亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

物聯網技術必須具有協作性、上下文感知、多模態融合的特點,以便在對抗性環境中做出實時、有力的決策。將機器學習(ML)模型整合到IoBT中已經成功地解決了小規模的這些問題(如AiTR),但最先進的ML模型隨著建模的時間和空間規模的增加而呈指數級增長,因此在解釋大規模戰術邊緣數據時可能變得很脆弱,不值得信任。為了應對這一挑戰,我們需要開發不確定性量化的神經符號ML的原則和方法,其中學習和推理利用了符號知識和推理,此外,還有多模態和多優勢的傳感器數據。該方法的特點是集成神經符號推理,其中符號背景被深度學習所利用,而深度學習模型為符號推理提供了原子概念(不能在分解的概念)。高層符號推理的納入提高了訓練期間的數據效率,并使推理更加穩健、可解釋和資源高效。在本文中,我們確定了在IoBT中開發上下文感知協作式神經符號推理的關鍵挑戰,并回顧了最近在解決這些差距方面的一些進展。

I 引言

在IoBT中部署人工智能(AI)和機器學習(ML)的一個核心挑戰是缺乏在對抗環境中進行上下文感知(協作)多模態融合和強有力決策的原則性方法。在快速發展的高節奏和對抗性戰場環境中運作的物聯網技術,其獲取、評估、匯總、狀態估計和決策的規模和速度,需要在短時間尺度感知到高水平C3I決策支持的范圍內使用人在環人工智能(AI)。但眾所周知,AI/ML模型很容易受到對手的攻擊,而且缺乏概括性--隨著建模現象在時間和空間上的增加,這個問題的嚴重性也在增加。與商業應用不同,AI/ML在物聯網技術中的失敗會帶來災難性的后果。同時,可用于執行AI/ML模型的資源可能受到更大的限制。因此,在多模態融合的背景下(在IoBTs的MDO效應循環中),負責任、安全和道德地使用機器智能需要創新,以大幅提高效率,同時在結果中提供不確定性/置信度量化。這一挑戰要求開發新的方法,以大大推進分布式物聯網技術的資源效率和信心估計。我們認為神經符號學習和推理(結合符號推理和不確定性量化的深度學習)可以實現這一目的,并確定挑戰,提出假設,并提出初步的指示性結果。

傳統的機器學習通常依賴于來自傳感器自下而上的推理,將每個觀察作為獨立不相關的輸入,而我們的神經符號ML方法將自下而上的推理與神經符號環境的自上而下的預測交織在一起。自上而下的預測和自下而上的推斷之間的不匹配所產生的任何效果都被用于自我監督的訓練和持續的適應。這種神經符號方法得到了不確定性量化技術的幫助,以檢測分布外(OOD)和新輸入。使用上下文和精心校準不確定性量化的自上而下的推理促進了分布式推理,其中邊緣傳感器資源被查詢以證實推理,而不需要連續的數據流。此外,對符號知識的利用極大地減少了所需的神經網絡模型大小,同時允許模型推理在時間和/或空間上延伸到相當大范圍的現象。因此,我們的混合神經符號機器學習方法特別適用于異構分布式IoBT節點,允許我們根據資源限制、數據模式和背景數據的可用性,從神經符號方法的頻譜中選擇符號推理和深度學習的適當組合。因此,神經符號機器學習可以提供戰術邊緣協調,以提高可擴展性、確證性和上下文感知的智能。

II 挑戰和關鍵研究問題

在這一節中,我們確定了在IoBTs中開發上下文感知的協作式神經符號推理的主要挑戰,并將這些挑戰總結為兩個核心研究問題。

  • 研究問題1. 我們如何開發可擴展的語境感知神經符號學習和推理,以跨越符號推理與數據驅動的深度學習的組合范圍,并為給定的資源有限的IoBT選擇適當的組合?

