今天的戰場正在經歷一場由建立在人工智能和機器學習等方法和手段上的智能系統(IS)帶來的軍事事務革命。這些技術有可能從根本上改變戰場的性質,為用戶提供更好的數據,使其能夠更好、更快地做出決定。雖然這些技術具有巨大的潛力,但它們在被作戰人員、軍事領導層和政策制定者廣泛采用方面面臨巨大障礙。
混合戰爭的戰場是一個危險的環境。基于信息系統的決策支持,提供計算機生成的預測或建議,必須與現實世界的巨大后果抗衡。不幸的是,智能系統所固有的復雜性和多維性往往使傳統的驗證和確認工作(如可追溯性分析)變得不可能。此外,由于智能系統的典型的不透明性,用戶經常面臨著可能有廣泛的道德和倫理問題的決策。戰士們可能不愿意將自己或他人的生命交到決策不透明的系統手中。將軍們可能會擔心為失敗承擔責任。政策制定者可能會擔心他們的政治前途。這些對信任和采用先進系統的挑戰,如果不直接理解和系統地克服,將可能使西方軍隊與那些對使用先進系統不那么擔心的對手相比處于非常不利的地位。
無數的研究工作提供了關于人們何時信任技術系統并采用它們的觀點。然而,這些觀點中很少有專門針對基于智能系統的技術的,更少的是針對軍事應用中的高風險環境和獨特需求,特別是混合戰爭的背景。
本文提供了一個關于信任和接受技術的混合模型概述,它將幫助開發者和設計者建立系統,以提高對軍事應用先進智能系統的信任和接受。具體來說,我們的方法借鑒了多個經驗證的計算行為科學信任模型,以及經驗證的技術接受框架。我們的混合模型旨在支持快速的現場測試,為提高先進軍事智能系統的信任度和接受度提供一個應用的、計算上有效的框架。
由HAVELSAN公司開發的虛擬環境中的部隊(FIVE)模擬器軟件,利用各種虛擬戰爭設備(如武器、傳感器和通信工具等),以安全和具有成本效益的方式提供全面的戰術和行動訓練環境。目前,管理FIVE實體的行為模型高度依賴于由現場專家和系統工程師開發的基于規則的行為。然而,FIVE軟件的基于規則的操作需要密集的編程和現場專家的指導,因此是高度勞動密集型。此外,這項任務的復雜性和負擔隨著場景的復雜性而大大增加。此外,具有基于規則的行為的虛擬實體對其環境有標準和可預測的反應。因此,在這項研究中,我們通過強化學習技術和其他機器學習技術,即FIVE-ML項目,提出了從基于規則的行為到基于學習的自適應行為的過渡研究。為此,我們主要對空對空和空對地兩種情況下的六個虛擬實體進行了基于強化學習的行為模型訓練。據觀察,用強化學習訓練的虛擬實體主導了現有的基于規則的行為模型。在這些實驗中,我們還發現,在強化學習之前,利用監督學習作為起點,可以大大減少訓練時間,并創造出更真實的行為模型。
今天,培訓將使用飛機的飛行員是最重要的。用真實的飛機訓練飛行員是相當困難的,原因包括空域法規、過高的成本和訓練中可能出現的風險,以及創造真實世界場景的復雜性,包括對手或盟友使用的真實防御和戰爭平臺。飛行員訓練中使用的飛行模擬經常與戰術環境模擬結合在一起工作。通過這些戰術環境模擬,飛行員通過控制高保真飛機模型在許多低保真實體的存在下完成場景的訓練。這些低保真資產由計算機創建和控制,通常被命名為計算機生成的部隊(CGF)[1],它們是代表空中、陸地或海上防御或攻擊系統的自主單位。
CGFs被用于人員部署的準備過程、戰術訓練或新戰略的開發。CGFs需要為每個應用(或每個場景)進行不同的編程。這些由傳統方法創造的力量會導致非適應性和不靈活的行為模式。這導致學生在靜態編程的資產面前接受模擬訓練,降低了訓練的質量。當需要新的場景時,需要專家來創建新的場景。此外,由于情景創建將使用經典的控制分支進行,在創建新情景的過程中,考慮所有的可能性往往是不可行的,即使是可能的,也是一項相當有挑戰性的任務。由于這些原因,人們越來越需要更真實的虛擬環境和新的場景來適應不斷變化的世界,以模擬飛行員候選人自己的任務和敵對部隊的當前能力和戰術。
在這項研究中,提出了向以人工智能為導向的行為建模過渡,而不是傳統的特定場景建模,以此來解決前面描述的問題。換句話說,虛擬實體將被轉化為能夠學習的動態虛擬實體。但這些虛擬實體在訓練過程中需要考慮許多情況。首先,他們必須學會對他們用傳感器感知到的環境因素作出適當的反應。然后,它必須識別他的隊友和敵人,并根據他們的等級信息和附加在他們身上的彈藥類型采取行動。它應該能夠與他的隊友合作,采取團隊行動。
為虛擬資產添加智能的機器學習的首選方法是強化學習(RL)[2],其根本原因是:實體將采取的行動有延遲的后果。近年來,與傳統的控制方法相比,RL被認為是解決復雜和不可預測的控制問題的新方法,并在許多領域得到利用,如機器人、計算機視覺、自動駕駛、廣告、醫學和保健、化學、游戲和自然語言處理[3]-[9]。自從將深度學習引入RL概念(即深度RL[10])后,文獻中的研究得到了提升,如許多具有挑戰性的計算機視覺和自然語言處理任務[11]-[15]。
