亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

當對一系列學習問題進行優化時,卷積神經網絡會經歷災難性的遺忘:當滿足當前訓練示例的目標時,它們在以前任務中的性能會急劇下降。在這項工作中,我們介紹了一個基于條件計算的新的框架來解決這個問題。

付費5元查看完整內容

相關內容

持續學習(continuallearning,CL) 是 模 擬 大 腦 學 習 的 過 程,按 照 一 定 的 順 序 對 連 續 非 獨 立 同 分 布 的 (independentlyandidenticallydistributed,IID)流數據進行學習,進而根據任務的執行結果對模型進行 增量式更新.持續學習的意義在于高效地轉化和利用已經學過的知識來完成新任務的學習,并且能夠極 大程度地降低遺忘帶來的問題.連續學習研究對智能計算系統自適應地適應環境改變具有重要的意義

小樣本學習(FSL)近年來引起了越來越多的關注,但仍然具有挑戰性,因為學習從少數例子中歸納的固有困難。本文提出了一種自適應間隔原則,以提高基于度量的元學習方法在小樣本學習問題中的泛化能力。具體地說,我們首先開發了一個與類相關的加性邊緣損失算法,該算法考慮了每對類之間的語義相似性,從而將特征嵌入空間中的樣本從相似的類中分離出來。此外,我們在抽樣訓練任務中加入所有類別之間的語義上下文,并開發了與任務相關的附加間隔損失,以更好地區分不同類別的樣本。我們的自適應間隔方法可以很容易地推廣到更現實的廣義FSL設置。大量的實驗表明,在標準FSL和通用FSL設置下,所提出的方法可以提高現有基于度量的元學習方法的性能。

付費5元查看完整內容

領域適應(DA)提供了重用數據和模型用于新問題領域的有價值的方法。然而,對于具有不同數據可用性的時間序列數據,還沒有考慮到健壯的技術。在本文中,我們做出了三個主要貢獻來填補這一空白。我們提出了一種新的時間序列數據卷積深度域自適應模型(CoDATS),該模型在現實傳感器數據基準上顯著提高了最先進的DA策略的準確性和訓練時間。通過利用來自多個源域的數據,我們增加了CoDATS的有用性,從而進一步提高了與以前的單源方法相比的準確性,特別是在域之間具有高度可變性的復雜時間序列數據集上。其次,我們提出了一種新的弱監督域自適應(DA-WS)方法,利用目標域標簽分布形式的弱監督,這可能比其他數據標簽更容易收集。第三,我們對不同的真實數據集進行了綜合實驗,以評估我們的域適應和弱監督方法的有效性。結果表明,用于單源DA的CoDATS比最先進的方法有了顯著的改進,并且我們使用來自多個源域和弱監督信號的數據實現了額外的準確性改進。

付費5元查看完整內容

一次性神經架構搜索(NAS)通過權重共享顯著提高了計算效率。然而,這種方法也在超網絡訓練(架構搜索階段)中引入了多模型遺忘,在超網絡訓練中,當使用部分共享的權重順序訓練新架構時,之前架構的性能會下降。為了克服這種災難性遺忘,最先進的方法假設共享權值在聯合優化后驗概率時是最優的。然而,這種嚴格的假設在實踐中并不一定適用于一次性NAS。在本文中,我們將一次性NAS中的超網絡訓練描述為一個持續學習的約束優化問題,即當前架構的學習不應該降低以前架構的性能。提出了一種基于新搜索的結構選擇損失函數,并證明了在最大化所選約束的多樣性時,不需要嚴格的假設就可以計算后驗概率。設計了一種貪心查新方法,尋找最具代表性的子集,對超網絡訓練進行正則化。我們將我們提出的方法應用于兩個一次性的NAS基線,隨機抽樣NAS (RandomNAS)和基于梯度的抽樣NAS (GDAS)。大量的實驗證明,我們的方法提高了超級網絡在一次NAS中的預測能力,并在CIFAR-10、CIFAR-100和PTB上取得了顯著的效率。

付費5元查看完整內容

組合優化是計算機視覺的常用方法。例如,在諸如語義分割、人體姿態估計和動作識別等應用中,為解決條件隨機域(CRFs)中的推理問題而編寫的程序可以生成與圖像視覺特征一致的結構化輸出。然而,在CRFs中求解推理通常是棘手的,而近似方法在計算上要求很高,并且僅限于一元的、成對的和手工制作的高階勢形式。在這篇論文中,我們證明了我們可以學習程序啟發式。策略,用于解決高階CRFs中推理任務的語義分割,采用強化學習。我們的方法有效地解決了推理任務,而沒有對勢的形式施加任何約束。我們在Pascal VOC和MOTS數據集上展示了引人注目的結果。

