亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

美國海軍研究生院(NPS)機器人和無人系統教育與研究聯盟(CRUSER)的多線程實驗(MTX)計劃包含多個研究目標,其總體目標是開發通用的 UxV 網絡化控制系統(NCS)。本報告包括過去四年的工作。首先是2017年11月1日至17日在加利福尼亞州圣克萊門特島進行的初步概念演示,使用(4)無人機(UAV)、(2)無人水面航行器(USV)和(2)無人水下航行器(UUV)支持海軍特種作戰(NSW)直接行動任務場景,由COMTHIRDFLT艦提供指揮和控制以及模擬隨時可用的分布式火力支援。報告介紹了結果以及為實現美國防部任務目標而部署 UxV NCS 的潛在挑戰和未來挑戰。

引言

移動式無人系統具有無與倫比的收集信息和抵消戰場上數量劣勢的能力,同時還能降低人員風險。這些優勢在阿塞拜疆和亞美尼亞最近的納戈爾諾-卡拉巴赫戰爭中表現得淋漓盡致。阿塞拜疆兵力在之前的戰爭中輸給了亞美尼亞,他們能夠利用無人機系統通過精確射擊迅速建立空中優勢,從而實現地面機動。這些行動的規模和速度可能預示著頂尖對手的未來戰略。

美國海軍司令部的《2021 年海軍計劃》[1] 承認了這一現實,并將對無人系統的依賴作為海軍力量投送的基本組成部分......

"無人平臺在我們未來的艦隊中發揮著至關重要的作用。成功整合海下、海上和空中的無人平臺,將為我們的指揮官提供更好的選擇,以便在有爭議的空間作戰并取得勝利。它們將擴大我們在情報、監視和偵察方面的優勢,增加我們導彈庫的深度,并為我們的分布式兵力提供額外的補給手段。此外,向小型平臺發展可提高我們的攻擊力,同時也為海軍的發展提供了經濟實惠的解決方案。通過分析、模擬、原型設計和演示,我們將系統地部署和運行具有耐久性和復原力的系統,使其能夠在不經常與人互動的情況下運行。到本十年末,我們的水兵必須具備在海上與經過驗證的無人平臺一起操作的高度信心和技能"。

在這一新的現實情況下,由無人駕駛系統組成的網絡化協作團隊可以通過共享信息和責任來進一步提高任務效率,從而改進作戰知識、速度和精確度。從 2017 年開始,我們在海軍研究生院(NPS)的工作重點是研究和實驗無人機、水面、地面和海底平臺的協作配對--UxV 網絡化控制系統。

根據海軍最近發布的 "UNMANNED "活動計劃[2],由 NPS CRUSER 資助的 "多線程實驗(MTX)"計劃旨在開發一個初步的移動式 UxV 網絡化控制系統(NCS)。NCS 是一個由移動代理(有人和無人系統)組成的分布式系統,通過無線網絡交換傳感、制導、導航、控制和通信信息,以支持任務目標。從系統控制的角度來看,由于引入了時變延遲、不完善的信息交換和信息丟失,增加了無線網絡的復雜性。

無人系統的異質組合包括不同的通信、傳感和導航模式。這增加了非接觸式控制系統的多樣性和魯棒性。通信可通過多種方式傳輸,包括聲學、無線電和光學設備。每種模式都具有影響整體網絡性能的性能特征。另外需要考慮的是代理的定位,以優化這些通信鏈路;這包括在領域之間提供中繼的代理(例如,USV 可以充當聲學和射頻傳輸路徑之間的移動通信網關浮標)。

傳感設備通常針對其運行的物理環境。非接觸式傳感器可能包括聲納、雷達、激光雷達和照相機。它可以產生大量數據。為了避免移動代理之間有限的網絡帶寬超載,對傳感器數據進行處理以過濾掉多余的信息可大大減輕網絡負荷。在 UxV 的導航和控制方面,每輛 UxV 都有不同的特點,包括在站時間、機動性、速度、可探測性和覆蓋率。這些車輛可以協同工作,以取得更好的效果,其中包括定位和多傳感器檢測與分類。

總體而言,移動式 UxV NCS 支持傳統的軍事任務領域,其中包括:協同搜索、協同覆蓋、分布式火力、混合控制和編隊控制,但該方法的核心原則是系統多樣性可增強魯棒性,并為更廣泛的軍事任務提供有用的方法。

與 UxV NCS 相關的一些最關鍵的一般性研究問題包括以下幾個方面:

1.如何控制系統?系統控制的考慮因素包括集中式、分布式還是組合式。另一個考慮因素是人類在系統控制中的作用。可供選擇的方案包括 "人在回路"(HITL)和 "人在回路"(HOTL)。"人在回路 "是指系統能夠自主行動,但人類可以觀察系統,并在需要時進行指揮和控制(C2)。

2.如何優化系統?令人感興趣的是如何安置無人系統以支持地面行動。例如,在能力(如通信和傳感)、任務目標、持續時間、穩健性和靈活性方面進行優化。

3.這些系統有哪些特性和弱點?弱點的一個例子可能是敵對兵力摸清任務目標或部隊演習的能力。

4.自主性在系統開發中的作用是什么?在可預見的未來,軍用 UxV NCS 將需要人類決策。鑒于將有一個人工智能/機器學習(AI/ML)系統自治組件來定位無人系統,一個重要的問題將是設計控制自治和人類決策者之間的接口,以允許透明度、靈活性和控制。

系統結構

圖 (1.1) 顯示了系統結構。它強調模塊化方法,類似于開放系統互連(OSI)模型[3]。它由以下幾層組成:

1.第 1 層:移動代理--組成網絡的有人和無人系統。每個節點都有與其能力相關的獨特參數。這包括但不限于節點的移動性、能量、速度、傳感、通信和計算處理能力。

2.第 2 層:通信--通信能力對于 NCS 的可控性和可觀測性至關重要。它并不局限于單一的通信基礎設施(如無線通信),而是可以由多種模式組成。對于 MTX,既有射頻通信,也有聲學通信。射頻網絡由 Persistent Systems 公司的網狀中繼無線電代表。網狀中繼包括一個路由發現服務軟件組件,可自動為代理之間的信息通信確定路由。通信的一個重要組成部分是能夠使用與通信介質相關的連接指標,以確保系統的可控性。例如,通過應用程序接口,可以測量無線電之間的信道統計數據,如信噪比(SNR)。這可用于優化網絡內的系統定位,確保控制和感知數據能通過網絡可靠傳輸。

3.第 3 層:信息--信息層是一個抽象層,代表通過網絡傳輸的協議和內容。信息層包括 UxV 狀態、傳感器數據和互連數據。狀態數據提供了代理的位置、方向(及其導數)和物質條件。互聯數據(來自通信應用程序接口)用于控制和導航。它是網絡中本地可行的路徑。這為確定適當的控制策略提供了必要的輸入,以完成在節點之間創建穩健的通信路徑等任務。信息層支持與 AI/ML 方法相關的自主推理,特別是在多傳感器融合方面。

4.第 4 層:控制與導航--這是系統在通信、傳感、能源、時間和車輛動態等限制條件下實現任務目標的能力。系統控制可以是集中式和/或分布式的。集中式和分布式控制能力可能會增加處理多種任務場景的靈活性。它包括所有系統節點的軌跡或路徑規劃,包括對載人系統的建議。

5.第 5 層:人類/機器人接口(HRI)--HRI 包括人類控制系統的潛力和 NCS 向用戶提供及時信息的能力。設計的一個重點是能夠以較少的人員控制更多的代理。

