領域適應(DA)提供了重用數據和模型用于新問題領域的有價值的方法。然而,對于具有不同數據可用性的時間序列數據,還沒有考慮到健壯的技術。在本文中,我們做出了三個主要貢獻來填補這一空白。我們提出了一種新的時間序列數據卷積深度域自適應模型(CoDATS),該模型在現實傳感器數據基準上顯著提高了最先進的DA策略的準確性和訓練時間。通過利用來自多個源域的數據,我們增加了CoDATS的有用性,從而進一步提高了與以前的單源方法相比的準確性,特別是在域之間具有高度可變性的復雜時間序列數據集上。其次,我們提出了一種新的弱監督域自適應(DA-WS)方法,利用目標域標簽分布形式的弱監督,這可能比其他數據標簽更容易收集。第三,我們對不同的真實數據集進行了綜合實驗,以評估我們的域適應和弱監督方法的有效性。結果表明,用于單源DA的CoDATS比最先進的方法有了顯著的改進,并且我們使用來自多個源域和弱監督信號的數據實現了額外的準確性改進。
針對自監督學習的深度聚類是無監督視覺表示學習中一個非常重要和有前途的方向,因為設計前置任務需要較少的領域知識。而關鍵組件嵌入聚類由于需要保存整個數據集的全局潛在嵌入,限制了其擴展到超大規模的數據集。在這項工作中,我們的目標是使這個框架在不降低性能的情況下更加簡單和優雅。提出了一種不使用嵌入聚類的無監督圖像分類框架,與標準的監督訓練方法非常相似。為了進一步解釋,我們進一步分析了其與深度聚類和對比學習的關系。在ImageNet數據集上進行了大量的實驗,驗證了該方法的有效性。此外,在遷移學習基準上的實驗驗證了它對其他下游任務的推廣,包括多標簽圖像分類、目標檢測、語義分割和小樣本圖像分類。
地址:
領域適應(DA)提供了重用數據和模型用于新問題領域的有價值的方法。然而,對于具有不同數據可用性的時間序列數據,還沒有考慮到健壯的技術。在本文中,我們做出了三個主要貢獻來填補這一空白。我們提出了一種新的時間序列數據卷積深度域自適應模型(CoDATS),該模型在現實傳感器數據基準上顯著提高了最先進的DA策略的準確性和訓練時間。通過利用來自多個源域的數據,我們增加了CoDATS的有用性,從而進一步提高了與以前的單源方法相比的準確性,特別是在域之間具有高度可變性的復雜時間序列數據集上。其次,我們提出了一種新的弱監督域自適應(DA-WS)方法,利用目標域標簽分布形式的弱監督,這可能比其他數據標簽更容易收集。第三,我們對不同的真實數據集進行了綜合實驗,以評估我們的域適應和弱監督方法的有效性。結果表明,用于單源DA的CoDATS比最先進的方法有了顯著的改進,并且我們使用來自多個源域和弱監督信號的數據實現了額外的準確性改進。
基于卷積神經網絡的方法在語義分割方面取得了顯著的進展。然而,這些方法嚴重依賴于注釋數據,這是勞動密集型的。為了解決這一限制,使用從圖引擎生成的自動注釋數據來訓練分割模型。然而,從合成數據訓練出來的模型很難轉換成真實的圖像。為了解決這個問題,以前的工作已經考慮直接將模型從源數據調整到未標記的目標數據(以減少域間的差距)。盡管如此,這些技術并沒有考慮到目標數據本身之間的巨大分布差異(域內差異)。在這項工作中,我們提出了一種兩步自監督域適應方法來減少域間和域內的差距。首先,對模型進行域間自適應;在此基礎上,我們使用基于熵的排序函數將目標域分成簡單和困難的兩部分。最后,為了減小域內間隙,我們提出了一種自監督自適應技術。在大量基準數據集上的實驗結果突出了我們的方法相對于現有的最先進方法的有效性。
在需要平衡性能和參數效率的應用中,選擇深度神經網絡結構是一個基本問題。標準方法依賴于特定數據集上的特別工程或計算上昂貴的驗證。相反,我們試圖通過網絡的內在能力來量化網絡的獨特性和健壯性,從而在不需要任何數據的情況下進行有效的架構比較。基于深度學習和稀疏逼近之間的理論聯系,我們提出了深度框架潛力:一種與表征穩定性近似相關的相干性度量,但具有僅依賴于網絡結構的最小值。這為聯合量化架構超參數(如深度、寬度和跳過連接)的貢獻提供了一個框架。我們驗證了它作為模型選擇標準的作用,并證明了它與各種通用殘差和密集連接的網絡架構上的泛化誤差之間的相關性。