為了這個目的,在這項研究中(即FIVE-ML),已經實現了從HAVELSAN FIVE軟件的基于規則的行為模型向基于RL的行為模型過渡的第一階段實驗。從這些實驗中可以看出,用RL算法訓練的智能虛擬實體在空對空和空對地的情況下都優于HAVELSAN現有的基于規則的實體。此外,模仿學習[16]、[17]和RL的聯合實施也取得了成功,這加快了FIVE軟件的完整過渡過程。
可以預見,通過學習飛行員候選人的選擇來開發新策略的模擬將把飛行員培訓帶到一個非常不同的點。當項目完成后,將設計一個新的系統,允許在其領域內培訓更多裝備和專業的戰斗機飛行員。一個現有的基于規則的場景系統將演變成一個可以自我更新的系統。因此,飛行員候選人將有機會針對智能實體發現的新策略來發展思路,而不是滿足于該領域的專家的知識和經驗。此外,從一個經過大量努力準備的場景機制,計算場景自動化機制將使整個過程自動化。
本文旨在展示開源數據的潛力,結合大數據分析和數據可視化,以表明特定領域的彈性水平,其中包括北約彈性評估的基線要求(blr)。
本文中描述的概念驗證提取了特定領域的相關彈性指標,涵蓋了包括能源和交通在內的選定基線要求。概念驗證使用交互式儀表板,允許終端用戶從多個角度探索可用的公共數據,以及對這些數據進行高級分析和機器學習模型的結果。
關鍵詞:大數據分析,機器學習,彈性,能源,交通,媒體
軍隊越來越意識到大數據分析在作戰和戰略決策中的重要性和作用。在正確的時間獲得相關信息一直是做出最佳決策的關鍵因素。今天,這種影響甚至更大,因為數據和信息可以大規模收集并提供給每個人。技術和人工智能方法成為利用數據的巨大推動者[1]。
廣泛可用的開源數據來自媒體、科學文章、相關(專家)門戶網站,涵蓋經濟、政治、社會、能源、交通運輸等帶來了創造更有洞察力的背景的可能性,并通過分析各種來源和整合結果為任何評估提供了有價值的新維度。
從軍事角度來看,我們從開源數據中確定了許多跨不同領域的重要指標,這些指標可以用于評估整個聯盟的戰備和恢復能力。來自不同領域的許多指標似乎相互影響,可以相互關聯。
在去年,北約CI機構數據科學團隊參與了一項創新性的概念驗證,包括轉型和作戰命令,如ACT、SHAPE和JFCBS;為了識別、提取、計算和呈現開源數據中最相關的指標,以支持整個聯盟的彈性評估。由于彈性評估是一項復雜的評估,它依賴于許多不同領域和事件的關系,因此該項目定義了較小的范圍,重點關注以下關鍵領域:
?關鍵基礎設施——醫院、發電廠、港口、液化天然氣接收站和軍事設施
?能源——專注于電力和天然氣
?交通——專注于空運、公路、海運和接近實時的交通指標
?媒體——態勢感知
其主要目標是通過使用來自公開數據集的大數據來確定相關指標。然后創建有用的策劃數據和機器學習(ML)模型,以識別相關關系,并提供對當前情況和破壞性事件影響的見解。為了提高結果的準確性,我們最初關注于一個特定的地理區域。
可解釋的人工智能(XAI)提供了克服這一問題的手段,它基于有關深度學習(DL)算法結果的額外補充信息。雖然完全透明對于復雜的DL算法來說仍然是不可行的,但解釋有助于用戶在關鍵情況下對AI信息產品進行判斷。應該指出的是,XAI是透明度、因果關系、可信度、信心、公平、信心和隱私等方面的總稱。因此,基本的方法論是多方面的。一種已經流行的方法是局部可解釋模型-預知解釋(LIME)方法,因為它可以很好地應用于各種應用中的不同模型。在本文中,LIME算法是在戰略運營的決策建議背景下進行研究的。在簡單介紹了其概念后,介紹了文獻中的應用。然后,一個戰略博弈的場景被認為是軍事戰爭的替代環境。一個基于DL的國際象棋人工智能被做成 "可解釋的",以評估信息對人類決定者的價值。得出了與戰略混合行動有關的結論,這反映了所提出的方法的局限性。
根據設想,未來戰略戰爭的決策將在很大程度上受到基于人工智能(AI)方法的信息產品的影響。特別是混合作戰,是在一個高維和變異的環境中進行的,在這種環境中,對潛在的威脅和機會的評估是人類操作者難以掌握的,戰略規劃必須納入異質的、多功能的和高容量的數據源。因此,基于人工智能方法的算法產生的分類、預測和建議在這種復雜的場景中變得越來越重要。在過去的幾年里,人工智能的方法已經獲得了巨大的發展,有大量的創新和令人尊敬的成果,可以從大型數據集中獲得更高層次的信息。然而,深度學習(DL)方法的一個主要缺點是其固有的黑箱屬性,即由于計算模型的復雜性,其結果是不透明的。例如,后者可能有數百個層和數百萬個參數,這些參數是在訓練階段通過算法發現和優化的。因此,即使結果是準確的,用戶也沒有機會理解它或掌握輸入數據的因果部分。這反過來又會影響到用戶對輔助設備的信任,在兩個方向上都是如此。這個問題在某些民事應用中起著次要的作用,例如語音識別,它經常被應用于與設備的互動,因為除了體面的失望之外沒有潛在的風險。對于其他非常具體的任務,如手寫字符識別,DL算法的性能超出了人類的平均水平,這意味著失敗的可能性很小,因此關于因果關系的問題可能成為附屬品。然而,在許多軍事應用中,當涉及到與人工智能的互動時,人類的信任是一個關鍵問題,因為錯誤的決定可能會產生嚴重的后果,而用戶始終要負責任。這實際上是兩方面的。一方面,操作者往往需要了解人工智能產品的背景,特別是如果這些產品與他或她自己的本能相悖。另一方面,不可理解的技術會對算法信息產品產生偏見,因為很難確定在哪些條件下它會失敗。因此,適當的信任程度可能很難計算。
