亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

領域適應(DA)提供了重用數據和模型用于新問題領域的有價值的方法。然而,對于具有不同數據可用性的時間序列數據,還沒有考慮到健壯的技術。在本文中,我們做出了三個主要貢獻來填補這一空白。我們提出了一種新的時間序列數據卷積深度域自適應模型(CoDATS),該模型在現實傳感器數據基準上顯著提高了最先進的DA策略的準確性和訓練時間。通過利用來自多個源域的數據,我們增加了CoDATS的有用性,從而進一步提高了與以前的單源方法相比的準確性,特別是在域之間具有高度可變性的復雜時間序列數據集上。其次,我們提出了一種新的弱監督域自適應(DA-WS)方法,利用目標域標簽分布形式的弱監督,這可能比其他數據標簽更容易收集。第三,我們對不同的真實數據集進行了綜合實驗,以評估我們的域適應和弱監督方法的有效性。結果表明,用于單源DA的CoDATS比最先進的方法有了顯著的改進,并且我們使用來自多個源域和弱監督信號的數據實現了額外的準確性改進。

付費5元查看完整內容

相關內容

領域自適應是與機器學習和轉移學習相關的領域。 當我們的目標是從源數據分布中學習在不同(但相關)的目標數據分布上的良好性能模型時,就會出現這種情況。 例如,常見垃圾郵件過濾問題的任務之一在于使模型從一個用戶(源分發)適應到接收顯著不同的電子郵件(目標分發)的新模型。 注意,當有多個源分發可用時,該問題被稱為多源域自適應。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

本文研究如何更好聚合網絡拓撲信息和特征信息。中心思想是,構造了結構圖,特征圖(feature graph),以及兩者的組合來提取特定的和通用的嵌入,并使用注意機制來學習嵌入的自適應重要性權重。實驗發現,AM-GCN可以從節點特征和拓撲結構中提取自適應地提取相關的信息,對應不同的參數取值。 //arxiv.org/abs/2007.02265

摘要:圖卷積網絡(GCNs)在處理圖數據和網絡數據的各種分析任務方面得到了廣泛的應用。然而,最近的一些研究提出了一個問題,即GCNs是否能夠在一個信息豐富的復雜圖形中優化地整合節點特征和拓撲結構。在本文中,我們首先提出一個實驗研究。令人驚訝的是,我們的實驗結果清楚地表明,當前的GCNs融合節點特征和拓撲結構的能力遠遠不是最優的,甚至是令人滿意的。由于GCNs無法自適應地學習拓撲結構與節點特征之間的一些深層次關聯信息,這一弱點可能會嚴重阻礙GCNs在某些分類任務中的能力。我們能否彌補這一缺陷,設計出一種新型的GCNs,既能保留現有GCNs的優勢,又能大幅度提高拓撲結構和節點特征融合的能力?為了解決這個問題,我們提出了一種自適應多通道半監督分類圖卷積網絡。其核心思想是同時從節點特征、拓撲結構及其組合中提取具體的和常見的嵌入,并利用注意機制學習嵌入的自適應重要度權值。我們在基準數據集上進行的大量實驗表明,AM-GCN從節點特征和拓撲結構中提取了最多的相關信息,顯著提高了分類精度。

付費5元查看完整內容

針對自監督學習的深度聚類是無監督視覺表示學習中一個非常重要和有前途的方向,因為設計前置任務需要較少的領域知識。而關鍵組件嵌入聚類由于需要保存整個數據集的全局潛在嵌入,限制了其擴展到超大規模的數據集。在這項工作中,我們的目標是使這個框架在不降低性能的情況下更加簡單和優雅。提出了一種不使用嵌入聚類的無監督圖像分類框架,與標準的監督訓練方法非常相似。為了進一步解釋,我們進一步分析了其與深度聚類和對比學習的關系。在ImageNet數據集上進行了大量的實驗,驗證了該方法的有效性。此外,在遷移學習基準上的實驗驗證了它對其他下游任務的推廣,包括多標簽圖像分類、目標檢測、語義分割和小樣本圖像分類。

地址:

//arxiv.org/abs/2006.11480

付費5元查看完整內容

隨著web技術的發展,多模態或多視圖數據已經成為大數據的主要流,每個模態/視圖編碼數據對象的單個屬性。不同的模態往往是相輔相成的。這就引起了人們對融合多模態特征空間來綜合表征數據對象的研究。大多數現有的先進技術集中于如何融合來自多模態空間的能量或信息,以提供比單一模態的同行更優越的性能。最近,深度神經網絡展示了一種強大的架構,可以很好地捕捉高維多媒體數據的非線性分布,對多模態數據自然也是如此。大量的實證研究證明了深多模態方法的優勢,從本質上深化了多模態深特征空間的融合。在這篇文章中,我們提供了從淺到深空間的多模態數據分析領域的現有狀態的實質性概述。在整個調查過程中,我們進一步指出,該領域的關鍵要素是多模式空間的協作、對抗性競爭和融合。最后,我們就這一領域未來的一些方向分享我們的觀點。

付費5元查看完整內容

領域適應(DA)提供了重用數據和模型用于新問題領域的有價值的方法。然而,對于具有不同數據可用性的時間序列數據,還沒有考慮到健壯的技術。在本文中,我們做出了三個主要貢獻來填補這一空白。我們提出了一種新的時間序列數據卷積深度域自適應模型(CoDATS),該模型在現實傳感器數據基準上顯著提高了最先進的DA策略的準確性和訓練時間。通過利用來自多個源域的數據,我們增加了CoDATS的有用性,從而進一步提高了與以前的單源方法相比的準確性,特別是在域之間具有高度可變性的復雜時間序列數據集上。其次,我們提出了一種新的弱監督域自適應(DA-WS)方法,利用目標域標簽分布形式的弱監督,這可能比其他數據標簽更容易收集。第三,我們對不同的真實數據集進行了綜合實驗,以評估我們的域適應和弱監督方法的有效性。結果表明,用于單源DA的CoDATS比最先進的方法有了顯著的改進,并且我們使用來自多個源域和弱監督信號的數據實現了額外的準確性改進。

付費5元查看完整內容

將圖表示學習與多視圖數據(邊信息)相結合進行推薦是行業發展的趨勢。現有的方法大多可以歸類為多視圖表示融合;他們首先構建一個圖,然后將多視圖數據集成到圖中每個節點的一個緊湊表示中。然而,這些方法在工程和算法方面都引起了關注:1)多視圖數據在工業中是豐富的,信息量大,可能超過單個向量的容量,2)由于多視圖數據往往來自不同的分布,可能會引入歸納偏差。在本文中,我們使用一種多視圖表示對齊方法來解決這個問題。特別地,我們提出了一個多任務多視圖圖表示學習框架(M2GRL)來學習網絡規模推薦系統的多視圖圖的節點表示。M2GRL為每個單視圖數據構造一個圖,從多個圖中學習多個單獨的表示,并對跨視圖關系進行對齊。M2GRL選擇多任務學習范式,共同學習視圖內表示和跨視圖關系。此外,M2GRL利用同方差不確定性自適應調整訓練任務的權重損失。我們在淘寶上部署了M2GRL,并在570億個例子上訓練它。根據離線指標和在線A/B測試,M2GRL的性能顯著優于其他最先進的算法。淘寶多樣性推薦的進一步探索表明了利用所產生的多種表示的有效性,我們認為這對于不同焦點的行業推薦任務是一個很有前景的方向。

付費5元查看完整內容

基于卷積神經網絡的方法在語義分割方面取得了顯著的進展。然而,這些方法嚴重依賴于注釋數據,這是勞動密集型的。為了解決這一限制,使用從圖引擎生成的自動注釋數據來訓練分割模型。然而,從合成數據訓練出來的模型很難轉換成真實的圖像。為了解決這個問題,以前的工作已經考慮直接將模型從源數據調整到未標記的目標數據(以減少域間的差距)。盡管如此,這些技術并沒有考慮到目標數據本身之間的巨大分布差異(域內差異)。在這項工作中,我們提出了一種兩步自監督域適應方法來減少域間和域內的差距。首先,對模型進行域間自適應;在此基礎上,我們使用基于熵的排序函數將目標域分成簡單和困難的兩部分。最后,為了減小域內間隙,我們提出了一種自監督自適應技術。在大量基準數據集上的實驗結果突出了我們的方法相對于現有的最先進方法的有效性。

付費5元查看完整內容

【導讀】計算機視覺頂會CVPR 2020在不久前公布了論文接收列表。本屆CVPR共收到了6656篇有效投稿,接收1470篇,其接受率在逐年下降,今年接受率僅為22%。近期,一些Paper放出來,Domain Adaptation(域自適應)相關研究非常火熱,特別是基于Domain Adaptation的視覺應用在今年的CVPR中有不少,專知小編整理了CVPR 2020 域自適應(DA)相關的比較有意思的值得閱讀的六篇論文,供大家參考—行為分割、語義分割、目標檢測、行為識別、域自適應檢索。