場景流估計在三維環境感知中越來越受到重視。單目場景流估計是一個高度不適定的問題,目前缺乏實用的解決方案。單目場景流估計是從兩個時間上連續的圖像中獲取三維結構和三維運動。我們提出了一種新的單目場景流算法,該算法具有較強的精度和實時性。采用逆問題觀點,我們設計了一個單獨的卷積神經網絡(CNN),它可以成功地從一個經典的光流成本體積同時估計深度和三維運動。我們采用帶有三維損失函數和遮擋推理的自監督學習來利用未標記的數據。我們驗證了我們的設計選擇,包括代理丟失和增加設置。我們的模型在單目場景流的無監督/自監督學習方法中達到了最先進的精度,并在光流和單目深度估計子任務中獲得了具有競爭力的結果。半監督微調進一步提高了精度,并在實時產生有希望的結果。
當對一系列學習問題進行優化時,卷積神經網絡會經歷災難性的遺忘:當滿足當前訓練示例的目標時,它們在以前任務中的性能會急劇下降。在這項工作中,我們介紹了一個基于條件計算的新的框架來解決這個問題。
大多數基于圖網絡的元學習方法都對實例級關系進行了建模。我們進一步擴展了這個思想,以1-vs-N的方式顯式地將一個示例的分布級關系建模為所有其他示例的分布級關系。提出了一種新的分布傳播圖網絡(DPGN)學習算法。在每一個小樣本學習任務中,它都傳達了分布層次關系和實例層次關系。為了結合所有實例的分布級關系和實例級關系,我們構造了一個由點圖和分布圖組成的對偶完全圖網絡,其中每個節點都代表一個實例。DPGN具有雙重圖結構,可以在幾個更新代中將標簽信息從帶標簽的示例傳播到未帶標簽的示例。在對小樣本學習基準的大量實驗中,DPGN在監督設置下的5% ~ 12%和在半監督設置下的7% ~ 13%的范圍內都比最新的結果好得多。代碼可以在//github.com/megviiresearch/DPGN找到。
題目: Milking CowMask for Semi-Supervised Image Classification
摘要:
一致性正則化是一種用于半監督學習的技術,最近被證明可以在標記數據很少的情況下產生強大的分類結果。該方法通過增加或反例擾動輸入數據,并鼓勵所學習的模型對未標記數據的擾動具有魯棒性。在這里,我們評估了一種最近提出的增強方法,稱為CowMasK。在半監督一致性正則化中,使用CowMask作為增強方法,我們在Imagenet上建立了一個新的最優結果,標記數據為10%,前5位誤差為8.76%,前1位誤差為26.06%。此外,我們使用的方法比其他方法簡單得多。我們通過在小型圖像基準SVHN、CIFAR-10和CIFAR-100上運行許多較小規模的實驗,進一步研究了CowMask用于半監督學習的行為,在這些實驗中,我們獲得了與現有水平相當的結果,并且發現了CowMask擾動廣泛適用的證據。
人工智能技術在醫學影像領域的應用是醫學研究的熱點之一。然而,這一領域最近的成功主要依賴于大量仔細注釋的數據,而對醫學圖像進行注釋是一個昂貴的過程。在本文中,我們提出了一種新的方法,稱為FocalMix,據我們所知,這是第一個利用半監督學習(SSL)的最新進展來進行3D醫學圖像檢測的方法。我們對兩個廣泛應用的肺結節檢測數據集LUNA16和NLST進行了廣泛的實驗。結果表明,與最先進的監督學習方法相比,我們提出的SSL方法可以通過400個未標記的CT掃描實現高達17.3%的實質性改進。
題目: Multi-Modal Domain Adaptation for Fine-Grained Action Recognition
摘要: 細粒度動作識別數據集表現出環境偏差,其中多個視頻序列是從有限數量的環境中捕獲的。在一個環境中訓練一個模型,然后部署到另一個環境中,由于不可避免的領域轉換,會導致性能下降。無監督域適應(UDA)方法經常用于源域和目標域之間的對抗訓練。然而,這些方法并沒有探索視頻在每個領域的多模態性質。在這個工作我們利用模式的通信作為UDA self-supervised對齊的方法除了敵對的對齊(圖1),我們測試我們的方法在三個廚房從大規模的數據集,EPIC-Kitchens,使用兩種方法通常用于行為識別:RGB和光學流。結果表明,多模態的自監督比單純的訓練平均提高了2.4%。然后我們將對抗訓練與多模態自我監督相結合,結果表明我們的方法比其他的UDA方法高3%。