6.第 6 層:賽博安全--保護所有層的是一個賽博安全模型。這包括應用安全、信息安全、網絡安全、算法安全、災難恢復和最終用戶合規性。

技術三要素

機器人技術、互聯網-網絡和人工智能/移動語言三位一體的技術(圖 1.2)推動了更高水平的自主性。每項技術都會對上述所有系統架構層產生影響。對于 UxV NCS 而言,機器人技術的關鍵問題包括 1). 實現后勤和維護自動化,以便快速部署和恢復多個無人系統。2). 減少操作和維護無人系統所需的兵力。提高 "齒-尾 "比,通過提高作戰靈活性和降低兵力保護要求來提高任務效率。

AI/ML 的突出問題圍繞信任展開。這些問題包括:透明度/可解釋性、倫理考慮、系統可控性、穩健性和可靠性 [4],[5]。互聯網絡的問題包括:開發通用靈活的通信模型,以支持系統效用最大化;開發用于動態數據包路由規劃的網狀無線電算法;開發面向服務的架構,以根據數據包的重要性確定網絡流的優先級。

三要素的核心是計算。它強調了計算對系統性能的影響。無人平臺的類型會影響機載可用計算量。較小的無人飛行器和無人潛航器的機載計算量往往有限,而 USV 和 UGV 在安裝額外計算機方面可能更具靈活性。在設計和使用系統時,可能需要明確考慮相應的卸載處理和定位代理。

圖 1.2:技術三要素--機器人技術、互聯網技術和人工智能/移動通信技術影響著非接觸式傳感器模型堆棧的各個層面,同時也凸顯出非接觸式傳感器的設計和信息流受到每個平臺上可用計算能力的重大影響。

無人系統概述

MTX 的無人駕駛系統幾乎全部由 NPS 自主車輛研究中心 (CAVR) 提供。所有系統都具有 WiFi 功能,UUV 是唯一沒有 Persistent Systems 網狀中繼無線電的航行器。它們在海底使用聲學調制解調器傳遞信息。NCS 無人系統包括以下設備:

1.(2) NPS REMUS 無人潛航器--這些 Hydroid 系統是專門的 REMUS 100 無人潛航器,包括以下傳感和導航功能: 導航級慣性導航系統(INS)、上下視聲學多普勒海流剖面儀(ADCP)、900/1800 KHz 側掃聲納、Blueview 450 前視聲納和 2.25 GHz 微型測深聲納、WHOI 聲學微型調制解調器、GPS 和 WiFi。

2.(2) NPS SeaFox USV--該系統由 Northwind Marine 制造。第一個船體作為移動通信中繼浮標,能夠將聲學調制解調器插入水中,用于收集 UUV 的聲學數據并通過 UAV 傳播給用戶。第二個船體用于插入海豹突擊隊,并安裝有雷達,用于探測水面交通。SeaFoxs 采用噴水發動機,使用 JP-5 燃料,航速超過 40 節。

3.(2) NPS ScanEagles--由 Insitu 公司制造,這些無人機由 NPS 和 NAVSPECWAR 第一特種偵察隊共同操作。無人駕駛飛行器經過改裝,安裝了國家航空航天研究所中國湖制造的電源控制板(PCB)和國家航空航天研究所的二級控制器中央處理器。這樣就能夠收集狀態信息,并通過網狀無線電分發數據。

4.(1) Shield AI 四旋翼飛行器--四旋翼飛行器用于在建筑物內搜索,以探測名義上的放射性設備,這是新南威爾士州任務場景的目標。在沒有 GPS 的情況下,僅使用照相機和基本的死算算法進行導航的能力被稱為 SLAM(同步定位和繪圖),對于室內、太空和海底等 GPS 信號衰減或被拒絕的環境至關重要。

所有 NPS UxV 系統的一個關鍵設計考慮因素是采用二級控制器架構。所有 NPS 系統都是軍用級系統。這些系統現在或過去一直是軍事庫存中的作戰兵力。二級控制器是一臺已安裝的計算機,通過通信應用程序員接口(API),可以發送控制無人系統的超控命令,并接收主控制器發送的狀態信息。一般來說,這允許將較高層次的自主性(如路線規劃)與低層次的指令(如控制系統執行器沿路徑運行)分離開來。這種方法假定制造商提供 "底層 "控制和通信 API。這可以大大加快開發過程,無論無人系統制造商是誰,都可將其視為擴展多代理系統不可或缺的組成部分。這種方法的一個例子是 Hydroid REMUS RECON 或遠程控制協議 (RCP) API。

圖1.3:CAVR ROS架構

圖 (1.3) 顯示了 CAVR 二級控制器架構的整體軟件架構。它使用 Linux 操作系統(Ubuntu 18.04)和機器人操作系統(ROS)Melodic Morenia 作為軟件中間件。每個方框代表一個 ROS 節點。信息從左到右流動。方框的顏色反映了 ROS 節點的功能。從各種傳感器(紫色)收集數據。感知器處理傳感器數據(粉色),并將這些信息輸入映射組件(綠色)。這些信息將作為路徑規劃和狀態估計(橙色)的輸入。

還有用于管理飛行器導航的流程(淺藍色)。其中包括任務管理器、任務管理器、規劃器和控制器。此外,還有一個健康監測器(淺黃色)。最后還有一些流程,包括主控制器發送和接收信息,以及模擬和執行器(深綠色)。

其余文件詳細描述了與 MTX 相關的研究和實驗。其中包括圣克萊門特島(SCI)演示,但也包括在加利福尼亞州尤馬試驗場(YPG)和羅伯茨營使用 NPS ScanEagle 進行的測試、在加利福尼亞州蒙特雷灣進行的 UUV 和 USV 測試,以及與整個 NCS 系統方法相關的最新進展。實驗 "主線 "包括 用于 NCS 優化的高級自主性、UxV 通信優化、支持道路網絡攔截的最佳無人機軌跡、移動網狀網絡性能和分析、使用適應領域的卷積神經網絡進行道路網絡的跨領域識別,以及自動創建標簽點云數據集以支持基于機器學習的感知。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

人工智能和增強認知(AI;包含兩者)已經為美國空軍(USAF)的重要職能提供了指導。到 2030 年,人工智能將滲透到空軍的所有任務領域。正如美國空軍明確指出的,對美國空軍科學至關重要的是,"未來不會自己發明自己"。據此,本報告的目標是幫助設想和指導美國空軍發明未來的人工智能。因此,需要的是充分利用人工智能并推動其發展的研發工作,以及如何提升空軍在所有任務領域保護國家的能力。

美國空軍豐富的技術歷史可追溯到幾十年前(如 McCulloch & Pitts,1943 年;Rosenblatt,1958 年;Rummelhart 等人,1985 年;Hopfield,1988 年),但隨著計算能力的進步,許多技術已迅速發展(LeCun 等人,1998 年;Hassabis 等人,2017 年),它們已經或即將在作戰環境中無處不在。2030 年,它們很可能成為美國空軍武器裝備的核心。從自主無人機到人類可穿戴設備,智能機器及其與人類的接口正在接近徹底改變我國空軍兵力作戰環境的臨界點。我們將這一最新趨勢稱為 人工智能加速。

必須認識到的是,美國不一定在所有相關技術方面都處于領先地位。這是一個重大弱點,也是一個需要克服的差距。我們的對手和盟友都注意到了人工智能加速的趨勢。例如,俄羅斯總統弗拉基米爾-普京曾指出,"誰成為這一領域的領導者,誰就將成為世界的統治者"。(美國有線電視新聞網,2017 年 9 月 2 日)。法國總統埃馬紐埃爾-馬克龍(Emmanuel Macron)承諾法國將進行新的重大投資,"為......人工智能研究提供資金"(Rabesandratana,2018 年)。在中國,人工智能研發得到了精心培育,與此同時,中國對外國企業轉讓科學數據制定了逐步限制性措施(Ding,2018 年)。國家主席習近平說 "我們要加快把中國建設成為先進制造業強國,推動實體經濟同互聯網、大數據、人工智能等先進技術深度融合"。(路透社,2017 年 10 月 18 日)。