可解釋的人工智能(XAI)是向黑盒人工智能模型的用戶提供 "透明度"、"可解釋性 "或 "可解釋性 "的方法的集合。這些術語幾乎沒有一個共同的定義,但許多出版物提到了:
XAI不能完全 "解釋 "DL模型,然而,它為工程師或操作員提供了更好地理解特定AI產品背后的因果關系的手段。而且很多時候,這可以幫助看到,從合理的因果關系鏈暗示算法決策或預測的意義上來說,該模型是否是合理的(或不是)。因此,XAI可以成為人工智能模型工程的一個重要工具,用于安全方面的驗證,甚至用于認證過程,以及為操作員提供額外的信息,以支持明智的決策。
雖然關于XAI的大多數文獻都集中在圖像識別的方法上,但這些結果很難轉化為基于特定挑戰性競爭形勢的戰術和戰略決策領域。在本文中,我們研究了人工智能模型在棋盤評估中的可解釋性。對更復雜的軍事戰略模擬的一些影響進行了討論。
本文的結構如下。在下一節中,簡要介紹了選定的XAI方法。然后,這些方法之一(LIME)被應用于棋盤評估問題,以證明在支持信息方面的解釋的質量。在最后一節,得出了結論,并討論了對更復雜的戰爭博弈和模擬的概括。
為了能夠在一個日益脆弱的世界中捍衛自己的生活方式和價值觀,團結在北約框架內的西方民主國家必須有能力在必要時 "以機器速度作戰"。為此,國防領域的數字化不能只局限于后勤、維護、情報、監視和偵察,而必須同樣能夠實現負責任的武器交戰。以歐洲未來戰斗航空系統(FCAS)為重點,我們討論了基于人工智能的武器系統的道德統一系統工程的各個方面,這可能會在國際社會中找到更廣泛的同意[1]。在FCAS計劃中,這是自二戰以來歐洲最大的軍備努力,有人駕駛的噴氣式飛機是一個網絡系統的元素,無人駕駛的 "遠程載體 "保護飛行員并協助他們完成戰斗任務。鑒于正在進行的辯論,德國國防部長已經強調。"歐洲戰略自主的想法走得太遠了,如果它被認為意味著我們可以在沒有北約和美國的情況下保證歐洲的安全、穩定和繁榮。那是一種幻覺[2]"。在這個意義上,FCAS與北約的目標是一致的。
"武器的殺傷力越大,影響越深遠,就越需要武器背后的人知道他們在做什么,"沃爾夫-馮-鮑迪辛將軍(1907-1993)說,他是1955年成立的二戰后德國聯邦國防軍的富有遠見的設計師(見圖1)。"如果沒有對道德領域的承諾,士兵就有可能成為一個單純的暴力功能者和管理者"。他深思熟慮地補充道。"如果僅僅從功能的角度來看,也就是說,如果要實現的目標在任何情況下都高于人,那么武裝部隊將成為一種危險[3]"。
弗朗西斯-培根(1561-1626)關于實現權力是所有知識的意義的聲明標志著現代項目的開始[4]。然而,自從人工智能(AI)在國防領域出現后,旨在造福人類的技術可能會反過來影響它。這種類型的工具性知識使現代危機像在聚光燈下一樣明顯。關于人的倫理知識,關于人的本質和目的,必須補充培根式的知識。有一種 "人的生態學",一位德國教皇提醒德國議員說。"他不制造自己;他要對自己和他人負責[5]"。因此,任何符合倫理的工程必須是以人類為中心的。這對于國防領域的人工智能來說是最迫切的。因此,數字倫理和相應的精神和道德是必不可少的技能,要與卓越的技術同時系統地建立起來。因此,領導哲學和個性發展計劃應鼓勵設計和使用基于人工智能的防御系統的道德能力。
北約STO的科技界如何在技術上支持負責任地使用我們從人工智能中收獲的巨大力量?為了更具體地論證,讓我們以德國聯邦國防軍的文件為指導,從它在20世紀50年代成立的時候,也就是人工智能這個詞真正被創造出來的時候,到最近的聲明。由于這些武裝部隊已經從暴政和以當時高科技為特征的 "全面戰爭 "中吸取了教訓,他們似乎在概念上已經為掌握數字挑戰做了準備。這一點更是如此,因為聯邦國防軍是一支載于《德國基本法》的議會軍隊,它完全按照聯邦議院的具體授權行事,即以德國人民的名義行事。
國防領域的人工智能旨在將軍事決策者從常規或大規模任務中解脫出來,并 "馴服 "復雜性,讓他們做只有個人才能做的事情,即智能地感知情況并負責任地采取行動。自動化對聯邦國防軍的重要性很早就被認識到了。馮-鮑迪辛在1957年提出:"然后,人類的智慧和人力將再次能夠被部署到適合人類的領域"[6]。從這個角度來看,武裝部隊作為基于人工智能的系統的使用者,并沒有面臨根本性的新挑戰,因為技術的發展一直在擴大感知和行動的范圍。