物聯網技術中的推理需要協作性的多模態融合,在這種情況下,傳感器不是連續的數據流,而是在一個動態的、有爭議的物聯網網絡上有一個依賴環境的數據共享。當測量的現象在空間和時間上被定位時,傳統的機器智能技術已經成功地融合了數據并分享了洞察力(例如,輔助目標識別)。然而,這種模型的要求隨著建模現象規模的增加而呈指數級增長,導致了大量的可擴展性問題。神經符號方法自然地在不同的抽象水平上表示知識,使符號表示能夠對更大的和可解釋的背景進行建模,可以與背景知識相融合,以允許在更長的空間和時間尺度上進行推理。因此,這些方法可用于上下文感知傳感,并利用IoBTs中異質、多模態和多優勢數據的靈活性。使用上下文和來自不同數據源和模式的預測的確證也使推理變得穩健。

雖然之前已經開發了具體的神經符號ML方法,但IoBT節點的異質性需要一個靈活的神經符號框架,可以跨越符號推理和數據驅動學習的不同層次的組合。在光譜的一端,我們可以考慮主要是使用規則對使用深度學習識別的實體進行符號推理,在另一端,我們可以考慮將邏輯規則編入深度學習的表現形式,要么是正則化損失函數,要么是可分化的DNN表現。為不同的推理任務和資源有限的IoBT節點選擇適當的組合將有助于創建一個自適應的IoBT。

  • 研究問題2. 我們如何創建并將神經符號ML模型整合到IoBT中,并保證其預測、對新環境的魯棒性和對對抗性樣本的復原力?

IoBT的戰場環境和背景將迅速變化,因此,在IoBT中負責任地部署ML,就必須檢測OOD和新的輸入,并快速適應ML模型。除了缺乏穩健性之外,DNN也容易受到對抗性攻擊。物理上可實現的攻擊可以利用這一弱點,而沒有網絡攻擊。對手會輕易利用戰場上的任何漏洞;因此,IoBTs中的ML必須對對手的攻擊具有彈性。使用正規方法和控制理論構建高安全性系統的傳統方法不足以推理ML模型。這些缺陷為確保ML-enabled IoBTs的穩健性和彈性帶來了獨特的挑戰。特別是,神經符號模型的推理并不遵循前饋神經網絡中通常的非循環傳播,這為不確定性量化帶來了新的挑戰。因此,有必要制定方法來分析神經符號模型的預測性能和穩健性。

提出以下兩個假設,構成了我們解決上述研究問題的技術方法的基礎。

  • 受預測處理(PP,一種心智理論)的啟發,一個多層的神經符號架構將使上下文感知的數據高效的穩健ML模型與符號推理和深度學習緊密結合,可以根據IoBT節點的資源限制以及特定任務和模式的需要進行定制。

  • 健壯和有彈性的ML模型必須能夠通過觀察自己的推理模式來檢測 "驚喜",當受到新的或敵對的輸入時。信息理論方法可以與計算輕量級的運行時監控器相結合,以檢測這種意外,并產生對IoBT的魯棒性和彈性的保證。

我們將在下文中詳細闡述這兩個假設。首先,PPinspired架構依賴于建立一個 "世界模型",該模型捕獲了背景(如時空關系),并使用這種背景來假設和確認對傳感器數據的預測。我們使用世界模型的分層表示法,從神經模型(捕捉局部背景,但細節水平較高)到符號抽象模型(捕捉更廣泛的背景,可能在空間和時間上延伸)。在異構的IoBT節點上運行的不同學習和推理任務和模式可以從不同程度的符號知識中受益。例如,跟蹤車輛可以利用眾所周知的物理模型,而檢測特定類型的車輛可以依靠 "ispart-of "關系,如 "車輪是車輛的一部分 "或空間共現,如車輛與道路共現。這種將符號知識與深度學習融合在一起的正確層次的選擇,也可以在具有不同計算能力的不同IoBT節點上實現資源效率的推斷。

其次,將神經符號ML模型安全、可信地集成到IoBTs中,需要有方法來描述這些模型的泛化和魯棒性,并建立運行時監測器,以檢測環境何時在訓練背景之外演變,模型是否不可信。我們假設,運行時監控器可以觀察學習模型的推理模式,以檢測對模型來說是令人驚訝的輸入,與試圖學習訓練分布而不考慮模型的傳統異常檢測方法相比,這種監控器在檢測OOD和對抗性輸入方面更加有效。開發這樣的監測器將需要健全和系統的生成,并結合統計學來衡量模型的驚喜。此外,在IoBT邊緣節點上部署ML模型和這些運行時監控器需要這些模型在計算上是輕量級的。因此,生成快速評估的監測器對于使ML模型對新的和對抗性的輸入更加穩健而不犧牲推理速度至關重要。

