭的使用。在機器學習中,預測和實際損傷比較以及由此產生的誤差會更新模型。通過使用更多 BDA 和高度多樣化的場景迭代訓練模型,模型收斂到更新的事實。
制定適當的成功衡量標準對于人類和人工智能的學習都至關重要。選擇一組指標必須揭示有關環境的信息,并為其收集創造適當的激勵措施。如果指標或關系的權重存在虛假陳述,則可能會出現負面訓練。這種負面訓練可能導致人工智能或人類感知永遠不會與現實融合。由于這些原因,人類必須創造明確的目標;操作基準必須將總體目標與可確定的有效性度量 (MOE) 聯系起來。 MOE 與績效衡量標準 (MOP) 相關聯。此外,人類應不斷評估人工智能預測的準確性,并在必要時提供再訓練。在組織內工作的 AI 專家能夠及時調整模型和再訓練,塑造對成功至關重要的學習。評估必須不斷完善人類和人工智能認知,以適應環境。如果領導者尋求不正確的成功衡量標準,人類和機器都會優化不正確的行為。
越南戰爭中的目標設定和評估無效的一個例子很明顯。美國領導層制定了敵人“人數”的作戰基準。領導人認為,如果越共和北越無法彌補他們在戰場上的損失,南越將會穩定下來。威斯特摩蘭將軍后來強調了這一指標的不足之處,他說:“誠然,“人數”統計是衡量進展的不完美標準,但在沒有常規前線的情況下,我們還能如何衡量成功?”在強調人數的重要性,領導層誤解了越南的真實情況。此外,在試圖將下屬的信息拉向人數的操作基準時,他們向下屬提供了有害的激勵措施。士兵和領導人錯誤地夸大了人數,試圖最大限度地增加人數會導致非法和不道德的行為。本案例研究強調了目標、操作基準、MOE 和 MOP 對人類和 AI 行為的重要性。當使用不正確的措施和目標時,可能會在訓練中強化不良行為。
人類本能地從有時難以解釋的觀察中得出結論。人類也傾向于吸收傳入的信息以適應現有的信念和期望。由于神經元串行處理速度的限制,認知捷徑和啟發式方法對于人類快速做出決策是必要的。大腦通過基于先前學習對當前經驗進行分類和關聯來做到這一點。數據的自動處理、過濾和分類使大腦整體能力更強;然而,這些捷徑也可能導致誤導性評估。這種過濾和偏差發生在較低級別,例如模式識別以及高級分析和評估中。當人們只看數據本身時,既存的信念在面對意想不到的新信息時具有持久力。人類必須承認這把雙刃劍,并利用它來發揮自己的優勢,同時減輕自己的弱點。人類不應該試圖修復、升級甚至根除使我們成為人類的東西;相反,我們應該設計技術來補充我們的能力和局限性。領導者應該尋找人類認知薄弱、不準確或緩慢的領域來進行人工智能的初始實施,同時在依賴創新、獨創性和創造力的領域將主導地位讓給人類。
偏見決策不僅限于人類;人工智能也不能幸免于這些來自現實的扭曲。偏見可能會通過訓練中使用的數據、算法和結構或通過實施來影響 AI。每年都有偏見 AI 的例子,而現實是 AI 僅根據其編程和訓練來做出決策和采取行動——專家稱之為“算法偏見”。算法偏見的例子包括無法檢測到黑人女性的面部識別程序、向女性展示較少高薪工作的廣告、預計少數民族男性的累犯率增加以及“種族主義推特機器人”Tay。用于訓練 AI 模型的數據必須沒有不良偏見,否則 AI 可能會產生不良行為。
人工智能可以為評估提供更大的客觀性。在備選方案之間做出決定的過程可能很繁瑣;它“為重新考慮設置了強大的障礙,即使新信息對最初選擇的有效性產生懷疑。因此,決策者不是重新審視最初的選擇,而是貶低、曲解或忽略與該選擇有關的新信息。” “決策者具有強大的組織目標或自身利益可能會忽略或最小化與這些利益沖突的傳入信息,并突出顯示支持 . . .以我們可能不認識的方式對我們對數據的解釋進行著色。”評估是人工智能實施的另一個成熟領域,因為數據量很大,而且人類偏見可能會扭曲認知。人類應該利用人工智能來增強戰時評估實踐,使其更全面、更快、更客觀。
一旦我們創建和訓練了 AI 模型,我們的工作就沒有完成;最終的成敗在于實施細節。透明度和控制是在任何 AI 系統中建立信任的要求。此外,任何解決方案的人機界面和無縫集成都將成為成功實施的基石。國防戰略承認這一挑戰,并指出:“成功不再屬于首先開發新技術的國家,而是屬于更好地整合新技術并適應其戰斗方式的國家。”人類操作員可能會采用人工智能解決方案只有當它們值得信賴并提供無縫且有用的界面時。本文中推薦的實施不太可能很快發生,它們也不夠詳細,無法在今天直接實現。美國必須將研究、人員配備和資金投入到深思熟慮的實施過程中。使用敏捷開發方法,通過分解問題的各個部分,并隨著時間的推移產生小的勝利,成功的實施和改變是可能的。