最近,我們見證了對抗性機器學習技術的快速發展,它破壞了底層機器學習模型的安全性,并導致了有利于對抗者的故障。最常見的對抗性機器學習攻擊包括故意修改機器學習模型的輸入,其方式是人類無法察覺的,但足以導致模型失敗。對抗性例子最初是為圖像設計的,也可以應用于自然語言處理(NLP)和文本分類。這項工作提出了一個研究和實施對抗性例子--以及防御機制--來對抗基于BERT的NLP分類器。用于測試擬議方法的數據集包括北約文件,現在已經解密,這些文件最初擁有不同的保密級別,由文件中嵌入的標簽指定。BERT模型被用來根據這些文件的初始敏感性對其進行自動分類。雖然攻擊者的目的是改變分類級別,但防御方致力于阻止這些企圖。實驗表明,對抗性文本實例可以誤導模型,導致拒絕服務,當文件被識別為具有比實際更高的敏感性時,或者導致數據泄漏,當文件被解釋為具有比實際更低的敏感性時。通過采取適當的防御措施,有可能抵制特定類型的對抗性攻擊,但代價是降低模型的整體準確性。
機器學習系統的廣泛使用和成功使其成為攻擊者越來越頻繁的目標,他們的目標是濫用這些系統為自己謀利。這種現象導致了對抗性機器學習的發展[1],這是一個結合了機器學習和網絡安全的領域,涉及到對智能系統可能的攻擊以及對策的研究。因此,盡管機器學習在一般情況下能快速提供結果,而且準確性很高,但它并非沒有風險,如果在沒有充分的安全分析的情況下實施,后果可能是災難性的。例如,特斯拉Model S 75自動駕駛系統可以通過隱藏高速公路標志或添加人類駕駛忽略的標記來進行操縱,從而導致,例如,轉向錯誤的車道[2]。
圖1描述了機器學習系統的各個組成部分可能受到的攻擊類型,按有意和無意的故障分組。機器學習的最大威脅之一是數據的完整性,表現為數據中毒。作為訓練集一部分的數據,如果被破壞,會改變模型的學習能力,從而影響其性能。訓練樣本通常不涵蓋所有可能的角落案例。一些沒有被考慮的樣本可能被模型錯誤分類,導致不正確的預測。提供其預訓練模型的第三方服務通常只想提供查詢訪問,而不提供額外的信息。任何針對模型保密性的安全漏洞都會泄露敏感信息,可能會揭示和暴露出模型結構。一般來說,機器學習服務提供者希望對用作訓練集的數據相關信息進行保密。成員推理攻擊的目的是通過泄露訓練集的一部分來損害數據隱私。
建模和仿真有助于德國武裝部隊后勤的數字化,必須提供靈活性和穩健性等因素,以識別后勤鏈中的風險和弱點。 ESG,作為一家擁有多年軍事經驗的德國軍事技術公司,我們展示了成功的仿真和分析項目(例如,“以歐洲戰斗機為例,預測德國空軍的作戰能力”或“基于仿真的醫療救援鏈分析”),并提出進一步的行動方向,例如基于仿真的分析,以優化軍事供應鏈中的加法生產或自主系統的最佳概念。通過對軍事供應鏈使用后勤仿真,可以檢查和優化其穩健性和可持續性。這種基于數據的決策支持方法(工具 AnyLogic,德國聯邦國防軍基于仿真的分析指南和模型檔案)。它聚焦于一個關鍵問題,例如“在某些參數/因素/影響下,系統的材料運行準備情況如何更高概率的為在未來發展,以及什么可以提高系統的性能?”如本講座所述那樣提供各種優勢。
圖2-1 模型開發流程
圖2-2 系統結構
成功完成地下作業需要高度專業化的能力和由最新工具輔助的準確規劃。奧地利軍事學院的NIKE研究小組旨在為這些非常特殊的作戰環境提供決策、規劃和培訓。3D模型、平面圖、地圖或激光掃描等異構數據源的快速數據集成和可視化,以及從地下結構內部的傳感器和攝像頭收集的操作員信息,提供了虛擬進入通常看不見的裝置的可能性。BORIS(基于瀏覽器的空間定向)初始HTML模型、地下作業任務工具 (SOMT) 或快速隧道建模工具 (FTMT) 等專用工具通過創建虛擬的地下任務區域來提高快速可視化。在擴展現實 (XR) 應用程序中,改進的空間理解顯著改善了決策,并支持同步任務規劃和執行。由于地下服務結構的運營商和行動部隊之間的密切合作和信息交流是成功的先決條件,所有相關因素和行動者的整合將大大增加全面合作。該項目通過在真正全面的通用作戰圖中顯示相關信息來增強通用視角,從而實現更準確和精確的行動,減少自身損失和附帶損害。
自主系統的開發者需要通過測試來訓練和驗證他們的算法。最終用戶在決定如何有效利用系統時也可以使用這些數據。模擬是在真實環境中進行實驗的另一種選擇,它更安全,成本更低,并允許執行可重復和可控的實驗。傳統上,機器人專家使用的模擬器專注于與系統相關的細節,同時簡化了與環境、通信和資產間關系相關的方面。作為替代方案,CMRE提出了一個海事仿真框架(MSF),可與機器人中間件(即MOOS和ROS)互操作,采用了一種硬件和軟件循環仿真方法,允許模擬通常被簡化的重要外部因素。這些擴展元素包含內容可以發現自主系統的開發人員可能不知道的交互,從而提高開發中的系統的健壯性。這項工作的目的是建立一個可配置和可擴展的仿真框架,以訓練和測試海事系統的自主行為,以協助系統開發者和支持最終用戶的操作決策。