III 相關工作

文獻中提出了大量的臨時性神經符號方法。一個常見的方法是使用邏輯公式的可微分近似,比如CLIP系統[10](20世紀90年代開發,是邏輯張量網絡[24]的前身)、ILP[8]、DFOL[9],以及我們之前的工作Neuroplex[30]。這種沒有保證原始表征和可區分表征之間差距的近似可以通過直接的模糊邏輯式編譯(如LTN[28])或通過投影梯度/鏡面下降(如程序歸納[6])以及我們之前的工作[11]來創建。另一種產生于統計關系人工智能[18]的方法是將深度神經網絡的分類輸出作為概率和/或邏輯推理系統的原子謂詞,如DeepProbLog[26]和我們之前的工作DeepProbCEP[22]。這些方法在神經和符號表征之間有淺層的整合,可擴展性有限,而且沒有任何保證。

除了對保證的關注,我們認為在神經符號學習和推理中需要進行迭代訓練和推理。大多數神經符號方法都處于邏輯符號模型與深度學習整合的兩端之一。一端是DeepProbLog[26]和程序歸納[6]等技術,其中使用規則或程序的符號推理是分層在深度學習模型識別的實體之上的。在另一端,有一些方法,如LTN[28]和TNN[11],將邏輯編譯成深度學習表征(作為正則損失或差分DNN表征)。我們假設,理想的神經符號方法不會使用這種分層架構。相反,神經符號推理需要是雙向的--基于學習的自下而上的推動是不確定性驅動的,基于推理的符號自上而下的拉動是決策驅動的。這允許一個更靈活的架構,神經層和符號層都能進行綜合推理。這對保證和穩健性至關重要,因為它避免了符號層對神經推理的正確性的任何假設,或者反之亦然。

最近提出了幾個基于分層預測處理(PP)的ML模型,包括我們自己之前在Trinity上的工作[1]、[14]、[16]、[23],這是PP的第一個實際實現之一。最近這些實現PP或HPP的嘗試[3], [12], [19]都不是神經符號化的,無法從符號化的知識或推理中受益。我們主張采用一種神經符號結構,通過平衡[2]支持信息的雙向流動來進行訓練和推理,而不是拼接單獨訓練的層。

IV 技術途徑和初步成果

在有爭議的環境中,如IoBTs,一個旨在持續學習、推理、理解和穩健推理的認知架構必須提供必要的目標導向的知識表示、推理和決策機制,以允許分布式推理,其中IoBT的邊緣節點可以快速適應。IoBT節點在其資源限制和數據模式方面的異質性需要一種ML范式,它支持具有不同知識表示、目標結構和推理方法的靈活的認知架構。在這種考慮不同層次信息的需求的激勵下,我們開發了TrinityAI[1]、[4]、[13]-[17]、[23]、[29]框架,用于可信的、有彈性的、可解釋的人工智能。我們概述了這個框架和計劃中的擴展,這些擴展將解決本文中確定的挑戰,以開發一個上下文協作的神經符號學習和推理方法。

圖 1. 神經符號TrinityAI架構概述

TrinityAI(圖1)使用了一個類似于人類心理學中的雙重處理理論[7]的架構(通常被稱為系統-1和系統-2),其中系統-1是反射性的神經層,而系統-2是一個更加慎重的符號層。系統-1建立在一個生成性分布學習模型上(基于我們最近提出的主成分流[4]),從高維數據中學習中間特征的條件分布。系統-2是使用圖神經網絡[20]或ProbLog[5]--歸納邏輯[25]邏輯建模和概率編程的結合--實現的審議式符號AI。基于我們之前的工作[27],我們為ProbLog定制了與事件微積分中的元素相對應的謂詞,用于與感知和情況理解有關的推理任務。我們方法的一個關鍵技術部分是量化這種神經符號ML架構的不確定性的原則性方法。

另一個重要的挑戰是探索反射層(系統1)和深思熟慮的長時標符號層(系統2)之間的相互作用應如何告知分布式IoBT系統中的數據通信。應對這一挑戰將為戰術邊緣協調(在一個動態和有爭議的網絡上)提供算法和理論基礎,以確定分享哪些數據,在什么抽象層次上,以及與哪些實體分享,以優化任務績效。我們建立神經符號模型的方法可以被看作是 "綜合分析 "的一個例子[31],也就是說,我們提出假設(即候選世界模型),并傾向于那些預測與輸入數據相匹配的假設。