美國不能在一次浪潮中或完全使用現成的解決方案來實施一個大型的“人工智能解決方案”。由于應用程序規模、環境復雜性和組織對變革的抵制,試圖開發一種廣泛適用的“解決方案”將是一項不可能完成的任務。對現有流程的迭代改進將推動增量變化,建立信任,并隨著時間的推移導致進一步的發展。
隨著時間的推移,建立信任并引導進一步的發展。在與教授未來 AOC 專家和新 AOC 部門領導的數十位學者和專家的對話中,大多數教師對短期內有意義的人工智能集成表示了相當大的懷疑。每個人都看到了這篇論文的必要性;然而,專家們很快在鼓勵之后發表評論,詳細說明由于依賴當前的“做事方式”和所需的應用范圍,它幾乎沒有實施的機會。教條式的循環很難打破,它們通常需要外部沖擊來突出變革的必要性。人們并不認為 AOC 目前已經“崩潰”,本文也沒有暗示這一點。然而,正如前幾節所述,美國未能保持“相關速度”和認知敏捷性存在危險。 本文的目的是試圖幫助調整國防部文化并確保追求下一個針對任何潛在對手的不對稱超越。
組織和國家堅持他們歷來重視的技術和實踐,以及那些支撐他們當前優勢的技術和實踐。大多數專家同意,空中力量的 C2 在打當今戰爭方面是有效的,但在實現政治目標方面往往效率低下。通常,領導者會在選擇目標的同時選擇實現目標策略。此外,領導者將注意力集中在漸進的“創可貼(Band-Aid)”修復上,而不是尋找可能導致最佳結果的總體公式。最終的問題是:
1.AOC 能否在明天的戰爭中面對近乎同等的對手時進行有效的控制?
2.當前和未來的大趨勢是否會使當前的空中力量 C2 手段和方式過時?
3.是否會出現巨大的失敗來強調向更智能的 C2 轉變的必要性?
我們當前的范式、官僚主義和組織動力所造成的抑制是技術發展和創新中最重要的障礙。理想情況下,更新空中力量的 C2 將利用現代理論和可用技術來全面開發最佳 C2 結構。然而,人們對全面的 C2 大修并沒有興趣,最有可能成功的機會是逐步開發和應用人工智能解決方案,隨著時間的推移建立能力和信任。
控制、職能、流程、結構、人員配備和領導角色的平衡可能會隨著時間的推移在人工智能實施中進行調整。當前的任務機制:計劃、任務、執行和評估,可能仍然適用;但是,監督這些機制的組織和方法可能會發生變化。隨著人工智能解決方案的適應性開發和實施,領導者將能夠測試和運行系統,并通過漸進式變化觀察其影響。測試和演習應包含完整版本的作戰結構,以突出潛在的不足和需要改進的領域。有效的 AI 需要大量數據,而這些數據可能不會出現在小型測試或演練中。如果未來的戰爭需要在多個領域快速適應 C2,美國必須以這種心態開發結構、部隊、流程、測試和訓練。人工智能將補充和自動化某些領域的員工密集型工作,同時創造其他領域不存在的潛力。某些感知、分析、傳播和決策方法對于當今的工作人員和機組人員來說將變得陌生。
C2 和 AI 專家無法準確預測他們未來將如何以及在何處使用 AI;然而,對實施過程的有根據的猜測是觸手可及的。為在空中力量 C2 中成功部署人工智能,建議采取以下七個步驟:
1.領導者必須確保制定和分發從數據收集到人類或人工智能行動的架構、透明度、安全和通信標準。
2.聯合部隊必須為人工智能的開發、測試和演練開發孵化器。聯合部隊必須為這些試驗臺提供足夠的資源,并提供迭代開發和改進跨任務集和戰爭級別的人工智能解決方案所需的訪問權限。
3.孵化器一旦開發出人工智能解決方案,就必須在模擬中對其進行測試。兵棋推演必須充分模仿資產行為并復制現實世界。模擬允許在批準用于實際使用之前在良性和安全的環境中進行新的 AI 測試。
4.聯合部隊必須在演習中測試人工智能,然后才能獲準參戰。從戰術到作戰層面進行的演練提供了微調認知和行為的能力,以及開發和評估作業策略、技術和程序的能力。采用新技術時,人類的迭代適應和性能改進的相同理論也適用于人工智能的使用。改善 AI 行為的兩個示例方法包括:a.最初跟隨人類決策者并從他們的行為和決策中學習。在向人類決策者進行初步學習后,人工智能可以通過未來的自我學習繼續改進,而不會受到人類的影響。或 b.通過在對抗性學習或強化學習環境中對幾代 AI 模型的行為進行自我訓練,迭代地改進 AI 決策,然后將性能與人類行為者進行比較。在訓練過程中,人類應該在表現出可取或不受歡迎的行為時提供輕微干涉。