該框架由高級體系結構(HLA)中的專用模擬器、聯邦成員模擬環境、平臺動態、傳感仿真、通信和直觀的可視化組成。提出的框架提供了一種模擬情況,包括復雜的海上操作的挑戰,以水下領域為重點,提供了比傳統方法更全面和現實的能力。到目前為止,MSF已經被用于支持地雷對抗(MCM)和反潛戰(ASW)任務中自主系統算法的發展,具有單個或多個車輛配置。
人工智能領域的進展繼續擴大這組技術的潛在軍事應用范圍。本文探討了信任在人機聯合作戰中的關鍵作用,以及依靠人工智能來補充人類認知的潛在影響。如果依靠人工智能來準確處理傳感器數據,操作自主系統和平臺,或通過擬議的作戰概念(如以決策為中心的戰爭)提供有利的決策支持,設想機器智能的中央指揮和控制作用,那么信任機器智能將是未來作戰中的一個關鍵組成部分。鑒于這些技術和理論的發展,信任的概念對于機器智能在戰術和作戰層面的軍事行動中的使用變得高度相關,正確校準的信任水平是安全和有效行動的基礎。在簡要回顧了機器智能的最新進展和對信任概念的探索之后,本文概述了人工智能在戰場上的當前和潛在應用,以及由不充分或不合理的高信任度帶來的挑戰。
縱觀歷史,技術已經擴大了武裝沖突的領域,戰術交戰的節奏,戰場的地理范圍,以及指揮官與部隊溝通的手段。技術創新--包括軍事和民用--改變了軍隊的作戰方式以及國家計劃和進行這些沖突的方式。在21世紀,迄今為止,很少有進步能像統稱為人工智能(AI)的一組技術那樣獲得如此多的關注。人工智能正準備迎來一個新的時代,在這個時代,機器智能和自主性正在為軍事行動的規劃和執行產生明顯的新概念。算法戰爭可能會帶來一些獨特的東西:增強甚至取代人類決策過程的系統,其速度可能超過人類規劃者的認知能力。
新興技術的整合提出了任何數量的基本組織和倫理問題,值得關注。本文將采用定性的社會科學方法,重點討論人類-自治團隊(HAT)的一個重要方面:鼓勵對機器智能的適當信任程度。有大量的學術文獻關注自動化或機器人技術中的信任問題,但有關具體軍事應用的工作較少。當人工智能在聯合作戰中被實際部署時,在信任方面有哪些挑戰和機會?在簡要回顧人工智能和概述機器智能在戰場上的可能應用之后,本文在分析鼓勵適當信任水平的陷阱和潛在解決方案之前,探討了信任和信任校準的概念。
幾十年來,人類一直對賦予機器某種形式的人工智能的可能性著迷,Nils Nilsson將其定義為 "致力于使機器智能化的活動,而智能是使一個實體在其環境中適當運作并具有預見性的品質"。在數字時代的早期,出現了兩種廣泛的人工智能方法。自上而下的專家系統方法使用復雜的預編程規則和邏輯推理來分析一個特定的數據集。對于具有可預測規則的明確定義的環境--諸如分析實驗室結果或下棋等應用--專家系統或 "符號 "人工智能(基于符號邏輯)的性能主要取決于處理速度和算法的質量。另一大類使用自下而上的機器學習方法,模擬人類通過檢測數據中的模式進行學習的方式。神經網絡是一種以人腦為模型的機器學習形式,能夠通過使用多個(因此是 "深")人工神經元層來識別復雜的模式,是被稱為 "深度學習 "的技術的基礎。通過其在數據集中尋找關系的能力,這種技術也被稱為 "連接主義"。
自上而下、基于規則的符號系統和自下而上的機器學習連接主義技術之間的差異是很大的,特別是關于它們的潛在應用范圍和靈活性。深度學習方法的顯著特點是能夠將學習與它所訓練的數據集分開,因此可以應用于其他問題。基于規則的算法可以在狹義的任務中表現得非常好,而深度學習方法能夠迅速找到模式,并在 "蠻力 "專家系統計算方法無效的情況下有效地自學應用。最近的一些人工智能進展顯示了模仿創造力的能力,產生了有效的解決問題的方法,這些方法對人類來說可能是反直覺的。
然而,總的來說,人工智能仍然是狹窄的或 "脆弱的",即它們在特定的應用中功能良好,但在用于其他應用時仍然不靈活。與人類的認知相比,鑒于機器的計算速度遠遠超過人腦,機器智能在將邏輯規則應用于數據集時要優越得多,但在嘗試歸納推理時,它必須對數據集或環境進行一般性的觀察,這就顯得不足。大多數機器學習仍然需要大量的訓練數據集,盡管新的方法(包括生成對抗網絡(GAN)和 "小于一次 "或LO-shot學習)正在出現,需要非常小的數據集。圖像識別算法很容易被混淆,不能像人類那樣立即或直觀地理解情景背景。這種脆性也延伸到了其他問題,比如游戲。雖然人工智能在視頻游戲中經常表現出超人的能力,但他們往往不能將這種專業知識轉移到具有類似規則或玩法的新游戲中。