在我們最近關于TrinityAI[23]的工作中,我們建立了這樣一個神經符號模型。Trinity中的第一層目前使用一個特征密度模型(通過簡單的統計模型如Mahalanobis距離或使用更具表現力的基于深度學習的分布模型如歸一化流的擴展來實現[4]),學習輸入、預測的類輸出和模型提供的解釋的聯合分布。第二層使用符號模型,如圖馬爾可夫網絡,學習物體之間的空間和時間關系,以完成物體檢測任務。

在我們的初步結果中,這個架構顯示出適合IoBT的幾個特點。

  1. 穩健性。第1層可以檢測OOD、新的和對抗性的輸入。例如,對于在CIFAR10和SVNH上訓練的WideResNet模型作為OOD,我們的方法可以檢測到86.8%的OOD,而最先進的是57.2%。OOD檢測也被擴展到其他模式,如音頻、時間序列數據和視頻[17](例如,圖2中的漂移汽車,其中OD性是時間性的,而不是在單一幀中)。

圖 2. 時間新穎性對應于時間序列數據中的新穎性,其中各個狀態(例如視頻幀)處于分布狀態,但狀態序列是OOD。

  1. 上下文感知。第2層使此方法具有上下文感知能力,它還可以檢測出脫離上下文的輸入[1],其中單個組件(如場景中的物體)并不新鮮,但它們出現在一個新穎的上下文中,甚至可能脫離基于上下文的ML模型。圖3顯示了一個物體檢測問題的這種斷章取義的輸入的例子。

圖3. 示例:脫離上下文的輸入,其中對象分布不均勻,但它們以一種創建脫離上下文場景的方式組合,例如房間中的飛機或我們期望交通標志的鍵盤。TrinityAI[1]可以檢測到此類異常。

3)數據效率。上下文感知的ML模型表現出更好的泛化能力,即使是小數據也能正確識別物體。我們使用NuScenes數據集與波士頓和新加坡的交通圖像進行了評估。該數據集是不平衡的,只有不到1%的自行車的例子,其中一些是被遮擋的(見圖2c)。對于50%和30%的遮擋,我們的方法將自行車的檢測率從2.4%提高到31.4%,12.5%提高到66.6%,同時保持了95.5%的高總體準確率。

圖4. 像自行車這樣的類別在NuScenes數據集中的代表性不足。像IoBT這樣的真實世界的應用往往會有不平衡的數據集

4)自適應通信、協調和協作決策。對于一個積極的、有彈性的、有通信效率的和有戰斗力的IoBT,我們設想在傳感器數據的通信、收集和用于決策方面有一個根本的轉變。我們將研究在設計IoBT架構時使用預測性處理原則,而不是將所有傳感器的觀察結果流向處理節點。運行基于預測處理的機器學習模型的各個決策節點可以查詢傳感器,以提供確認其當前假設所需的信息,并在出現意外情況時,查詢額外的傳感器或其他學習模型,以提供進一步的觀察和證據。這將減少IoBT中所需要的通信,并使其成為一個活躍的網絡,建立世界的模型,并在需要時查詢傳感器以更新其模型并做出決定。因此,IoBTs中的傳感和通信是由機器學習模型的不確定性量化指導的。

V 未來研究方向

在這一節中,我們確定了未來的研究方向,這些方向建立在我們的技術方法之上,并解決了在物聯網中開發協作式上下文感知神經符號的強大機器學習和推理的研究挑戰。我們將這些未來的方向歸納為三個方面。

  • 將深度學習與更豐富的符號推理和推理框架相結合。在我們最近關于DeepProbCEP[27]的工作基礎上,我們主張將我們的第二層符號模型從圖形模型擴展到一個更豐富的邏輯推理框架。這對于通過納入知識來提高IoBTs的數據效率至關重要。支持推理以推導出上下文,并實現對上下文敏感的適應,考慮到IoBT節點的資源限制,也是至關重要的。這也將超越最初產生的具有樞紐-輻條組織的兩層符號-后神經神經符號架構,開發適合IoBT設置的更通用的神經符號架構。具體來說,利用神經符號架構搜索、跨神經和邏輯領域的轉換以及邏輯模型的高效張量實現等方面的進展,這種整合將開發神經符號架構,在協作的IoBT邊緣設備之間利用更豐富的信息流,以滿足資源約束。最后,我們主張開發一些方法,通過將專家知識注入符號組件與基于遷移學習的神經組件的適應性相結合的方法,使神經符號架構能夠快速微調,以適應新的IoBT部署的環境特征和戰術、技術和程序。符號推理的這種整合將納入背景知識和符號推理,以提高數據效率,并普及到樞紐型神經符號架構。它還能使神經符號框架適應需要進行推理的IoBT節點的資源限制。