5.與人類和其他人工智能相比,AI一旦表現出卓越的性能,就可以選擇使用AI。每個應用領域所需的性能水平會有所不同,包括置信、時間和風險等因素(參見圖 8)。如果滿足以下條件,人工智能認證應批準人工智能作業:a. AI 已達到所需的性能水平。b. AI符合安全要求,遵守適用的交戰規則和國際武裝沖突法。 c. AI 滿足安全要求,包括對所需數據的訪問、所需的機密性以及數據和信息流的完整性保證。 d. AI 可以與所需的實體進行通信。 e.如果需要,人工智能可以由人類控制。
6.當聯合部隊使用人工智能時,他們應該尋找相鄰的使用領域,以補充和擴大自動化,增強有效性和效率。人工智能解決方案的增量實施將通過協同效應獲得效率和性能,通常稱為飛輪效應。
7.聯合 C2 的組成、組織、流程和速度將在人工智能的實施過程中不可避免地發生變化。領導者及其員工將負責調整流程、組織結構和訓練,以獲得人工智能的利益。
在人工智能增強的戰斗中,聯合空中力量 C2 的領導力無疑會有所不同。人類可能會花更多時間在評估、分析和決策上。隨著機器快速清理和構建大量數據,人類決策者可以將更多時間投入到人類擅長的事情上——在作戰“藝術”中發揮創造力,做出負責任的決策,并為棘手的問題集帶來獨創性。任何將人類決策注入人工智能繁重的周期都將不可避免地減慢這一過程。然而,人類可以在決策循環中提供顯著的風險緩解和監督。在決定何時何地需要人工決策時,領導者必須評估風險接受度、對 AI 的信任、AI 置信度、成本、時間限制、戰略影響和潛在的意外影響。隨著人工智能的發展和廣泛實施,失敗的機會越來越多。錯誤和硬件故障的機會隨著復雜性的增加而增加。未來可能繼續需要某種程度的人機交互。戰爭的本質仍將是以人為中心的努力。反復出現的管理和維護挑戰放大了對決策者和工程監督的要求。主題專家、工程師、信息經理和決策者應該從開始到部署齊頭并進。
在將控制權交給人工智能之前,信任是任何系統的要求。人工智能的大多數當前應用程序執行相對良性的功能,無需做出生死決策。人工智能在 C2 中的初始應用也應該在能力和過程最容易理解的領域和低風險領域。隨著時間的推移,應用領域可能會增加;然而,人類在信任人工智能合作伙伴之前需要透明度、控制力和可信度。
人工智能和自動化通過小小的勝利建立信任。低風險領域的逐步實施將表明人工智能是有能力的。例如,人類對將日常通勤中的權力委托給人工智能持懷疑態度,因為高速駕駛是一項冒險的嘗試;然而,數十萬人在日常通勤中信任特斯拉汽車。隨著時間的推移,人類通過其展示的能力變得舒適和信任。多年來,人工智能已經建立了控制車輛的能力。最初,圖像識別展示了識別物體的能力,例如標志、人、汽車和畫線。深度感知和自由空間算法發現了在環境的實時表示中顯示可駕駛區域的能力。最后,將多種形式的人工智能融合到駕駛解決方案中,超過了普通人類駕駛員。特斯拉通過可信度和展示能力建立了對其人工智能的信任。
透明度還通過可追溯性、理解和驗證來促進信任。在中高風險應用程序中實施的人工智能必須能夠顯示基本假設并追蹤得出結論的方法。跟蹤從輸入到輸出的決策過程的能力產生可解釋,這在學習系統中有時很棘手。生命未來研究所在 2017 年發布了 23 條人工智能原則,并得到了數千名領先的人工智能專家的認可,強調了透明度和安全性問題。該研究所強調“故障透明度”和“司法透明度”是未來人工智能發展的兩個要求。簡而言之,人工智能必須能夠顯示系統出現故障的原因,并就其做出具體決策的原因向人類提供令人滿意的解釋。透明度是系統設計期間的要求。
控制不會產生信任,但缺乏控制會迅速破壞以前存在的任何信任。人類感知人工智能的行為和意圖,然后能夠指導或改變任何系統行為的能力至關重要。如果策略、戰略或目標發生變化,領導者必須能夠調整行為。此外,如果人工智能表現出不正當的意圖或表現不佳,人類必須能夠超越其行為。盡管系統沒有按要求運行,但一旦識別出危險情況,人類必須能夠進行控制。透明是控制的要求,控制是信任的要求。
如前幾節所述,兵棋推演和模擬有助于訓練 AI。現實世界的事件和過去的行動結果可以調整人工智能的行為,但這只能通過特定的現實世界例子來教人工智能。如果一個場景過去沒有發生過,那么人工智能將沒有準備好在未來處理它。人工智能需要能夠模擬以前沒有收集數據的場景,以概括其學習并更好地填補存在的空白。許多類型的 AI 都需要模擬環境來測試相關場景或可能發生的場景,但在現實世界中進行測試是不切實際的。通過在模擬世界中作業項目、參數和動作,人工智能可以比現實世界更快地觀察效果并強化適當的行為數量級。