為了彌補這一差距,100 多位頂尖的學術界、工業界和政府科學家為這項研究做出了貢獻,強調了'人工智能加速'可能如何塑造 2030 年的美國空軍。這些專家在 2018 年第二季度以 "NSF Ideas Lab "的形式進行了在線討論,其中一部分專家(本報告的作者)還進行了面對面的討論,這種形式由 Knowinnovation(KI)促成,該組織在通過面對面和虛擬互動促進創新和跨學科科學進步方面擁有豐富的經驗。

本報告整合了這些跨學科互動中產生的想法,并以美國空軍及其作戰人員為背景,重點關注三個關鍵領域:機器、人機和人類。下面我們將對這些術語進行操作性定義,并在圖 1(第 16 頁)中加以說明。

圖 1:各層次人機交互示意圖(報告的概念性組織結構)

機器

顯然,我們需要開發能夠自主運行、降低風險、與人類并肩作戰,并能在空中和太空極端環境中長期運行的機器和算法。機器將取代并在某些情況下改變現有的能力。為了應對快速發展、高度動態的賽博空間可能帶來的范式轉變破壞,美國空軍需要采取積極主動的姿態,包括在政府和私營部門研究投資的基礎上,不斷螺旋式發展新系統。專家們一致認為,變化不會沿著現有的趨勢線發生。賽博空間正在迅速發展,因此高度動態的環境和快速變化很可能會打破人們的預期。專家們一致認為,關鍵是要投資研究,開發適應性強、靈活、穩健、使用安全和不受威脅的系統,并評估哪些系統對于在美國采購至關重要。

人機

在 2030 年的地平線上,美國空軍在人工智能加速組織結構突變的精心領導下,有可能實現人機協同的變革性增強,從而大幅提高作戰人員的認知和協作能力,包括但不限于態勢感知、決策速度、作戰和組織靈活性。這將包括盡早采用先進的人機和腦機接口;普遍集成可穿戴、微型和納米電子傳感器,用于生理、心理和神經監測、反饋和閉環實時干預,這些傳感器將與特定機器或更廣泛的指揮系統相連接,在極端環境中尤為寶貴; 人類與信息或機器人機器之間的團隊合作一體化;創建映射網絡空間的虛擬世界,允許人類以空間和信息直觀的方式進行部署;以及與專家數字助理、云連接信息系統的日常互動,這些系統具有自然語言處理能力,大大縮短了人類與他們業務所需信息之間的距離。在這些主題中,大家對人機協作的幾大主題達成了共識。

I) 人機融合提高個人績效:這一領域提出了提高人類績效的新興技術,包括認知、行為和健康。

II) 人機協同:這一領域指出了人機混合團隊協同工作的新興模式。

III) 對人機協作性能的全系統監控:這一領域強調了對這些新技術進行仔細、持續和動態監督的重要性。

人類

專家組一致認為,人類特工是美國空軍所有任務領域取得成功不可或缺的組成部分。到 2030 年,在美國空軍的所有行動中,從后勤到維護或控制作戰機器,人類都將理所當然地與人工智能互動。此外,將有大量空軍兵力人員在神經技術進步帶來的增強認知模式下履行職責。人工智能的加速發展無疑將塑造未來的勞動力隊伍。鑒于作戰環境的快速演變,專家組重點關注的是,2030 年所需要的軍官屬性可能與 20 世紀所看重的屬性大不相同。

大家一致認為,必須建立對如何在開發和采用人工智能加速技術方面培訓和培養當前和下一代空軍兵力的認識。這需要系統層面的整合,以及現役人員與研發和采購界之間的互動。例如,通過讓現役人員參與人工智能系統的設計,可以在一定程度上實現有效采用。空軍人員應征入伍后,必須接受相關技能培訓,以應對未來美國兵力的挑戰。因此,了解如何在人工智能滲透的作戰環境中提高和保持人的性能,如耐力、巔峰認知、保持任務狀態等,對于為 2030 年的作戰做好準備至關重要。

橫切問題

該小組確定了許多貫穿各領域的關鍵問題。這些問題包括美國空軍面臨的戰略突襲、道德、法律、社會和能源挑戰。就戰略出其不意而言,本報告的挑戰范圍僅限于可以預見到對手會出現的人工智能技術進步。在倫理、法律和社會問題方面,人們明確認識到,美國空軍自愿采取的限制措施很可能不會成為其他國家的限制。最后,大家一致認為,能源供應和 "質量 "可能是人工智能進步的一個重大制約因素,特別是在美國空軍必須在動態和偏遠環境中工作的情況下。

建議

美國空軍應與其他聯邦科學機構(如國家科學基金會)以及美國國防部和情報部門的其他部門協調其在人工智能加速領域的研發投資。

美國空軍應在全球范圍內掃描研發投資,以深入了解可能代表未來作戰挑戰的外國政府計劃和能力。

美國空軍應組織一個由來自學術界和工業界的頂尖研究人員組成的人工智能加速咨詢委員會,隨著科學基礎各學科的不斷進步,為美國空軍領導層提供信息和建議。

美國空軍應通過構建平臺技術、數據架構、算法和集成能力,為解決方案搭建支架,為人工智能應用奠定基礎。

美國空軍應設立執行數據架構師職位,以監督人工智能的整合,以及從設備到后勤和人力資產的集中信息資源的收集和安全化。

結論

人工智能加速將塑造美國空軍(USAF)2030 年的戰備態勢。專家組達成的共識是,空軍應加快開發和采購計算與神經技術方面的系統系列,從而在整個相關作戰環境中實現指揮、控制、通信、計算機和情報(C4I)方面的巨大進步。這一系列系統分為三個方面: 1)追趕現有的商業技術(采用);2)對最相關的技術突破(如人工智能)進行核心投資;3)對填補前者突出所留下的空白的技術(如量子計算)進行外圍投資。

這樣的未來美國空軍將需要能夠卸載或放大人類性能的機器、人機和人機界面。這不僅包括意圖,還包括對來自傳感器流的反饋做出響應的能力,即使是在高級別作戰環境所產生的極端條件下。整個人工智能生態系統將需要為無人機和代理(包括蜂群)提供真正的自主操作,其操作領域既包括美國空軍熟悉的領域,也包括迄今為止美國空軍從未經歷過的領域。這不僅包括大氣層,還包括 "內部空間"(即網絡領域),更重要的是,甚至包括更高層次的大氣層以及低地軌道和深空。此外,還需要應對這些環境中隨之而來的能源限制。最后,這個系統之系統需要具備足夠的防御能力(也許是生物啟發),以抵御同行競爭對手的退化和攻擊。

美國空軍能否在 2030 年的軍事環境中取得成功,不僅取決于人工智能的加速,還取決于指揮和控制能否靈活應對戰略突襲。這種臨界點可能出現在空間技術領域(如太空電梯),也可能出現在人工智能領域的顛覆性發展。例如,"通用人工智能"(定義為能夠對任何智力任務進行人類水平認知的人工智能)的成功開發和實施掌握在國內同行競爭者手中,將使美國空軍處于明顯的劣勢。這種進步的軍事抵消將取決于美國空軍對技術前景的持續認識--不僅在航空航天領域,而且在認知與計算的交叉領域,因為它適用于人工智能。

付費5元查看完整內容

本研究的重點是評估海軍信息戰中心(NIWC)太平洋分部通過有效的項目管理(PM)實踐建立知識管理(KM)基礎設施的方法的發展。評估的主要重點是NIWC太平洋分部的需求收集和管理以及它的流程管理方法,因為它開發了一個全面和可擴展的知識管理框架。研究人員將這一努力與各種專業和學術研究進行了比較,這些研究綜合了在一個有凝聚力的知識管理框架中需要尋找的東西并奠定了基礎。研究人員還深入研究了NIWC太平洋分部的方法和以前通過使用各種平臺傳播內容的嘗試,并將其與目前的狀態進行對比,研究用于評估信息傳播和使用的熟練程度的定性和定量屬性。