雖然人工智能技術繼續在變得更加適應方面取得重大進展,但任何接近人類的人工通用智能仍然難以實現。評估人工智能的近期前景因該技術的漸進式進展而變得更加復雜。圍繞著人工智能的炒作--在很大程度上被深度學習方法的成功所推動--既導致了對該技術未來的不切實際的期望,也導致了對其非常大的進展的正常化。正如一份報告所指出的,"人工智能將一項新技術帶入普通人的視野,人們對這項技術習以為常,它不再被認為是人工智能,而出現了更新的技術"。盡管象征性的人工智能和各種形式的機器學習構成了該領域最近的大部分進展,也許除了融合這兩種方法的嘗試之外,未來仍然不確定。一些人猜測,機器學習技術帶來的進展可能會趨于平穩,而另一些人則保持樂觀。相關的技術進步,如短期內的計算機芯片設計和長期內的量子計算,可能會影響進一步進展的速度。
幾十年來,政治科學家和國家層面的軍方政策制定者一直在戰略層面使用博弈論,但對其在作戰層面的使用幾乎沒有評論。傳統上,三個主要挑戰阻礙了規劃人員和分析人員在作戰層面使用博弈論,即復雜的作戰環境、參與者的動態交互以及大多數陸軍參謀人員不具備使用復雜數學技能。
這本專著表明,這些挑戰是可以克服的,博弈論可以在規劃過程中提供新穎的見解。美陸軍參謀部規劃人員可以在作戰層面有效地使用基本博弈論和簡單的數學來了解作戰環境、了解行動者及其動機,并在軍事決策過程中比較行動方案。本專著展示了如何避免高級博弈論用于解決理論問題的繁瑣數學程序,而是專注于使用基本博弈論在規劃過程中提供價值。它通過回顧博弈論在戰略層面的應用、教授基本博弈論和涵蓋一些基本博弈概念來展示博弈論的實用性。然后,它考察了一場歷史性的行動,以展示博弈論的使用將如何達到另一個推薦行動方案和結果,也許會改變歷史進程。最后,它通過將博弈論應用于軍事決策過程、任務分析和行動制定過程的兩個步驟的練習,提供了使用博弈論的指南。
幾十年來,戰略規劃者和政策制定者在戰略層面有效地應用了博弈論,但軍事從業者往往不在作戰層面使用它。當約翰·馮·諾依曼和奧斯卡·摩根斯坦在 1940 年代初在蘭德公司工作期間發展博弈論時,他們尋求一種數學方法來為沖突領域,特別是經濟沖突提供解決方案。他們于 1944 年發表了開創性的著作《博弈論與經濟行為》
博弈論允許通過將場景建模為簡化的博弈來分析決策。博弈論試圖定義參與者、策略——或可供他們選擇的選項——以及博弈結果的預期回報。它試圖澄清由于參與者的選擇而導致的不確定性。它的主要用途是它認識到結果是通過多個參與者的互動共同決定的,而不僅僅是一個人自己決定的結果,它允許分析對手可能會做什么。由于這些原因,政策制定者和戰略家使用博弈論來理解戰略問題,例如核對手、貿易慣例、內戰解決和裁軍以及缺乏國際合作,從而制定政策建議以幫助解決這些問題
作戰層面的規劃者是否可以有效地應用博弈論仍然是一個懸而未決的問題。在作戰層面使用博弈論的批評者強調了動態交互的復雜性。他們指出,培訓軍官了解博弈論的基本概念并將操作層面問題的復雜性提煉成基本博弈需要大量時間。
本專著認為博弈論提供了一個有價值的框架,最適用于在軍事決策過程的任務分析和行動發展步驟過程中理解環境中的參與者。博弈論旨在提供對情況的理解。這需要了解參與者及其潛在計劃或戰略動機。博弈論提供了一種理性的方法來研究行動者如何制定他們的策略和他們的動機基礎。由此,指揮官和參謀人員可以獲得理解,然后疊加其他因素,包括行動方案和潛在結果。它提供了一種合理而直接的方法來簡化復雜的問題。因此,博弈論為作戰規劃者提供了另一種工具,可用于了解作戰環境。
本專著重點介紹博弈論在戰略層面的歷史應用、當前的規劃過程學說和相關框架,以回答作戰規劃者能否在作戰層面有效地使用博弈論。這本專著主要通過囚徒困境分析博弈論在戰略層面的應用,將其應用于冷戰、國際貿易和價格戰期間的降價。 1777 年的新澤西戰役為應用博弈論和理解喬治華盛頓將軍和查爾斯康沃利斯將軍之間的競爭環境提供了一個歷史例子。最后,它演示了如何以及在何處將博弈論工具實施到美國陸軍當前使用的規劃過程中。所使用的博弈論是一種基本的應用方法,而不是過于復雜和無用的高級學術博弈論。簡單的博弈可以使復雜的操作情況變得清晰。該研究回顧了陸軍規劃學說,以專注于了解作戰環境和問題。任務分析旨在了解環境中的參與者以及他們之間沖突的根源。這 3 項研究的重點是深入了解對抗性和中立的參與者、激勵措施、潛在的行動方案和回報。該專著追溯了博弈論的戰略應用和作戰應用之間的差異,以了解哪些要素是一致的,同時說明了差異。最后,它將討論如何克服實施中的潛在挑戰。
規劃人員可以在軍事決策過程中使用博弈論工具,特別是在任務分析期間,以不同的視角理解作戰環境和行動發展過程,以檢查未發現的假設。博弈論工具不是替代軍事決策過程中現有的步驟和工具,而是對其進行補充。戰地手冊 6-0 解釋說,指揮官和參謀人員使用任務分析來更好地了解作戰環境和部隊面臨的問題。接下來,規劃人員使用任務分析來制定假設以填補知識空白。最后,考慮到博弈論理解競爭的本質,任務分析也有助于理解友軍和敵軍如何互動。行動方案制定過程提供了一種客觀的方式來看待多個潛在計劃。在上面的歷史例子中,華盛頓將軍和康沃利斯將軍需要了解他們的潛在行動以及他們認為 30 名敵方指揮官可能會做什么。在某種程度上,歷史例子中的將軍們可以在他們的行動發展過程中使用博弈論來檢查他們的假設。開發從敘述性或定性評估開始,然后轉向帶有每個計劃的加權分數的可量化評估。博弈論允許另一種觀點來評估潛在的計劃。以下思想實驗提供了一個示例,說明工作人員如何在任務規劃期間使用一些博弈論工具。