靈活的自主性是指系統在有或沒有人的情況下運行的能力。靈活的自主性最初可以提供 AI 實施,一套“訓練輪”,直到最終系統驗證發生。在最初的 AI 應用期間,人類可能會選擇將很少的權限讓給 AI。然后,隨著人工智能學習行為和優化,人工智能可以接管越來越多的任務。靈活自主是一種隱喻的在線訓練。自主性可以從人的身影轉移到人進回路中,再到人在回路中,最后如果需要的話,再到人出回路中。
人的參與程度也會隨著風險或在具有挑戰性的情況下發生變化。圖 8 顯示了授權給 AI 的權限數量與時間和風險的關系。使用不同級別控制的人工智能在風險變化的領域是有益的。此外,與人類合作的人工智能可能需要在有爭議的領域或敵人試圖拒絕通信或訪問的領域更加自主地運行。在這些環境中,靈活自主可以提供人類監督的能力,直到它被拒絕,此時人工智能就像訓練有素的一樣,直到重新與人類控制器通信或完成任務。
由于對數據和控制的要求,人工智能的實施似乎意味著背離分布式執行。權力下放仍將是空中力量的基本原則。由于不確定性、摩擦、變化、通信限制和模糊性,分布式執行是一項要求。權力下放使機組人員能夠掌握主動權,對不確定和不斷變化的環境做出反應,并訓練下級指揮官的靈活性。由于人工智能的實施,空中力量執行的最重要的直接變化是需要增加數據收集。如前所述,數據是 AI 學習和性能的基本要求。如果沒有足夠的數據收集,人工智能就無法準確感知環境并做出決策。未來的領導層可能會強調整個空中業務級別的數據收集和及時報告要求,以確保反饋循環穩健。指揮官必須向操作員清楚地表達意圖并協助他們分布式執行,為他們提供適當的工具和態勢感知來根據意圖執行。操作員應向其指揮官提供及時準確的真實數據和可靠準確的執行,以換取下放的執行權限。
空中力量的 C2 需要進行技術改造,以便在未來的戰爭中有效地投射空中力量。歷史表明,那些適應太慢或未能預見關鍵支點的人將遭受失敗甚至滅絕。世界正處于對人工智能巨大力量和指數級增長的開始階段。人工智能的創新解決方案可以將空中力量的 C2 帶入 21 世紀。通過建立能夠超越對手的系統和決策過程,美國可以保持在空中力量使用方面的主導地位。通過在多個領域為我們的對手制造多重困境,我們可以指揮戰斗——領先一步,朝著我們選擇的方向前進。
開發人工智能解決方案的第一步是確定潛在的實施領域。作者選擇討論聯合目標選定中的 AI 示例,但僅空中力量 C2 就有很多增強和自動化的領域。確定應用領域后,收集相關數據。人工智能需要數據來了解環境并創建簡化的模型來進行預測。如果數據不可用,可能需要部署傳感器并尋求其他方法來收集數據。然后,數據科學家和工程師對數據進行過濾、清理和結構化,以滿足 AI 開發驅動的情境需求。所需數據的收集及其清理通常是 AI 開發中的大部分工作。
收集相關數據后,算法選擇和訓練創建模型來解釋現實。有無數種算法和結構,沒有一個“千篇一律”的解決方案可以解決每個問題。反復試驗、訓練和比較模型將不斷地顯示出問題及其解決方案的最佳方法。一旦選擇了最準確和最有效的算法,就可以開始起草確定性規則,并訓練模型。領導者必須確定他們將如何使用 AI 的輸出以及控制級別。風險、時間和置信度都會影響委托給 AI 的自動化水平。
人工智能已經在企業界建立了強大的立足點,但空中力量幾乎沒有任何重要的人工智能應用的例子。為了在國際安全領域保持優勢,美國必須發現和開發創新的人工智能解決方案。俄羅斯和中國正在加大對人工智能作為一項戰略技術的投資,尋求“在人工智能發展的國際競爭新階段搶占戰略主動權,創造新的競爭優勢。”通過利用人工智能和自主性的進步,美國可以恢復其與潛在對手的日益減弱的優勢并加強威懾力。現代戰爭的復雜性和速度已經超過了我們的 C2 能力。擁有信息優勢的一方將決定未來戰爭的結果,并能夠通過高速決策做出即時反應,同時為敵手制造復雜而同時出現的困境。這種未來的能力遠未得到保證。美國必須努力保證這種由人工智能自主和增強實現的敏捷性超越。