這種比較方法將說明指揮部用戶群體在當前狀態之前利用松散的管理、配置和重復的平臺所產生的低效率。之前分享信息的努力缺乏嚴謹性,隨著過時的材料在整個指揮部的傳播,增加了許多領導層對業務領域或項目是否利用了最新信息的懷疑,這是不有效的。另一個需要審查的因素是,如何將系統合理化為一套一致的平臺,以滿足NIWC Pacific領導層和內部客戶提出的要求,這也改善了內容和業務數據的整理。

事實證明,平臺數據收集是一個缺失的功能,或者說是不容易被用戶和高級領導所使用的功能。與其目前的框架相比,收集用戶流量和內容信息以建立一個基線,結合更新或添加/刪除內容的審核過程來策劃產品和內容是很麻煩的。這項研究還將說明所制定的業務規則和做法,確保相關的知識和信息被有目的地提供給員工。研究結果闡明了通過變更配置委員會(CCB)來管理業務產品擴散的執行機制,以及它們所處的系統。

NIWC太平洋分部在以混亂的方式部署內容管理系統(CMS)方面也贏得了內部聲譽。不僅是在導致選擇平臺的決策方面,而且在部署平臺的時間框架和方法方面。終端用戶感到沮喪,并最終對平臺的快速引入和替換感到疲勞--在許多情況下,幾乎沒有警告或準備。這項研究將分享為什么這對健全的知識管理實踐的有效性不利的見解。

NIWC太平洋分部的信息策劃轉型的另一個重要方面是高級領導層的認同。指揮部有各種擴散信息的方法。指定的團隊被允許使用和管理經批準的COTS平臺作為內容管理系統。不幸的是,給了系統管理員完全的自由權,造成了一個意想不到的后果。各個系統管理員和內容管理員在不同的平臺上有一種放任自流的心態,這使得策劃和管理信息變得困難。這也助長了一種沒有納入強大訪問控制的環境。

這項分析將觸及NIWC太平洋分部的高級領導層做出的關鍵決定,即對其系統進行合理化調整,并倡導收集需求以有效地創建一個可行的知識管理框架。這項研究建議NIWC太平洋分部繼續遵循其內部和有機的方法來維持知識管理框架,因為我的評估表明,其方法不僅迎合了該中心的獨特需求,而且還建立在健全的計劃和知識管理原則之上。

付費5元查看完整內容

1.1 報告的目的

本報告的目的是描述位于加利福尼亞州洛杉磯的美國陸軍作戰能力發展司令部(CCDC)西部陸軍研究實驗室(ARL-West)用于人類與機器人群互動研究的物理測試平臺,并介紹未來利用該測試平臺進行能力和實驗的機會。這是因為19財年ARL的集群項目,這是美國防部資助的研究人類與群體互動工作的一部分。

1.2 ARL集群項目

這里描述的ARL集群項目是ARL的車輛技術局(VTD)、傳感器和電子設備局(SEDD,現在的CCDC數據和分析中心[DAC])以及人類研究和工程局(HRED)的一項聯合工作。我們將集群定義為一組完全或基本自主的智能體,以集體的方式進行互動,以完成一項任務。在我們的工作定義中,我們也會偶爾提到一些場景,在這些場景中,智能體是合作運作的,但不一定是一個集體的整體(例如,當機器人被分配單獨的任務,形成合作目標的組成部分)。這些通常被稱為多智能體或多機器人系統。智能體群體可能是同質的或異質的。

結合團隊成員在車輛技術、傳感器/機器視覺、處理器芯片和功耗、人類因素和感知/認知心理學方面的經驗,我們對人與群的互動有了深入的了解,并推動了建立人與群互動測試平臺。我們合作的一個主要見解是,電源需求、芯片限制和傳感器能力可能會大大影響人類的表現或人類對機器人群或其他多Agent系統的反應,但在人類-自主-群體互動的模型中很少充分考慮這些因素。為了推動研究,并為在這些領域和相關領域的繼續探索奠定基礎,ARL集群團隊在ARL-West創建了一個實體集群測試平臺:集群與人互動性能室內研究平臺(AIRSHIP)。這個測試平臺將允許研究界面、物理限制、人類因素及其相互作用如何影響人類-集群的任務表現和人類心理/生理反應。為了適應廣泛的實驗可能性,該試驗臺可以高度定制一系列的任務場景、自主資產的數量和多樣性,以及固有的和強加的物理約束。

從我們的討論和文獻回顧中,從創意技術研究所(ICT)開發的虛擬試驗臺中,以及從建模工作(例如Humann和Pollard 2019)中得到的啟示,強調了開發一個物理試驗臺以解決人與機器人群的互動研究問題的必要性。在我們設計的測試平臺中,我們旨在實現以下特點:室內、小型、便攜、高度可定制、靈活,以適應廣泛的實驗。

在此,我們描述了AIRSHIP測試平臺的現有能力,并闡明了在目前可用的硬件和軟件條件下,可以在這樣一個物理測試平臺上進行的各類實驗,以及未來可能對測試平臺進行的改進。

1.2.1 相關的ICT項目

一個關于人與機器人群互動的聯盟項目正在由ICT進行,ICT是由南加州大學管理的陸軍大學附屬研究中心(UARC)。該項目正在研究使用帶有虛擬人類發言人的自然語言對話界面,該發言人作為人類操作員和機器人群之間的中間人。在ARL的投入和指導下,ICT創建了一個基于模擬的測試平臺,在用戶與虛擬發言人和機器人群互動時,收集他們的自然語言數據。

基于模擬的測試平臺運行一個虛擬的搜索和救援場景,其中人類用戶指揮一個由無人機和地面車輛(分別為UAV和UGV)組成的異質團隊。在模擬中,一個小鎮受到野火侵襲的威脅,鎮上的居民必須通過利用無人機和UGV的不同方式來拯救。例如,一些居民迷路了,必須被指示跟隨無人機到安全地帶。必須調遣一輛UGV來清除道路堵塞物。除非人類指揮官通過附近的無人機拍下他或她的聲音,并親自與這對夫婦交談,否則無法拯救一對 "頑固的夫婦"。一個虛擬的人類發言人可以作為人類指揮官和自主車輛之間的中介,但人類也可以單獨指示這些資產。野火隨著時間的推移而蔓延,目標是盡可能多地救援城鎮居民。不同的居民和其他挑戰可以隨機分布在城鎮地圖上,并且可以進行修改,以改變可用資產的數量、野火侵襲的速度和方向,并增加進一步的挑戰(如無人機的損失)。人類指揮官使用一個語音麥克風和兩個電腦屏幕與系統互動。一個屏幕顯示虛擬的人類代言人,另一個屏幕顯示城鎮的地圖。(見圖1指揮官的工作區。)如果參與者指定他們的一些無人機提供監視,那么火力的進展在地圖上是可見的。無人機的行為和虛擬人類發言人的行為是由兩個奧茲國的巫師在幕后控制的。該測試平臺的早期版本在Chaffey等人(2019)中有所描述。

圖1 ICT的人-機器人群互動虛擬試驗臺,顯示了野火地圖、模擬無人機和通過自然語言與用戶互動的虛擬人類報告員

1.2.2 機器人群測試平臺的需求和概念

虛擬測試平臺有很多優點,包括可移植性、快速修改,在某些情況下成本較低。然而,人類對模擬機器人群的反應與人類對物理機器人群的反應不同。Podevijn等人(2016a,2016b)表明了這一點,與模擬機器人相比,與物理機器人互動時,壓力的心理生理學標志物升高。與較大的群組和較小的群組互動,也產生了類似的模式(Podevijn等人,2016a;Podevijn等人,2016b)。