付費5元查看完整內容

本文針對深度卷積神經網絡提出了一種常規的、易應用的變換單元,即Gated Channel Transformation (GCT) 模塊。GCT結合了歸一化方法和注意力機制,并使用輕量級的、易于分析的變量來隱式地學習網絡通道間的相互關系。這些通道量級的變量可以直接影響神經元間的競爭或者合作行為,且能方便地與卷積網絡本身的權重參數一同參與訓練。通過引入歸一化方法,GCT模塊要遠比SE-Nets的SE模塊輕量,這使得將GCT部署在每個卷積層上而不讓網絡變得過于臃腫成為了可能。本文在多個大型數據集上針對數種基礎視覺任務進行了充分的實驗,即ImageNet數據集上的圖片分類,COCO上的目標檢測與實例分割,還有Kinetics上的視頻分類。在這些視覺任務上,引入GCT模塊均能帶來明顯的性能提升。這些大量的實驗充分證明了GCT模塊的有效性。

付費5元查看完整內容

近年來,許多手工設計和搜索的網絡被應用于語義分割。然而,以前的工作打算在預定義的靜態架構中處理各種規模的輸入,如FCN、U-Net和DeepLab系列。本文研究了一種概念上的新方法來緩解語義表示中的尺度差異,即動態路由。該框架根據圖像的尺度分布,生成與數據相關的路徑。為此,提出了一種可微選通函數——軟條件門,用于動態選擇尺度變換路徑。此外,通過對門控函數進行預算約束,可以通過端到端方式進一步降低計算成本。我們進一步放寬了網絡級路由空間,以支持每個轉發中的多路徑傳播和跳轉連接,帶來了可觀的網絡容量。為了證明動態特性的優越性,我們比較了幾種靜態架構,它們可以作為路由空間中的特殊情況進行建模。為了證明動態框架的有效性,我們在Cityscapes和PASCAL VOC 2012上進行了大量的實驗。代碼在此//github.com/yanwei-li/DynamicRouting

付費5元查看完整內容

標簽傳播(LPA)和圖卷積神經網絡(GCN)都是圖上的消息傳遞算法。兩者都解決了節點分類的任務,但是LPA將節點標簽信息傳播到圖的邊緣,而GCN傳播并轉換節點特征信息。然而,雖然概念相似,LPA和GCN之間的理論關系還沒有得到研究。這里我們從兩個方面研究了LPA和GCN之間的關系:(1)特征/標簽平滑,分析一個節點的特征/標簽如何擴散到它的鄰居;(2)一個節點的初始特征/標簽對另一個節點的最終特征/標簽的影響程度。在理論分析的基礎上,提出了一種統一GCN和LPA的節點分類端到端模型。在我們的統一模型中,邊緣權值是可學習的,LPA作為正則化幫助GCN學習合適的邊緣權值,從而提高分類性能。我們的模型也可以看作是基于節點標簽的注意力學習權重,它比現有的基于特征的注意力模型更面向任務。在真實圖數據的大量實驗中,我們的模型在節點分類準確度方面顯示出優于目前最先進的基于gcn的方法。

付費5元查看完整內容

弱監督語義分割是一項具有挑戰性的任務,因為沒有提供像素級的標簽信息供訓練使用。最近的方法利用分類網絡,通過選擇具有強響應的區域來定位目標。然而,雖然這種響應映射提供了稀疏信息,但在自然圖像中像素之間存在很強的兩兩關系,可以利用這種兩兩關系將稀疏映射傳播到更密集的區域。本文提出了一種迭代算法來學習這種兩兩關系,它由兩個分支組成,一個是學習每個像素的標簽概率的一元分割網絡,另一個是學習親和矩陣并細化由一元網絡生成的概率圖的兩兩親和網絡。將兩兩網絡的細化結果作為監督,對一元網絡進行訓練,通過迭代的方法逐步獲得較好的分割效果。為了在不需要精確標注的情況下獲得可靠的像素親和力,我們還提出了可信區域的挖掘方法。我們證明了迭代訓練這個框架等價于優化一個收斂到局部最小值的能量函數。在PASCAL VOC 2012和COCO數據集上的實驗結果表明,所提出的算法在性能上優于目前最先進的方法。

付費5元查看完整內容
北京阿比特科技有限公司