人工智能領域的進展繼續擴大這組技術的潛在軍事應用范圍。本文探討了信任在人機聯合作戰中的關鍵作用,以及依靠人工智能來補充人類認知的潛在影響。如果依靠人工智能來準確處理傳感器數據,操作自主系統和平臺,或通過擬議的作戰概念(如以決策為中心的戰爭)提供有利的決策支持,設想機器智能的中央指揮和控制作用,那么信任機器智能將是未來作戰中的一個關鍵組成部分。鑒于這些技術和理論的發展,信任的概念對于機器智能在戰術和作戰層面的軍事行動中的使用變得高度相關,正確校準的信任水平是安全和有效行動的基礎。在簡要回顧了機器智能的最新進展和對信任概念的探索之后,本文概述了人工智能在戰場上的當前和潛在應用,以及由不充分或不合理的高信任度帶來的挑戰。
縱觀歷史,技術已經擴大了武裝沖突的領域,戰術交戰的節奏,戰場的地理范圍,以及指揮官與部隊溝通的手段。技術創新--包括軍事和民用--改變了軍隊的作戰方式以及國家計劃和進行這些沖突的方式。在21世紀,迄今為止,很少有進步能像統稱為人工智能(AI)的一組技術那樣獲得如此多的關注。人工智能正準備迎來一個新的時代,在這個時代,機器智能和自主性正在為軍事行動的規劃和執行產生明顯的新概念。算法戰爭可能會帶來一些獨特的東西:增強甚至取代人類決策過程的系統,其速度可能超過人類規劃者的認知能力。
新興技術的整合提出了任何數量的基本組織和倫理問題,值得關注。本文將采用定性的社會科學方法,重點討論人類-自治團隊(HAT)的一個重要方面:鼓勵對機器智能的適當信任程度。有大量的學術文獻關注自動化或機器人技術中的信任問題,但有關具體軍事應用的工作較少。當人工智能在聯合作戰中被實際部署時,在信任方面有哪些挑戰和機會?在簡要回顧人工智能和概述機器智能在戰場上的可能應用之后,本文在分析鼓勵適當信任水平的陷阱和潛在解決方案之前,探討了信任和信任校準的概念。
幾十年來,人類一直對賦予機器某種形式的人工智能的可能性著迷,Nils Nilsson將其定義為 "致力于使機器智能化的活動,而智能是使一個實體在其環境中適當運作并具有預見性的品質"。在數字時代的早期,出現了兩種廣泛的人工智能方法。自上而下的專家系統方法使用復雜的預編程規則和邏輯推理來分析一個特定的數據集。對于具有可預測規則的明確定義的環境--諸如分析實驗室結果或下棋等應用--專家系統或 "符號 "人工智能(基于符號邏輯)的性能主要取決于處理速度和算法的質量。另一大類使用自下而上的機器學習方法,模擬人類通過檢測數據中的模式進行學習的方式。神經網絡是一種以人腦為模型的機器學習形式,能夠通過使用多個(因此是 "深")人工神經元層來識別復雜的模式,是被稱為 "深度學習 "的技術的基礎。通過其在數據集中尋找關系的能力,這種技術也被稱為 "連接主義"。
自上而下、基于規則的符號系統和自下而上的機器學習連接主義技術之間的差異是很大的,特別是關于它們的潛在應用范圍和靈活性。深度學習方法的顯著特點是能夠將學習與它所訓練的數據集分開,因此可以應用于其他問題。基于規則的算法可以在狹義的任務中表現得非常好,而深度學習方法能夠迅速找到模式,并在 "蠻力 "專家系統計算方法無效的情況下有效地自學應用。最近的一些人工智能進展顯示了模仿創造力的能力,產生了有效的解決問題的方法,這些方法對人類來說可能是反直覺的。
然而,總的來說,人工智能仍然是狹窄的或 "脆弱的",即它們在特定的應用中功能良好,但在用于其他應用時仍然不靈活。與人類的認知相比,鑒于機器的計算速度遠遠超過人腦,機器智能在將邏輯規則應用于數據集時要優越得多,但在嘗試歸納推理時,它必須對數據集或環境進行一般性的觀察,這就顯得不足。大多數機器學習仍然需要大量的訓練數據集,盡管新的方法(包括生成對抗網絡(GAN)和 "小于一次 "或LO-shot學習)正在出現,需要非常小的數據集。圖像識別算法很容易被混淆,不能像人類那樣立即或直觀地理解情景背景。這種脆性也延伸到了其他問題,比如游戲。雖然人工智能在視頻游戲中經常表現出超人的能力,但他們往往不能將這種專業知識轉移到具有類似規則或玩法的新游戲中。
雖然人工智能技術繼續在變得更加適應方面取得重大進展,但任何接近人類的人工通用智能仍然難以實現。評估人工智能的近期前景因該技術的漸進式進展而變得更加復雜。圍繞著人工智能的炒作--在很大程度上被深度學習方法的成功所推動--既導致了對該技術未來的不切實際的期望,也導致了對其非常大的進展的正常化。正如一份報告所指出的,"人工智能將一項新技術帶入普通人的視野,人們對這項技術習以為常,它不再被認為是人工智能,而出現了更新的技術"。盡管象征性的人工智能和各種形式的機器學習構成了該領域最近的大部分進展,也許除了融合這兩種方法的嘗試之外,未來仍然不確定。一些人猜測,機器學習技術帶來的進展可能會趨于平穩,而另一些人則保持樂觀。相關的技術進步,如短期內的計算機芯片設計和長期內的量子計算,可能會影響進一步進展的速度。