一個虛擬的機器人群可能看起來與真實的機器人群的虛擬表現相同,只要指揮官不與實際的代理人在一起就可以了。然而,在許多情況下,人類指揮官和其他互動的人將處于戰術邊緣,與機器人代理一起在現場。從這些場景的虛擬模擬機器人群中得出的結論可能不完全代表實際物理機器人群的結論,在物理機器人群測試平臺中復制之前,也許最好將其視為初步結論。

使用物理機器人群測試平臺的另一個原因是為了更好地包括與機器人代理一起工作的現實世界的挑戰--即他們的物理需求和限制。異質組隊模擬很容易對飛行時間、電力使用、機械堅固性、有效載荷能力、相機分辨率等做出不現實的假設。當這些不切實際的假設在模擬中實現時,其結果是無法復制人類與多人合作的許多重大挑戰的情景。我們承認,仔細考慮這些參數可以使它們在模擬中得到更忠實的實現,我們也承認,我們的物理測試平臺不能完全復制所有這些問題。例如,使用微小的、低成本的、可移動的無人機有一個警告,即它們不能在室外飛行。因此,實際的天氣影響不能包括在我們的測試平臺中。然而,我們的測試平臺天生提供了關于飛行時間、電力使用、有效載荷能力、機械堅固性等方面的現實物理約束。

為了不同的實驗目的,已經開發了各種虛擬和物理的異質組隊測試平臺。我們將在下面的章節中強調幾個關鍵的例子。

1.3 相關工作

在本節中,我們提供了一個不全面的概述,介紹了具有多機器人/蜂群測試平臺的研究項目,這些項目可以檢驗人與機器人群的交互性能。全面的回顧超出了本報告的范圍,因此在這里我們只提供與ARL研究密切相關或合作的項目的細節。

用于人與多Agent交互的多功能虛擬現實(VR)測試平臺是加速用戶推理操作、研究和分析(AURORA)-XR界面,該界面正在由ARL為戰場物聯網開發(Dennison等人,2019)。AURORA-XR目前有一個虛擬的城市街區,有一系列的傳感器和代理,可以虛擬地檢測虛擬友軍和敵軍的運動。人類指揮官可以通過虛擬攝像機畫面和虛擬傳感器數據,從視覺空間角度調出不同傳感器和無人駕駛車輛的視圖。這個設置可以在圖2中看到。該模擬可被修改以執行不同的模擬任務,并被建議由HRED用于研究訓練人類在人-代理團隊合作中的相關技能(例如,不確定性量化和視覺空間透視)。

AURORA-XR的一個主要目標是作為一個可視化工具和異地協作工具(通過AURORA-NET),其中不同地點的多個人類可以同時與VR中的沙盤表示進行互動,以參與多領域行動的協作決策。

混合倡議實驗(MIX)測試平臺(Barber等人,2008年)將無人車和攝像機的模擬與操作員控制單元(OCU)界面相結合,如圖3所示,允許用戶控制無人系統。OCU是可定制的,底層的自主性模擬器軟件(無人系統模擬器[USSIM])可用于模擬各種自動化程度不同的任務類型,包括偵察、目標識別和路線規劃等場景。MIX已經被用于各種研究中,用于智能代理的修改的OCU也是擴展研究的主題(Chen和Barnes 2014;Barnes等人2015)。

圖2 AURORA-XR的界面與實例的進給和攝像機角度

圖3 MIX測試平臺的OCU界面

在我們正在進行的工作中(Humann和Spero 2018;Humann和Pollard 2019),我們使用一個虛擬測試平臺來設計人類與無人機互動的適當算法并選擇適當的團隊規模。該工具可以模擬任何數量的人類、四旋翼無人機和固定翼無人機。人類被模擬為具有疲勞和工作負荷的現實效果。人類和自主資產執行監視任務,必須用相機掃過一個場地,以發現可能的危險,如車輛和火災(由固定翼無人機執行),然后對感興趣的點進行拍照(四旋翼無人機),最后分析以評估威脅程度(人類)。從這個分析中,可以從評估現場的整體準確性和速度方面分析向系統添加資產的回報。圖4顯示了模擬的一個例子截圖。

圖4 模擬截圖(Humann和Pollard 2019),顯示三個固定翼無人機、四個四旋翼無人機和兩個操作員合作執行監視任務

在ARL有兩項正在進行的工作,涉及多個分布式智能資產,正在為未來的工作開發測試平臺。第一個是分布式協作智能系統和技術(DCIST)的合作研究聯盟。這個項目將 "創建自主的、有彈性的、認知的、異質的群組,使人類能夠在動態變化的、惡劣的和有爭議的環境中參與廣泛的任務"(www.dcist.org)。DCIST的執行者已經討論了建立一個測試平臺(虛擬和/或物理)來測試智能系統的算法。雖然許多參與的學術機構都有自己的測試平臺供個人研究使用(例如,Pickem等人,2017年),但DCIST測試平臺的一個目標是使來自各合作機構的研究產品得到綜合實驗。

ARL正在進行的第二項工作是一個潛在的測試平臺,用于探索人類與智能系統的互動,將不同的人類互動模式與強化學習相結合,稱為自主系統的學習周期框架(Waytowich等人,2018;Goecks等人,2019)。他們實施了一個模擬,以探索使用人類示范來提高智能系統的能力(在引用的案例中,一個小型四旋翼無人機)。他們計劃繼續研究使用Crazyflie無人機在物理測試平臺上進行聯合互動的強化學習。

隸屬于南加州大學和ICT的研究人員在正在進行的研究中展示了多個機器人的協調行為(Tran等人,2018),同時自主飛行多達49架微型無人機(Preiss等人,2017)。他們還展示了最多三個人和六個無人機之間的用戶互動,這些無人機在房間里相互靠近導航(Phan等人,2018)。

付費5元查看完整內容

這項研究的目的是討論目前最先進的在點云數據上執行的機器學習算法的方法。所進行的研究將應用于三維激光雷達可視化和開發(3DLIVE)團隊的內部工作,其主要目標是為目標坐標測量(TCM)創建一個可視化和與點云數據互動的新系統。所提出的機器學習方法與三維點云和計算機視覺的機器學習的三個主要課題有關,每個課題都有自己研究的論文部分。這些主題是分割、分類和目標檢測,所選的論文是最近的研究,取得了最先進的性能。這項研究的結果是選定的幾種方法,它們向3DLIVE團隊展示了最有希望的結果和有效性。有效性在很大程度上取決于算法對3DLIVE使用案例的可擴展性和適用性,以及其準確性和精確性。

引言

在傳統的計算機視覺問題中,二維數據一直是用于推理的主要信息形式。隨著近來價格低廉且廣泛使用的3D傳感器(如蘋果深度相機、Kinect和飛行時間相機)的發展,3D數據已經變得非常豐富,并為解決計算機視覺問題提供了許多優勢。也就是說,它包含了更多的拓撲信息(深度維度、形狀和比例信息),這些信息對場景的理解至關重要,并提供了一個更自然的世界表現。由于這一技術層面的原因,將三維數據應用于自動駕駛、機器人、遙感和醫療等領域已經成為近期研究的重點,并將繼續擴展到其他領域[1]。

三維數據可以有很多格式,包括網格、深度圖像、體積網格和點云。場景理解應用中最常見的格式是點云-結構化數據,因為這種數據形式保留了三維空間中的原始幾何信息,沒有任何離散化損失。在進行分析之前,需要對點云進行定義:點云是一組數據點(x,y,z),通常代表一個(多個)三維物體的外表面,由合成或三維掃描器產生。三維數據面臨的一個挑戰是存儲要求--三維場景比二維的同一場景需要多出幾個數量級的存儲。點云解決了這個問題,因為它不需要存儲多邊形網格,因此提高了性能并降低了開銷--這是對時間敏感的應用的關鍵考慮[2]。