演習如下:美國討論在一個靠近對手的友好國家增加軍事存在,這旨在阻止對手入侵友好國家。軍團工作人員了解國家決策者關于在一個地區增加軍事存在的辯論。此外,他們知道如果國家領導層追求升級,軍團是升級的一個因素。工作人員致力于了解作戰環境并了解國家層面的優先事項和激勵措施,以便他們可以就選項提出更高的建議并為預期的行動方案做好準備。其次,他們努力了解敵人的動機和行動計劃。敵人還面臨著增加其在該地區的軍事存在或維持現狀的前景。兩國都擁有核武器,都不想進行全面戰爭。最后,兩個大國都可以遷移的地區的人口不希望被外國勢力占領。國家決策者面臨的戰略決策具有操作層面的影響。
如上所述,任務分析提供了對情況和問題的理解。在任務分析過程中,工作人員開始對行動者的動機和動機有所了解。戰場情報準備是任務分析的關鍵步驟。參謀人員對友軍和敵軍如何在環境中相互作用做出假設。由此,工作人員開發了每個參與者在即將到來的操作中可以使用的潛在選項。此外,情報準備步驟確定了指揮官和參謀人員的知識差距。這些差距導致了獲取信息的情報需求的發展。正如文獻回顧中所述,人們根據他們擁有的信息做出決策,并預測競爭對手的行為。這些步驟不會取代或否定軍事決策過程的任何步驟,它們只是關于如何以及在何處實施博弈論工具的建議。
鑒于這種情況,參謀人員開始制定敵人的行動方案。當應用于博弈矩陣時,這些行動方案成為敵人的策略。敵人可以用他們的一個師或軍將該地區軍事化,也可以選擇不軍事化。是否軍事化的選擇為敵人創造了兩種不同的戰略。第二步著眼于每個策略的結果。如果雙方都軍事化,那么他們將面臨戰爭。如果雙方都沒有軍事化,那么他們就維持現狀。如果一個國家軍事化而另一個國家不軍事化,那么軍事化的國家就會在沒有爭議的環境中這樣做。表11顯示了這種情況的結果。
表11:定性結果
第三步要求參謀人員查看敵人的動機,然后對他們的選擇進行定性分析。敵人想在美國不決定將該地區軍事化的情況下將該地區軍事化。這為他們創造了一個無可爭議的環境。其次,他們既不看重自己也不看重美國將該地區軍事化,這是現狀。第三個可取的結果是美國軍事化,而敵人沒有,這意味著美國擁有無可爭議的軍事化。最后,如果美國也進行軍事化,敵人不想升級為戰爭,也不想將該地區軍事化。工作人員現在可以根據偏好對敵人的行動路線進行排序。作戰和情報人員可以利用收集資產并制定收集計劃,以確定有關敵人計劃的任何指標,例如在該地區集結部隊。信息收集計劃有助于回答信息需求并協助進行有效規劃。
工作人員現在進入行動開發過程。生成選項步驟概述了指揮官和參謀人員可用的選項。工作人員制定了可以切實擊敗敵人行動方案的選項,然后確定它們的優先級。工作人員還產生了兩個廣泛的選項。他們可以軍事化,也可以不軍事化。由于每個參與者的策略,工作人員現在可以對他們的行動方案進行排序。指揮官和參謀更愿意維持現狀。如果美國采取行動將該地區軍事化,它可能會擾亂地方、國家政府和民眾。因此,美國對該地區的軍事化和一個不軍事化的敵人是次要的選擇。這種選擇意味著美國擁有無可爭議的軍事化,但正如所述,當地政府感到不安。第三,排名是美國不軍事化,但敵人軍事化,給了他們無可爭議的優勢。最后,美國不希望發生戰爭,如果美國和敵人都進行軍事化,就會發生戰爭。
接下來,工作人員將博弈發展為矩陣或戰略形式。首先,他們進行定性分析,說明每次交戰的可能結果,見表 12。然后參謀人員從每個指揮官的角度對結果進行排序,以生成定量分析和回報,如表 13 所示。該表顯示了回報敵方第一,美國第二。使用倒序排列,最低數字的收益表示排后的選項,數字越大,表示首選的選項。每個戰斗人員都是近鄰,因此參謀人員認為交戰將有利于主動一方。
表12 :定性分析
表13:定量結果
這兩種的價值在于員工進行分析以掌握對潛在未來結果的理解。它提供了一個簡潔的可交付產品,參謀計劃人員可以在一張紙上將其交給指揮官或參謀長,以供將來參考或思考,因為指揮官和參謀人員開始在軍事決策過程的未來步驟中權衡選項。這種分析為員工提供了一個思考他們正在做什么以及他們的計劃可能產生什么結果。這是舍恩所說的實踐中反思的一個例子。正如他所說,它允許人們在執行任務時思考他們正在做什么,然后塑造他們所做的事情。
下一步要求參謀人員將可用選項縮小到只有指揮官可用的可信選項。參謀部尋找指揮官永遠不會使用任何主導策略。敵方指揮官沒有任何主導策略,并且兩種策略都可供他使用。但美國永遠不會在博弈中選擇軍事化,因為無論敵人選擇什么,不軍事化都會主導博弈。表 14 以粗體突出顯示哪個選項在美國占主導地位。例如,如果敵人決定軍事化,如果它決定軍事化,美國將獲得 1 的回報,否則將獲得 2 的回報。因此,在這種情況下,美國會選擇不進行軍事化。同樣,如果敵人不軍事化,那么如果它軍事化,美國將獲得三倍的回報,如果它不軍事化,美國將獲得四倍的回報,美國將再次選擇不進行軍事化。因此,工作人員將其排除在外。