?美國國防部已經可以開始應用其現有的國際科技協議、全球科學網絡以及在多邊機構中的作用來促進數字國防合作。本報告將這些選項集合構建為軍事人工智能合作工具箱,可為調整政策、推進研究、開發和測試以及連接人員提供了有價值的途徑。
美國將人工智能 (AI) 的領導地位視為提升其在國際體系中的戰略地位和保持其未來軍事優勢的關鍵。美國的盟友和伙伴網絡是服務于這些目標的不對稱資產,正如旨在讓美國為當前戰略競爭時代做好準備的國家安全和國防政策所確認的那樣。
最值得注意的是,美國國防部 (DOD) 人工智能戰略中宣布的關鍵舉措和國家安全委員會關于人工智能的建議表明了國際參與對人工智能安全、安保、互操作性和與民主價值觀保持一致的重要性。
簡而言之,人們一致認為,加強聯盟和伙伴關系很重要,不僅因為美國在聯盟中行動,而且因為俄羅斯等經常單獨行動。由于技術加速如何推動軍事進步、刺激經濟增長和塑造21世紀的治理模式,人工智能和其他新興技術是與這些近乎同等競爭對手競爭的核心。如果不深化與盟友和伙伴的合作,美國既無法應對大國帶來的挑戰,也無法從塑造人工智能的民主軌跡中獲益。
在此背景下,本報告重點關注通過基于可互操作部隊和尖端技術的強大軍事關系,維護美國及其伙伴和盟國網絡相對于潛在對手的優勢的必要性。國防部已經擁有多種工具可用于深化與其盟國和國際安全伙伴的科技(S&T)合作。但為了充分利用它們在人工智能方面的潛力,該部門需要重新設想并更好地整合它們。
為此,此處的分析將現有的國防科技協議、軍事科技交流和多邊機構的要素構建為軍事人工智能合作工具箱。這項工作不僅僅是為人工智能能力開發集中資源,還包括政策調整;測試、評估、確認和驗證 (TEVV) 管道;研發(R&D)、人員交流;數據共享;和標準化。這里的目的不是提出新的協議,而是回答國防部如何利用其現有的科技合作機制來支持數字時代的軍事合作,確保相關資源和框架在尋求人工智能領導力和未來時不會被利用聯軍成功。
雖然應該承認挑戰,包括圍繞數據交換的敏感性和對技術政策的不同政策觀點,但隨著時間的推移,它們也可以成為合作以減輕這些障礙的動力。換言之,現有工具有助于在政治信任、凝聚力和互操作性方面獲得更多支持,從而使合作有助于應對數字威權主義和技術驅動的國際安全環境變化的共同挑戰。 主要發現是:
雖然軍事人工智能合作的某些方面可能需要新的投資、機制和協議,但這不應該排除現有工具可以用于新用途的多種方式。軍事人工智能合作工具箱之所以有吸引力,正是因為它可以在短期內啟動,滿足與盟友和伙伴盡早建立互操作性和推進人工智能的緊迫性。
?世界各地的軍隊正在根據戰爭的發展開發、集成和使用機器人和自主系統 (RAS)。需要進一步思考這一過程在荷蘭境內發生的條件以及可能產生的挑戰和影響。HCSS 項目“軍事背景下的 RAS”試圖為這一討論做出貢獻。
在兩年的時間里,該項目產生了五篇公共研究論文,涵蓋了與在軍事背景下實施 RAS 相關的一系列主題。這些研究論文涵蓋了軍事適用性、倫理考慮、法律論述、合作要求以及 RAS 在軍事環境中的實施。所有論文都合并在此報告中,包括簡要總結分析的綜合報告和一系列六份情況說明書。 研究方法側重于獲取從業人員、研究人員、倫理學家、法律專家、行業專業人士、技術人員、民間社會組織、軍事人員和國防界其他成員的專業知識。這樣做不僅能夠收集對主題的多方面理解,而且還能將這些利益相關者獨特地聯系在一起,并促進他們之間具有挑戰性的討論。在項目過程中,與不同的咨詢委員會成員舉行了五次會議,指導了研究軌跡,并為其立場文件和研究論文草稿提供了寶貴的意見。還收集了來自 200 多名利益相關者的專業知識,參加了六場專家會議,其中涉及各種方法,包括基于場景的討論、設計會議、
次要目標是為公眾辯論提供信息,并在抵制流行的“殺手機器人”觀念的軍事背景下就 RAS 進行更細致的對話。為此,舉辦了關于 RAS 的道德困境的公開研討會,與 BNR Nieuwsradio 合作發布了五個 De Strateeg 播客,組織了會議和圓桌會議,并于 2021 年 2 月發布了一部 18 分鐘的紀錄片。