三維LiDAR可視化和開發(3DLIVE)項目旨在為目標坐標測量(TCM)和三維分析創建一個新系統。目前的TCM方法使用立體圖像,利用英偉達3D視覺眼鏡以及專門的GPU和顯示器來查看重疊的二維圖像,給人一種三維的感覺。然而,這種方法很難訓練,而且會造成眼睛疲勞;此外,它所使用的英偉達軟件和硬件已經達到了使用壽命的終點,不再得到支持或生產。因此,需要開發一種新的3D數據開發解決方案。

用于TCM的3DLIVE方法旨在利用主要由LiDAR傳感器收集的3D點云。然后使用游戲引擎Unity將這些數據可視化。此外,由于上述數據可以通過Octree格式有效地加載到Unity中,因此可以使用大規模的數據集。點的元數據信息可以在查看器中查看和分析,用戶可以在整個大的地理區域內導航并選擇點進行分析。有多種方法可以與數據互動,從在某一地點投放一個感興趣的點到測量距離、長度和面積。

有多種模式可以與3D點云數據互動。它們包括標準的鼠標和鍵盤、虛擬現實和增強現實(使用Hololens 2)。增強現實的互動是3DLIVE團隊的主要開發重點,因為它使用戶沉浸在數據中,同時仍然類似于立體眼鏡的方法。我們目前還在尋求使用機器學習(ML),使我們能夠自動獲得這些點云數據集中的物體信息,例如它們是什么物體,在空間內有什么界限,并進行自動目標識別(ATR)。

在過去的10-20年里,大多數深度學習計算機視覺研究都集中在2D圖像上,但隨著更多可用的3D數據的興起,最近的研究著眼于將傳統的深度學習技術應用于計算機視覺的3D數據。這項新的研究使得場景理解的場景有了重大的進展,但是在將模型從二維過渡到三維的過程中,仍然存在著一些障礙。具體到點云,數據是非結構化和無序的,這意味著以點云為輸入的深度學習網絡不能直接應用標準的深度學習方法,如卷積神經網絡(CNN)[1]。相反,必須開發定制的解決方案,使其具有包絡不變性,通常用對稱函數實現。另一個挑戰是從點云中捕捉局部和全局結構信息。通過單個點來評估點云會失去點與點之間的局部和整體結構信息,因此網絡在設計時必須通過查看鄰近的數據來考慮這一點。由于直接處理點云的困難,許多方法將點云數據轉化為一種中間格式,如將點云投影到二維圖像中,這樣就可以應用傳統的深度學習方法[1]。最后,從三維傳感器收集的點云數據并不完美--由于傳感器的局限性,采集設備的固有噪聲,以及被采集表面的反射性質,往往存在噪聲污染和異常值,會破壞數據采集[1]。從上面可以看出,在點云數據上應用深度學習方法并不簡單,需要對現有的技術進行重新設計,以便在網絡中使用,但是三維點云比二維數據的描述能力的提升超過了負面因素。

計算機視覺任務通常被分成3個不同的類別:分類、目標檢測和分割。對于點云,這些類別通常被定義為: 三維形狀分類,三維目標檢測和跟蹤,以及三維點云分割[1]。

三維形狀分類方法試圖通過首先學習每個點的嵌入,然后使用聚合方法從整個點云中提取一個全局形狀嵌入,來對點云中的物體進行分類(標記)。這個全局嵌入被輸入到幾個完全連接的層中以實現分類[1]。

三維目標檢測和跟蹤方法可以分為3類: 1)目標檢測,2)物體跟蹤,以及3)場景流估計。對于目標檢測方法,它們在每個檢測到的物體周圍為輸入的點云產生定向的三維邊界盒。接下來,三維物體跟蹤的目的是預測物體的狀態,因為它以前的狀態。與物體跟蹤相關的是三維場景流估計,即給定同一場景在兩個不同時刻的兩個點云,描述每個點從第一個點云到第二個點云的運動[1]。

與目標檢測和跟蹤一樣,三維點云的分割也可以根據所需的粒度分為三類。這些類別從最普遍到最不普遍:語義分割(場景級別)、實例分割(物體級別)和部分分割(部分級別)。給定一個點云,三維點云語義分割的目標是根據點的語義將點云分成幾個子集(例如,將場景中的所有椅子涂成相同的顏色)。更低一級的是三維點云實例分割,它比語義分割更具挑戰性,因為它需要對點進行更準確和精細的推理。實例分割不僅需要區分具有不同語義的點,還需要區分具有相同語義的獨立實例(例如,給每把椅子涂上不同的顏色,而不是所有椅子都是同一顏色)。最后,在最細微的層面上,部分分割試圖將具有相同語義的物體的各個部分分開(例如,給椅子的各個部分涂上不同的顏色),由于具有相同語義標簽的形狀部分具有較大的幾何變化和模糊性,因此這項任務特別困難[1]。

3DLIVE努力的目標之一是創建一個系統(利用機器學習),該系統接收一個地理區域的點云,將具有類似屬性的點分組為對象,并為每個組成對象和結構貼上標簽,使數據更容易使用和分析。在我們著手實現這些目標之前,我們確定研究當前點云數據集的分割和分類技術狀況將是有價值的。Guo等人在2019年完成了一項關于點云的深度學習方法的調查[1]。我們的目的是確認研究中提出的信息仍然是準確和相關的(針對點云數據集的ML是一個快速發展的領域),進行我們自己的研究并創建一個類似的調查,并決定在研究的分類、分割和目標檢測的方法中,哪些是最適合我們的使用案例的。AFRL RIEA/RIED內部研究小組(IHURT)被召集起來,與3DLIVE團隊一起做這項研究,并回答以下研究問題:

目前3D點云分割和分類的技術水平如何,哪些方法對3DLIVE的工作最有效?我們能否開始為我們打算使用的大規模三維城市點云的分割、分類和目標檢測奠定框架并制定行動方案?

這項研究的結果將使3DLIVE團隊能夠推進ML點云的分析工作。我們希望最終能復制出性能最高、最相關的分割、分類和目標檢測方法,并將其用于NGA地理空間存儲和數據管理(GRID)服務器的地理3D點云數據。此外,3DLIVE團隊已經開發了一種生成大規模合成城市點云數據集的方法,我們可以利用這種合成數據作為我們創建和使用的模型的額外訓練數據。這項研究將為3DLIVE團隊使用ML創建額外的工具來幫助作戰人員分析和衡量三維數據奠定基礎。這將最終實現上述目標,即創建一個新的TCM系統,供目標人員(如第363 ISR聯隊和其他目標部門的人員)使用,用一種利用越來越多的本地3D數據的替代技術取代目前已被淘汰的技術。

圖2. RPVNet的概述。它是一個具有多種交互作用的三分支網絡,其中體素分支和范圍分支共享類似的Unet架構,而點分支只利用每點的MLPs。

付費5元查看完整內容

本報告總結了在北卡羅來納州立大學完成的海軍電子戰研究經驗(RENEW)項目。該項目包括4項主要活動: (1)開發和提供兩個為期一周的關于EW、RF和雷達的研討會,(2)EW、RF和傳感的研究,(3)開發和提供一個學期的電子戰系統課程,(4)開發和指導一個60GHz雷達系統的高級設計項目。

付費5元查看完整內容

FAST項目(基于智能體的系統基礎技術)是一項為期三年的研究和開發工作,與位于紐約州羅馬的空軍研究實驗室簽訂合同。該項目從一開始就由美國海軍贊助,在項目的后期,美國空軍也做出了額外的貢獻。