  1. Action Segmentation with Joint Self-Supervised Temporal Domain Adaptation

作者:Min-Hung Chen, Baopu Li, Yingze Bao, Ghassan AlRegib, Zsolt Kira

摘要:盡管最近在全監督行為分割(action segmentation)技術方面取得了一些進展,但性能仍然不盡如人意。一個主要挑戰是時空變化問題(例如,不同的人可能以不同的方式進行相同的活動)。因此,我們利用無標簽視頻將行為分割任務重新表述為一個具有時空變化引起的域差異的跨域問題來解決上述時空變化問題。為了減少這種域差異,我們提出了自監督時域自適應(SSTDA),它包含兩個自監督輔助任務(二進制和序列域預測)來聯合對齊嵌入局部和全局時間動態的跨域特征空間,取得了比其他域自適應(DA)方法更好的性能。在三個具有挑戰性的基準數據集(GTEA、50Salads和Breakfast)上,SSTDA的表現遠遠超過當前最先進的方法(在Breakfas上F1@25得分從59.6%到69.1%,在50Salads上F1@25得分從73.4%到81.5%,在GTEA上F1@25得分從83.6%到89.1%),并且只需要65%的標記訓練數據來就實現了該性能,這表明了SSTDA在各種變化中適應未標記目標視頻的有效性。

網址:

代碼鏈接:

  1. Differential Treatment for Stuff and Things:A Simple Unsupervised Domain Adaptation Method for Semantic Segmentation

作者:Zhonghao Wang, Mo Yu, Yunchao Wei, Rogerior Feris, Jinjun Xiong, Wen-mei Hwu, Thomas S. Huang, Honghui Shi

摘要:本文通過緩解源域(合成數據)和目標域(真實數據)之間的域轉換(domain shift),研究語義分割中的無監督域自適應問題。之前的方法證明,執行語義級對齊有助于解決域轉換問題。我們觀察到事物類別通常在不同域的圖像之間具有相似的外觀,而事物(即目標實例)具有更大的差異,我們提出使用針對填充(stuff)區域和事物的不同策略來改進語義級別的對齊方式:1)對于填充類別,我們為每一類生成特征表示,并進行從目標域到源域的對齊操作;2)對于事物(thing)類別,我們為每個單獨的實例生成特征表示,并鼓勵目標域中的實例與源域中最相似的實例對齊。以這種方式,事物類別內的個體差異也將被考慮,以減輕過度校準。除了我們提出的方法之外,我們還進一步揭示了當前對抗損失在最小化分布差異方面經常不穩定的原因,并表明我們的方法可以通過最小化源域和目標域之間最相似的內容和實例特征來幫助緩解這個問題。

網址:

  1. Exploring Categorical Regularization for Domain Adaptive Object Detection

作者:Chang-Dong Xu, Xing-Ran Zhao, Xin Jin, Xiu-Shen Wei

摘要:在本文中,我們解決了域自適應目標檢測問題,其中的主要挑戰在于源域和目標域之間存在明顯的域差距。以前的工作試圖明確地對齊圖像級和實例級的移位,以最小化域差異。然而,它們仍然忽略了去匹配關鍵圖像區域和重要的跨域實例,這將嚴重影響域偏移緩解。在這項工作中,我們提出了一個簡單有效的分類正則化框架來緩解這個問題。它可以作為一個即插即用(plug-and-play)組件應用于一系列域自適應Faster R-CNN方法,這些方法在處理域自適應檢測方面表現突出。具體地說,由于分類方式的定位能力較弱,通過在檢測主干上集成圖像級多標簽分類器,可以獲得與分類信息相對應的稀疏但關鍵的圖像區域。同時,在實例級,我們利用圖像級預測(分類器)和實例級預測(檢測頭)之間的分類一致性作為正則化因子,自動尋找目標域的硬對齊實例。各種域轉移場景的大量實驗表明,與原有的域自適應Faster R-CNN檢測器相比,我們的方法獲得了顯著的性能提升。此外,定性的可視化和分析可以證明我們的方法能夠關注針對領域適配的關鍵區域/實例。

網址:

代碼鏈接:

  1. Multi-Modal Domain Adaptation for Fine-Grained Action Recognition

作者:Jonathan Munro, Dima Damen

摘要:細粒度行為識別數據集存在出環境偏差,多個視頻序列是從有限數量的環境中捕獲的。在一個環境中訓練模型并在另一個環境中部署會由于不可避免的域轉換而導致性能下降。無監督域適應(UDA)方法經常利用源域和目標域之間進行對抗性訓練。然而,這些方法并沒有探索視頻在每個域中的多模式特性。在這項工作中,除了對抗性校準之外,我們還利用模態之間的對應關系作為UDA的一種自監督校準方法。