引 言
2019 年 12 月,普京在俄羅斯國防部董事會會議上發表講話時表示,“機器人系統和無人機正在被嚴格引入并用于戰斗訓練,這極大地提高了武裝部隊的能力。”幾個月后,俄羅斯國防部宣布了一項價值約 420 萬歐元的封閉招標,旨在“研究為新一代人工智能軍事系統創建神經網絡開發、訓練和實施的實驗模型”。雖然中國在公開場合遠沒有那么自夸,但他們的軍事優勢戰略是由人工智能和自動化的發展引領的,這導致一些分析人士認為,解放軍的目標是通過系統沖突和高度智能化的戰爭來主導。
這些觀點意味著一個更大的現象。世界各地的軍隊正在根據戰爭的第四次演變開發、整合和使用機器人和自主系統,需要進一步思考在荷蘭境內進行這一過程的條件以及可能出現的挑戰和影響作為結果。
HCSS 項目“軍事背景下的 RAS”試圖為這一討論做出貢獻。在兩年的時間里,該項目產生了五篇公共研究論文,涵蓋了與在軍事背景下實施 RAS 相關的一系列主題。該綜合將這些主題聯系在一起,并展示了該項目最相關的發現。下面總結了 HCSS 研究對道德要求、法律話語、合作伙伴合作、實施和概念開發和實驗的觀察,然后是關于 RAS 的軍事適用性的初級部分。
RAS的軍事適用性
機器人和自主系統 (RAS) 在軍事環境中提供了大量、重要且影響深遠的機會。為了觀察這些系統在這種情況下的適用方式并評估它們的效用,需要解決一些定義和概念:
1 自主性:人類賦予系統執行給定任務的獨立程度。根據系統自身的態勢感知(綜合感知、感知、分析)、規劃和決策,實現分配任務是自治的條件或質量。自主性是指一系列自動化,其中可以針對特定任務、風險水平和人機協作程度定制獨立決策。自主級別可以包括遠程控制(非自主)、操作員協助、部分自動化、條件自動化、高度自動化或完全自動化。
2 機器人:能夠通過直接的人工控制、計算機控制或兩者兼而有之來執行一組動作的動力機器。它至少由平臺、軟件和電源組成
3 機器人和自主系統 (RAS):RAS 是學術界和科學技術 (S&T) 社區公認的術語,強調這些系統的物理(機器人)和認知(自主)方面。RAS 是一個框架,用于描述具有機器人元素和自主元素的系統。值得注意的是,RAS 的每個連續部分都涵蓋了廣泛的范圍。“系統”部分指的是廣泛(在我們的例子中為軍事)應用領域的各種物理系統。在計算機或網絡上運行的自動化軟件系統,包括“機器人”,即無需人工干預即可執行命令的軟件,不符合 RAS 的條件,因為它們缺少物理組件。“機器人”部分,指的是系統的物理布局,認為系統是無人或無人居住的。所有其他物理方面(大小、形式,無論是飛行、漂浮還是滾動等)都保持打開狀態。
4 致命自主武器系統 (LAWS):一種武器,在沒有人為干預的情況下,根據人為部署武器的決定,在沒有人為干預的情況下選擇和攻擊符合某些預定義標準的目標,因為攻擊一旦發動,人為干預就無法阻止。
5 有意義的人類控制(MHC):MHC 包括(至少)以下三個要素:(1)人們就武器的使用做出知情、有意識的決定;(2) 人們被充分告知,以確保在他們對目標、武器和使用武器的背景所了解的范圍內,使用武力符合國際法;(3) 所討論的武器是在現實的操作環境中設計和測試的,并且相關人員已經接受了足夠的培訓,以便以負責任的方式使用武器。MHC 是一個復雜的概念,在許多情況下,上述描述并不是決定性的。荷蘭官方的立場是,“所有武器,包括自主武器,都必須保持在有意義的人類控制之下。”
“殺手機器人”的言論已將公眾對軍事環境中機器人和自主系統的看法縮小為完全關于高度或完全自主系統使用致命武力的觀點。實際上,RAS 可應用于眾多軍事功能和任務,每個功能具有不同程度的自主性(見下圖)。機器人和自主系統的廣泛軍事適用性產生了無數和巨大的機會。未來幾年的挑戰是充分利用這些機會,發揮軍事優勢的潛力,同時降低所帶來的風險。
在這些功能中實施 RAS 會帶來重大挑戰,但也預示著軍隊將面臨更有效、更高效和更敏捷的新機遇。可以根據這些類別評估 RAS 繼續改進/再改進國防領域的潛力。
速度。在促進快速決策和威脅優先級排序的人工智能的幫助下,RAS 已經能夠超越人類的反應時間并縮短 OODA(觀察、定位、決定、行動)循環。
可靠性。將任務委派給機器需要高度的信任,但到目前為止,RAS 還不能證明在所有軍事應用領域都有足夠的可靠性。然而,我們對這些系統的信心將會增加,因為它們證明了它們在執行特定任務時的可靠性和有效性。