該項目的主題是探索新的建模方法和基于模型的軟件生產技術,以提高所開發軟件的質量,同時縮短開發時間,提高設計的可重復使用性。在模型驅動的軟件和系統開發,以及海軍的任務工程有很大的相似性。傳統上,這兩個過程都是以自下而上的方式開發,而自上而下的方法則更有針對性和前景。這種自上而下的方法的最初步驟必須是一個概念模型,概述基于一組給定事實達到預期目標所需的所有(概念)決策。對于任務工程來說,這個決策建模器有助于確定所有需要做出的關鍵決策,以及相應的任務,以便規劃和執行一個成功的任務。對于軟件或系統工程師來說,決策建模器概述了設計中的系統的關鍵語義和相應結構。雖然存在對系統工程的建模支持,在某種程度上也存在對軟件工程的建模支持,但沒有任何工具支持將決策建模器作為系統或軟件設計模型的一個完全集成部分來建立。因此,由于其根源在于系統建模語言(SysML),任務工程也缺乏決策建模能力。

我們通過為統一建模語言(UML)建模工具MagicDraw(又名Cameo)開發決策建模器能力,作為一個可加載的插件,與商業上可用的插件,如SysML、UAF等兼容,縮小了這一差距。決策建模器實現了決策模型和符號OMG標準所定義的決策需求圖的增強型變體,但在其他方面偏離了OMG標準,以提供更復雜的決策表達建模、決策仿真能力,以及與SysML(v1.x)的無縫集成能力。為了在更大的仿真場景中進行協作,我們為MagicDraw開發了第二個插件(名為SimCom),允許決策建模器的仿真能力與外部仿真系統(如高級仿真、集成和建模框架(AFSIM))之間進行實時協作。SimCom插件實現了一個受 "高級架構"(HLA)仿真協議啟發的輕量級協議。我們用決策建模器和AFSIM之間的協作場景展示了這種能力。

雖然決策建模器的工作使我們偏離了開發時間和空間(4D)、基于模式建模方法的最初計劃,但我們的深入合作和對SysML v2的貢獻,在很大程度上彌補了這一點,提交給OMG。SysML v2已經達到了與我們最初計劃的相似的4D特征。在SysML v2環境下重建決策建模器將是一項有趣和有益的任務。除了參與SysML v2的工作,該項目還在其他幾個OMG標準的開發中起到了主導作用。

方法、假設和程序

相關標準及技術

許多建模方法包括隱含或嵌入的決策制定。這些建模案例有流程圖、活動圖、業務流程模型等等。決策建模作為一門專門的學科是比較新的。對象管理小組創建了決策建模和符號(DMN)規范,最初是為了使BPMN1業務流程模型中的決策更加明顯,并支持更詳細的決策過程。這段歷史的缺點是,DMN現在與BPMN的關系非常緊密,尤其是在元模型層面。因此,DMN,不能直接與UML或SysML集成。為了使DMN風格的決策建模與UML和SysML模型協作,特別是使現有的UML建模工具能夠進行DMN風格的決策建模,必須創建一個決策建模UML配置文件,與DMN元模型密切相關。

目標建模環境

決策建模器的開發和目標部署平臺是MagicDraw 19.0 SP4版本。MagicDraw(也被稱為Cameo)是一個UML建模工具,由No Magic公司開發和銷售。No Magic最近被Dassault Systèmes收購,Dassault Systèmes將繼續進一步開發和銷售這個工具,可能會用不同的名字。

MagicDraw是一個用Java實現的UML建模工具。它支持并使用一個插件架構來擴展其建模能力,涵蓋其他基于UML的建模語言和方法,如SysML、UAF和其他。一個OpenAPI工具箱可以用來支持自定義插件的開發。

圖 2 - MagicDraw(又名 Cameo)環境中的決策建模器

決策建模器和SimCom通信引擎是由FAST項目為MagicDraw開發的兩個定制插件。SimCom插件沒有任何先決條件,而決策建模器插件的功能需要SysML和Alf插件的存在。由于UAF是基于SysML的,決策建模器也可以用于基于UAF的企業模型。決策建模器和SimCom插件的安裝程序都與MagicDraw資源管理器一致。

標準制定

雖然在整個FAST項目中開發的技術是朝著符合相關標準的方向做出的最大努力,像OMG規范的元對象設施(MOF)、統一建模語言(UML)、系統工程建模語言(SysML)等;或者像世界網絡聯盟(W3C)開發的網絡本體語言(OWL)、資源描述符框架(RDF)或其他,但我們自己也大力參與了新標準的開發,即在對象管理小組內。

雖然標準的制定是繁瑣的工作,但它的回報是許多好處。某一主題的標準化要求它處于該主題發展的第一線。這項工作通常是在研究實驗室或高級開發部門的隱蔽處進行的。然后,標準化要求開發人員開放并與世界各地同行討論該主題,這在所有案例中都是有益的。

在FAST項目期間,我們參與了對象管理小組的幾個標準化任務。所有這些任務都是在FAST項目之前的某個時間開始的,但這些任務的持續工作和討論為FAST項目提供了重要的投入和科學效益。我們所參與的任務是: MOF到RDF的轉換,元模型擴展設施,系統工程建模語言第二版,智能體和事件元模型,以及不確定性建模的精確語義學。另見本文件后面的標準化活動一章,以及項目技術報告(CDRL A010)中的相應章節。

決策模型

決策模型由兩類元素組成:主動和被動元素。

  • 主動元素是決策元素,它在模型執行過程中影響模型結果的整體結果(最高目標值)。根據OMG DMN規范,這些主動元素被定義: Decision、DecisionService和BusinessKnowledgeModel。

  • 被動元素不包含任何決策邏輯,因此不直接影響模型的結果。它們可能需要協助連續的活躍元素之間的信息流,或者注釋決策模型。OMG DMN規范定義了以下兩個被動元素: InputData和KnowledgeSource。

我們決策模型的所有元素,無論是主動還是被動,都有相同的基本結構:它們將接受一個到多個輸入,稱為 "輸入事實",并產生一個單一的輸出,稱為 "結果事實"。所有的事實都可以是單值或復值,在這種情況下,它們是單值的結構。

付費5元查看完整內容

機器人是一個具有挑戰性的領域,需要軟件和硬件的融合來完成所需的自主任務。任何工作流程的關鍵是在部署到生產環境之前對軟件進行自動構建和測試。本報告討論了美國陸軍作戰能力發展司令部陸軍研究實驗室(ARL)的無人自主車輛軟件研究平臺MAVericks的軟件開發過程中使用的持續集成/持續交付工具的重要性和創建情況。這個工具在ARL進行的快速研究和開發中起著至關重要的作用--包括模擬和嵌入式硬件目標的自動構建測試,以及驗證軟件在環模擬中的預期行為。

持續集成/持續交付(CI/CD)是軟件開發中常用的工具,用于自動構建、測試和部署代碼。這個工具對于提高研究的速度和效率至關重要,同時確保在增加或改變新功能時功能不受阻礙。在CI/CD之前,軟件開發過程是具有挑戰性的,隨著越來越多的合作者修改代碼庫,任何新的開發都有可能破壞現有的功能--比如代碼不再構建,自主行為和故障保護裝置不再按預期工作。

本報告重點關注美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的MAVericks無人自主飛行器(UAV)軟件平臺的CI/CD集成,該平臺建立在開源平臺ROS2和PX4之上。ROS2是一套用于構建機器人應用的軟件庫和工具,而PX4是一個強大的無人機飛行控制軟件。利用這兩個平臺,MAVericks是一個專注于敏捷飛行的大型合作項目,在模擬和機器人平臺上都能發揮作用。MAVericks的目標是在ModalAI的VOXL和RB5硬件平臺上運行,因為它提供了尺寸、重量和功率,同時也是藍色無人機項目的合作伙伴,這意味著他們得到了國防創新部門的資助,以符合2020年國防授權法第848條的規定。