表14:以粗體突出顯示的美國的收益
既然參謀人員了解美國沒有軍事化的動機,它就可以看看敵人可能會采取什么行動作為回應。敵人知道美國不想軍事化,并尋求使其結果最大化。因此,敵人選擇軍事化,因為這比不軍事化帶來更好的回報。這達到了納什均衡,即敵人軍事化并獲得四分之二的回報,而美國不軍事化并獲得三分之二的回報。表 15 顯示了圈出的所得納什均衡。
表15:軍事化為主
但現實生活中的情況并不總是一致的。一方通常首先采取行動,迫使另一方做出決定。在上述情況下,美國正在努力應對將該地區軍事化的決定。然后他們的決定迫使敵人做出決定。下一步著眼于在順序移動游戲中情況如何展開,以及納什均衡在決策分析中是否發生變化。順序博弈見表 16。該表首先顯示了敵人的收益,其次是美國的收益。
表16:順序多次博弈
參與者對每個結果的選擇和回報保持不變。唯一的區別是美國先行動,敵人必須做出反應。工作人員必須使用子博弈分析來分析這個博弈及其結果。敵人有第二步,因此分析從他們的預期步驟開始。這兩個參與者都知道,如果美國選擇軍事化,敵人將選擇不軍事化,因為兩個人的回報比一個人要好。如果美國選擇不軍事化,敵人會想要軍事化,因為四比三好。鑒于美國的選擇,上面的表 16 通過圈出每個敵人的首選選擇來表明這種行為。既然美國知道敵人會根據美國的選擇做出哪些選擇,他們就會在兩者之間做出選擇。美國選擇軍事化,知道敵人不會軍事化,從而為美國帶來三倍的回報。美國軍事化總比不軍事化并獲得兩個回報要好,因為知道敵人會選擇軍事化。因此,納什均衡變成了美國軍事化和敵人不軍事化,敵方兩分,美國三分,見表 17。
表17:納什均衡
序列博弈導致的納什均衡與同步博弈不同,為什么?每場比賽都會導致一方軍事化,而另一方不軍事化。在同步博弈中,敵人通過軍事化獲得了最有利的回報,美國知道這一點,因此選擇不軍事化。然而,在順序博弈中,美國先決勝負。如果他們不軍事化,他們將獲得最高的回報,而敵人也選擇不軍事化。兩國都不會軍事化,因為如果美國不軍事化,敵人就有動機進行軍事化。美國意識到這一點,因此認為他們的下一個最佳選擇是軍事化,因為它知道敵人不會軍事化,因為這會迫使兩個參與者之間發生戰爭。這個游戲提供了一個先發優勢的例子。如果敵人先選擇,他們也會有軍事化的動機
序列多次博弈反映了更現實的情況。但是運行這兩種類型的博弈為工作人員了解動機和潛在行動提供了分析價值。工作人員可以看到排序操作如何改變結果。如上所述,使用這種方法的價值在于分析。工作人員可以按照矩陣形式對每個結果進行簡要說明。然后他們可以看到他們的選擇之一不是一個可行的選擇。然后,他們查看了定量評估并確定可以使用平衡結果。所進行的定性分析重申了 Thomas Schelling 的觀點,即博弈論的數學并不總能解決沖突,不應過度依賴數學。而是對問題的思考增加了價值。
博弈論提供了一種分析工具來看待競爭情況。它使分析師能夠了解潛在的行動計劃、激勵措施以及回報或結果。此外,它可以突出信息差距和需要進一步理解的領域。在 20 世紀中葉,戰略層面的規劃者用它來更好地了解美國和蘇聯之間在使用核武器和原子戰方面的競爭。國防部以外的分析師使用它來了解競爭公司之間的貿易爭端和降價。
在作戰層面,博弈論允許對潛在計劃、激勵和結果進行相同類型的分析和理解。這本專著審視了博弈論的歷史并探索了基本的博弈論,確立了博弈論在分析沖突情況方面的有用性。文獻回顧揭示了博弈論的優勢和劣勢,這為如何最好地利用它以最大限度地發揮其潛力提供了信息。檢查諸如核局勢和國際貿易等戰略層面的決策為以前的努力如何有效地應用博弈論提供了背景。博弈論在特倫頓和普林斯頓的美國獨立戰爭中的應用與指揮官們所追求的不同,展示了使用博弈論如何提供獨特的見解,這對于像康沃利斯這樣經驗豐富的將軍來說并不明顯。最后,該專著展示了軍團級別的參謀人員如何使用博弈論來理解戰略級別的決策如何影響作戰級別的行動,比較了同步博弈和序列博弈的實用性。最后一部分提供了一個基本框架,工作人員可以通過將博弈論應用于任務分析和行動開發過程來解決操作問題。
博弈論的使用不僅限于軍事決策過程。博弈論非常適合國防部和美國陸軍目前使用的現有規劃流程。規劃人員可以在聯合作戰設計過程和陸軍設計方法中使用博弈論工具。具體來說,在聯合設計期間,博弈論工具最適合理解戰略指導和理解作戰環境。在軍隊設計期間,它最適合構建作戰環境和理解問題。博弈論是參謀人員或計劃團隊的工具包中的另一個有用工具。當通過軍事決策過程或設計過程應用時,博弈論分析與其他工具很好地結合在一起,可以更好地了解作戰環境。