準確性。人工智能系統的面部圖像識別和感官能力已經超過了人類的表現水平,盡管無人系統比人類操作員更精確的說法受到廣泛爭議。
大規模效應。由于射程和耐力的增加,RAS 有能力增強對戰場的覆蓋范圍并壓倒對手。這種潛力的最好例子是“蜂擁而至”。
可達性。RAS 極大地增強了監視、情報、偵察和武器系統的可用存在點。
穩健性。在短期內,由于惡劣的天氣和任務的變化等意外條件,RAS 將比人類更容易失敗。這種脆弱性延伸到虛擬域:由于連接丟失、黑客攻擊和其他干擾可能導致系統無法運行。
安全。RAS 可以執行“枯燥、危險和骯臟”的任務,以便人類可以專注于更專業的任務并遠離火線。
成本。盡管最先進技術的獨家使用權將保留給最富有的玩家,但現在被認為是高度先進的系統的成本將在未來 20 年內下降,從而變得更加普及。
維護。考慮到系統的復雜性和涉及的多個(外部)合作伙伴,更新和升級 RAS 軟件和硬件可能會更加困難。
時間效率。RAS 可以 24/7 全天候高標準執行乏味且重復性的監控任務,無需休息,高效解決后勤規劃,快速超越人工多任務處理的極限。
靈活性。盡管 RAS 目前在執行特定任務方面表現出色,但在可預見的未來,人類仍將是最靈活的。隨著開發人員繼續創新當前系統,這種動態可能會發生變化。
適應性。RAS 具有高度自適應性,并且隨著時間的推移在系統生命周期(擴展、擴展、升級等)期間易于重新配置,以便跟上動態環境中出現的新要求。
外部合法性。因此,軍方與 RAS 的接觸必須在他們(可能)提供的先進能力與其所服務的社會的價值觀和規范之間取得平衡。
內部合法性。RAS 的信任和組織規范化將隨著時間的推移而得到加強。隨著對系統的理解、可預測性和熟悉度的提高,它們在組織內的合法性將得到鞏固。
許多國家認識到這種潛力并意識到需要在瞬息萬變的國際舞臺上具有軍事競爭力,因此將 RAS 用作其武裝部隊的一部分(圖 2)。然而,盡管有明顯的機會,但在軍事環境中實施 RAS 并非易事。許多實際和理論挑戰阻礙了實施過程,需要政策制定者、創新者、研究人員、國防界和民間社會成員之間的討論,在許多情況下,這些挑戰考驗著我們賴以監管、開發、獲取、整合和使用其他軍事技術。為了分析這些挑戰,重要的是確定 RAS 系統生命周期的三個階段:開發、集成和使用(圖 3)。下一節總結了在 HCSS RAS 項目期間探索和分析的理論考慮(道德和法律)和實際考慮(私營部門合作和概念試驗與開發)。
RAS的開發是一個硬件和軟件設計和生產的動態過程,在后期根據系統測試、集成、監控和使用的結果不斷地重新審視。RAS的設計和開發需要國防部門和私營部門之間更深入的互動與合作。因此,私營部門在塑造 RAS 生命周期的發展階段和解決與該階段相關的理論和實踐考慮方面發揮著關鍵作用。
這一階段涉及 RAS 的組織嵌入,由此與系統開發者/生產者的關系發生變化,新的參與者(例如實際的軍事最終用戶)出現或獲得更主導的角色。在這個階段,“交接”變化的性質引發了關于不同參與者角色的新問題。
在作戰環境中使用 RAS 會影響軍隊的工作方式、與誰合作以及在什么條件下工作。這是因為相關系統的更大自主性促使操作員和指揮官以“更高的抽象層次”與系統進行交互。除了部署之外,這個階段還包括RAS的維護和服務。
結 論
機器人和自主系統代表了軍事領域的轉變。它們提供了顯著的軍事能力,以擴大軍事行動的質量、范圍、效率和安全性,并正在改變我們現在和未來對抗沖突的方式。RAS 功能正在實施,不僅是荷蘭武裝部隊,還有我們的潛在對手。技術、運營、法律和道德問題,以及這種新興技術的潛在擴散是復雜且相對較新的。
隨著新發展的出現和在運營使用過程中獲得經驗,我們概念化、設計、建造和運營 RAS 的方式將需要反復重新考慮。這也意味著需要不斷的知識開發、概念開發和實驗。為了充分了解 RAS 的潛力及其作為軍事工具箱中重要戰略工具的要求,必須在操作環境中進行實際測試。
要讓行業充分參與這些市場,在這個快速發展的領域中共同開發和共同試驗需要不同的思維方式。在產品完全成熟并且操作使用表明它們被充分理解和可預測之前,RAS 將需要通過短周期創新過程進行不斷調整。
在軍事背景下開發和實施 RAS 將需要持續關注、創造性的大局思維以及與利益相關者(包括政策制定者、學者、倫理學家、律師、行業專業人士、技術人員、民間社會和國防界)的強大合作網絡。