合作者包括美國軍事學院的西點軍校,作為分布式和協作式智能系統和技術項目的一部分;加州大學伯克利分校,作為規模化和穩健的自治項目的一部分;以及馬里蘭大學的人工智能和多代理系統的自治項目--而且這個名單一直在增加。此外,ARL一直在尋求提高其算法的穩健性和成熟的能力,以過渡到DEVCOM和國防部的其他組織。隨著許多合作者加入MAVericks,重要的是要確保每次修改后有最低限度的可用功能,以鼓勵快速加入和貢獻。MAVericks是一個由一百多個軟件包組成的大型研究平臺,重要的是每個軟件包都能可靠地構建和運行。通常情況下,合作者只關心幾個軟件包,他們可以很容易地進行修改和添加,而不需要對不相關的問題進行排查,這一點至關重要。由于這種不斷增長的社區,很容易偶然地引入錯誤或破壞不相關的功能。因此,CI/CD是一個很好的解決方案,它將為不同的用戶群體提高平臺的可靠性和可用性。

CI/CD管道實現了許多簡化開發的功能。它可以完全構建整個平臺,確保新用戶的依賴性安裝成功,在模擬環境中運行和測試平臺,以確保自主行為正常工作,并快速構建壓縮的工作空間,以防止在無人機上構建。

在自主系統的軟件開發中,一個有問題的情況是,用戶修改了幾個包,但只構建和測試了一個特定包。這樣,代碼就被合并到了生產中,而沒有驗證它對其他人是否有效。如果未經測試的修改被合并,依賴這些修改的包可能不再構建或通過所有的測試案例。

從用戶的角度來看,CI/CD是由用戶創建代碼合并請求(MR)來觸發的,將他們的修改添加到主分支。這就啟動了CI/CD,建立了一個管道。該管道包括四個階段:構建-依賴、構建-完整、測試和部署。對于每個階段,可以并行地運行多個作業來完成該階段。在每個作業中,流水線首先將合并后的變化復制到一個新的環境中,并完成一個特定的任務。在流水線的最后,一個完全構建的版本被上傳,并準備在無人機上閃現。如果任何步驟失敗,其余的管道階段將被中止,并通知用戶到底是什么地方出了問題,以便他們能夠解決任何問題。管線的概述見圖1。

在本報告中,描述了MAVericks CI/CD的基礎,然后詳細介紹了管道中的每個階段,以及所克服的幾個挑戰。

付費5元查看完整內容

本報告是“飛行決策和態勢感知”項目的第一個成果。該項目的總體目標是提供系統評估新興技術的方法建議,這些技術可能會影響或促成決策,并提高美國陸軍未來垂直升降機(FVL)飛行員的態勢感知(SA)。

這第一份報告的目標是:(1)回顧描述決策和SA的主要理論方法,以及(2)確定在美陸軍航空兵環境中,新技術對決策和SA的影響,及替代理論對作戰評估方法的影響。

為了理解FVL航空環境下的決策,我們采用了以下決策的定義:決策包括形成和完善一個信念或行動方案所涉及的認知活動。

回顧了人的因素和自然決策(NDM)研究界最突出的與FVL航空有關的決策模型。對于每一個模型,我們都簡要地總結了對評估決策的方法和措施的影響,以及新技術對個人和團隊決策的影響。審查的模型包括 "雙系統 "模型(Kahneman,2011)、識別-判斷(RPD)模型(Klein,1989)和SA模型(Endsley,1995)。我們還回顧了OODA循環模型,這是一個在軍事上很有影響力的模型,由一名戰斗機飛行員開發(Boyd, 1987),以及從過程控制界產生的決策階梯模型(Rasmussen, 1976),以及最近從NDM界出現的決策宏觀認知模型系列。我們還描述了兩個高度專業化的數學模型,它們在分析和評估新技術對人類決策的影響方面被證明非常有用--信號檢測理論和LENS模型。

我們包括一個題為 "把它放在一起 "的部分,綜合了我們審查的一系列模型,以(1)確定各模型的核心概念,這些概念對描述FVL環境中的決策特點很重要;(2)總結來自不同決策模型傳統的方法和措施,它們與評估新技術對FVL環境中決策的影響有關;以及(3)提出一個與FVL有關的決策綜合框架。這個框架綜合了我們所審查的各種決策模型中常見的核心概念,這些概念對于FVL背景下的建模和支持決策非常重要。

各個模型所確定的核心概念包括:

  • 決策可以產生于直覺過程、審議過程或兩者的結合。

  • 專家的表現往往是基于更直觀的、以識別為基礎的過程。

  • 決策是一個動態的、循環的過程,與其他認知活動密不可分,而這些活動又反過來影響著決策(如感知、感性認識、計劃)。

  • 感知包括自上而下(即根據預期搜索信息)和自下而上的過程(即檢測環境中的突出信息,然后影響理解并進一步反饋預期)。

  • 人們積極嘗試了解當前的情況(即感覺),這種了解是決策的核心。

  • 人們隨著對當前形勢的理解的發展而制定、修改和調整計劃。

  • 有效的團隊合作需要對當前形勢和目標有共同的理解,有時稱為共同的SA或共同點。

這些核心概念為我們開發的綜合框架提供了基礎,以指導我們接下來的工作。

我們審查的決策模型為評估新技術對個人和團隊決策的影響提供了重要的觀點、方法和措施。最特別的是,我們審查的所有決策模型都強調了在現實條件下研究決策的重要性,這些條件反映了在感興趣的現實世界中出現的挑戰。許多模型對設計和進行評估決策的研究做出了方法上的貢獻。最重要的是,他們強調需要創造研究條件(例如,通過設計評價情景),以便觀察和測量決策的重要方面。許多模型還激發了用于評估決策的新措施。關于SA的文獻記載最多,使用最廣泛,但其他決策模型也導致了更多的新措施。這些都在報告中進行了總結,并將在項目的下一階段進行更充分的探討。

在本階段研究中開發的綜合框架強調了使有效決策得以實現的宏觀認知活動,以及它們是如何相互關聯的。它特別強調了感覺認知功能(對態勢的理解),這種功能產生的期望反過來又會驅動感知、注意和工作量管理(期望循環)。感知也會產生目標,反過來驅動決定和計劃,以及有效的團隊工作所需的溝通和協調(目標到行動的循環)。綜合框架為下一組任務的執行提供了基礎,最終確定了可用于評估新技術對動態陸軍航空決策的各種認知活動的影響的方法和措施。

圖11. 一個表征決策的綜合框架

付費5元查看完整內容

本報告收集了為支持將固有曲面地球模型引入下一代巡航導彈(NGCM)高保真建模與仿真(M&S)工具而進行的分析結果。這些結果用于記錄已實施的算法,預計與其他電子戰應用有關。

我們引入固有曲面地球模型的技術方法的關鍵原則是:1)確定代碼庫中與地球表面有關的計算的位置;2)重構代碼庫,將這些計算遷移到一個新的地球表面軟件對象。在其他方面,這涉及到引入一個關鍵的概念區別:以前,基座標框架和地球表面是混在一起的(地球表面和基座標系統的X-Y平面是一樣的);我們的改變要求把基座標框架和地球表面作為不同的角色分開。

不同的地球表面對象的實現可以模擬不同的地球表面形狀。對于開發和測試,我們的計劃是按照以下策略推出這些對象:首先是平面地球,以保留傳統的行為;然后是球面地球,最簡單的曲面,以支持暴露和消除整個代碼庫中隱含的平地假設,同時受益于盡可能簡單的幾何算法;最后是扁球體,該類包括WGS84,但其許多算法明顯比球體的算法更復雜。

付費5元查看完整內容
北京阿比特科技有限公司