我們在大規模數據集EPIC-Kitchens中的三個kitchens上使用行為識別的兩種模式:RGB和光學流(Optical Flow)測試了我們的方法。結果顯示,僅多模態自監督比僅進行源訓練的性能平均提高了2.4%。然后,我們將對抗訓練與多模態自監督相結合,表明我們的方法比其他UDA方法要好3%。

網址:

  1. Learning Texture Invariant Representation for Domain Adaptation of Semantic Segmentation

作者:Myeongjin Kim, Hyeran Byun

摘要:由于用于語義分割的像素級標簽標注很費力,因此利用合成數據是一種更好的解決方案。然而,由于合成域和實域之間存在領域鴻溝,用合成數據訓練的模型很難推廣到真實數據。本文將這兩個領域之間的根本差異作為紋理,提出了一種自適應目標域紋理的方法。首先,我們使用樣式轉移算法使合成圖像的紋理多樣化。合成圖像的各種紋理防止分割模型過擬合到一個特定(合成)紋理。然后,通過自訓練對模型進行微調,得到對目標紋理的直接監督。我們的結果達到了最先進的性能,并通過大量的實驗分析了在多樣化數據集上訓練的模型的性質。

網址:

  1. Probability Weighted Compact Feature for Domain Adaptive Retrieval

作者:Fuxiang Huang, Lei Zhang, Yang Yang, Xichuan Zhou

摘要:域自適應圖像檢索包括單域檢索和跨域檢索。現有的圖像檢索方法大多只關注單個域的檢索,假設檢索數據庫和查詢的分布是相似的。然而,在實際應用中,通常在理想光照/姿態/背景/攝像機條件下獲取的檢索數據庫與在非受控條件下獲得的查詢之間的差異很大。本文從實際應用的角度出發,重點研究跨域檢索的挑戰性問題。針對這一問題,我們提出了一種有效的概率加權緊湊特征學習(PWCF)方法,它提供域間相關性指導以提高跨域檢索的精度,并學習一系列緊湊二進制碼(compact binary codes)來提高檢索速度。首先,我們通過最大后驗估計(MAP)推導出我們的損失函數:貝葉斯(BP)誘發的focal-triplet損失、BP誘發的quantization損失和BP誘發的分類損失。其次,我們提出了一個通用的域間復合結構來探索域間的潛在相關性。考慮到原始特征表示因域間差異而存在偏差,復合結構難以構造。因此,我們從樣本統計的角度提出了一種新的特征—鄰域直方圖特征(HFON)。在不同的基準數據庫上進行了大量的實驗,驗證了我們的方法在領域自適應圖像檢索中的性能優于許多最先進的圖像檢索方法。

網址:

代碼鏈接:

付費5元查看完整內容

題目: Multi-Modal Domain Adaptation for Fine-Grained Action Recognition

摘要: 細粒度動作識別數據集表現出環境偏差,其中多個視頻序列是從有限數量的環境中捕獲的。在一個環境中訓練一個模型,然后部署到另一個環境中,由于不可避免的領域轉換,會導致性能下降。無監督域適應(UDA)方法經常用于源域和目標域之間的對抗訓練。然而,這些方法并沒有探索視頻在每個領域的多模態性質。在這個工作我們利用模式的通信作為UDA self-supervised對齊的方法除了敵對的對齊(圖1),我們測試我們的方法在三個廚房從大規模的數據集,EPIC-Kitchens,使用兩種方法通常用于行為識別:RGB和光學流。結果表明,多模態的自監督比單純的訓練平均提高了2.4%。然后我們將對抗訓練與多模態自我監督相結合,結果表明我們的方法比其他的UDA方法高3%。

付費5元查看完整內容

元學習的研究越來越受到學者們的重視,從最初在圖像領域的研究逐漸拓展到其他領域,目前推薦系統領域也出現了相關的研究問題,本文介紹了5篇基于元學習的推薦系統相關論文,包括用戶冷啟動推薦、項目冷啟動推薦等。

  1. MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation

本文提出了一種新的推薦系統,解決了基于少量樣本物品來估計用戶偏好的冷啟動問題。為了確定用戶在冷啟動狀態下的偏好,現有的推薦系統,如Netflix,在啟動初向用戶提供物品選擇,我們稱這些物品為候選集。然后根據用戶選擇的物品做出推薦。以往的推薦研究有兩個局限性:(1) 只有少量物品交互行為的用戶推薦效果不佳,(2) 候選集合不足,無法識別用戶偏好。為了克服這兩個限制,我們提出了一種基于元學習的推薦系統MeLU。從元學習中,MeLU可以通過幾個例子快速地應用于新任務,通過幾個消費物品來估計新用戶的偏好。此外,我們提供了一個候選集合選擇策略,以確定自定義偏好估計的區分項目。我們用兩個基準數據集對MeLU進行了驗證,與兩個對比模型相比,該模型的平均絕對誤差至少降低了5.92%。我們還進行了用戶研究實驗來驗證選擇策略的有效性。

  1. Meta-Learning for User Cold-Start Recommendation 冷啟動問題是對實際推薦系統的長期挑戰。大多數現有的推薦算法依賴于大量的觀測數據,對于很少交互的推薦場景來說是脆弱的。本文用少樣本學習和元學習來解決這些問題。我們的方法是基于這樣一種見解,即從幾個例子中有一個很好的泛化,依賴于一個通用的模型初始化和一個有效的策略來使這個模型適應新出現的任務。為了實現這一點,我們將場景指定的學習與模型無關的序列元學習結合起來,并將它們統一到一個集成的端到端框架中,即場景指定的序列元學習者(或s^2 Meta)。我們的元學習器通過聚合來自各種預測任務的上下文信息來生成一個通用的初始模型,同時通過利用學習到的知識來有效地適應特定的任務。在各種現實世界數據集上的實驗表明,我們提出的模型可以在在線推薦任務中獲得對冷啟動問題的最好效果。

  2. Sequential Scenario-Specific Meta Learner for Online Recommendation

冷啟動問題是對實際推薦系統的長期挑戰。大多數現有的推薦算法依賴于大量的觀測數據,對于很少交互的推薦場景來說是脆弱的。本文用少樣本學習和元學習來解決這些問題。我們的方法是基于這樣一種見解,即從幾個例子中有一個很好的泛化,依賴于一個通用的模型初始化和一個有效的策略來使這個模型適應新出現的任務。為了實現這一點,我們將場景指定的學習與模型無關的序列元學習結合起來,并將它們統一到一個集成的端到端框架中,即場景指定的序列元學習者(或s^2 Meta)。我們的元學習器通過聚合來自各種預測任務的上下文信息來生成一個通用的初始模型,同時通過利用學習到的知識來有效地適應特定的任務。在各種現實世界數據集上的實驗表明,我們提出的模型可以在在線推薦任務中獲得對冷啟動問題的最好效果。

  1. A Meta-Learning Perspective on Cold-Start Recommendations for Items 矩陣分解(M F)是最流行的項目(item)推薦技術之一,但目前存在嚴重的冷啟動問題。項目冷啟動問題在一些持續輸出項目的平臺中顯得特別尖銳(比如Tweet推薦)。在本文中,我們提出了一種元學習策略,以解決新項目不斷產生時的項目冷啟動問題。我們提出了兩種深度神經網絡體系結構,實現了我們的元學習策略。第一個體系結構學習線性分類器,其權重由項目歷史決定,而第二個體系結構學習一個神經網絡。我們評估了我們在Tweet推薦的現實問題上的效果,實驗證明了我們提出的算法大大超過了MF基線方法。

  2. One-at-a-time: A Meta-Learning Recommender-System for Recommendation-Algorithm Selection on Micro Level

推薦算法的有效性通常用評價指標來評估,如均方根誤差、F1或點擊率CTR,在整個數據集上計算。最好的算法通常是基于這些總體度量來選擇的,然而,對于所有用戶、項目和上下文來說并沒有一個單獨的最佳算法。因此,基于總體評價結果選擇單一算法并不是最優的。在本文中,我們提出了一種基于元學習的推薦方法,其目的是為每個用戶-項目對選擇最佳算法。我們使用MovieLens 100K和1m數據集來評估我們的方法。我們的方法(RMSE,100K:0.973;1M:0.908)沒有優于單個的最佳算法SVD++(RMSE,100k:0.942;1M:0.887)。我們還探索了元學習者之間的區別,他們在每個實例(微級別),每個數據子集(中級)和每個數據集(全局級別)上進行操作。評估表明,與使用的總體最佳算法相比,一個假設完美的微級元學習器將提高RMSE 25.5%。

付費5元查看完整內容
北京阿比特科技有限公司