  • 神經符號模型的有原則的不確定性量化。以前的工作大多集中在確定有希望的測試統計量和相應的閾值,主要是受這些統計量取值的經驗觀察的激勵。在我們最近的工作中[17],[21],我們試圖用保形預測和多重測試的方法為這類方法提供誤報檢測的保證。繼續這一研究方向,我們建議需要開發原則性的方法來組合測試統計量,以減少使用復雜模型學習分布時的計算負擔,如歸一化流量。需要關注神經符號模型中不確定性傳播的方法,并進行迭代循環推理。特別是,我們可以在感知層使用預測集,滿足對不確定性的明確的有限樣本保證,這些預測集通過迭代與來自符號層的信息進行完善。神經符號學習中的不確定性量化是機器學習中一個具有挑戰性和相對探索的領域,需要基礎科學和基礎研究的發展。

  • 神經符號架構啟發的算法和邊緣協調的基礎。在神經符號架構和人類心理學中所謂的系統1和系統2之間存在一個顯著的類比,前者是指快速的本能處理,而后者是指更慎重的認知處理(通常在較慢的時間尺度上)。通常快速的直覺處理發生在有意識意識的閾值以下,而異常和不尋常的事件(除了引起局部的系統-1反應)則在更高的抽象水平上報告,以引起更慎重的緩慢的認知反應。這個類比為設計分布式IoBT系統中的神經(系統1)和認知/符號(系統2)組件以及協調它們之間的通信的策略提供了一個起點。在這樣的架構中,一般情況下的處理被委托給本地組件,而不常見的事件則在更高的(符號)抽象水平上進行全局處理,從而在一般情況下將網絡使用降到最低,并為分布式本地組件提供一些自主權。我們需要建立在異常/快速變化檢測(檢測自下而上的信息推送的條件)以及決策驅動的通信(產生象征性的自上而下的拉動)上。

雖然這里倡導的上下文感知協作神經符號推理方法是通過建立世界的神經符號模型,量化感知和風險意識決策中的不確定性來驅動的,但我們強調,我們的方法不需要任何明確的人工建立環境。復雜和快速發展的環境,如IoBTs,不能手動建模。相反,我們的方法依賴于維持一個連續的機器學習的環境模型。使用這種模型的神經符號表示法使得此方法:

  • 可解釋,這對物聯網應用來說是必要的,因為物聯網應用通常需要共生的人在環或人在環的決策。

  • 數據效率高,因為在快速發展的環境中,可用于快速學習的監督量是稀少的,而且使用背景符號知識是至關重要的

  • 穩健,因為眾所周知,沒有捕捉到完整上下文的純神經表征對小的擾動是很脆弱的。

這種上下文感知的神經符號方法的發展需要一種驗證方法,它可以用來推動這些不同方向的研究。這種驗證可以使用模擬器的組合,如AirSim、CARLA和Gazebo。CARLA模擬器提供各種模式的數據,包括RGB/深度相機、LiDAR、雷達、IMU和GNSS。除了多模態模擬,我們還可以使用大量的多模態數據集,如在密歇根州記錄了相機/激光雷達模態的福特AV數據集、由視覺、3D激光雷達和雷達模態組成的nuScenes數據集以及由視覺和熱像儀組成的KAIST多光譜行人數據集。

VI 結論

有爭議和沖突地區的復雜性和節奏,如戰場,甚至網絡空間,如計算機網絡,都對快速和精確的信息傳播提出了要求,并在指揮、控制、通信、計算機、網絡、情報、監視和偵察(C5ISR)方面帶來了獨特挑戰。雖然通過不同模式的大量傳感器收集的大量傳感數據是現成的,但正確和有力地解釋和理解這些信息的時間卻變得非常少。這就需要發展認知處理能力,將背景知識與從數據中學習相結合。

在戰爭中采用人工智能能力將使戰場更加動態和快速發展,超出人類的理解和反應能力。ML模型對于促進對沖突的整體感知至關重要,它整合了來自不同異質傳感器的信息,并確保及時的自主決策,以實施按意圖指揮。這就要求ML模型對戰場環境的變化和對手的擾動具有魯棒性和彈性。我們應對這一挑戰的神經符號方法側重于IoBT的具體要求,即對自然和對抗性擾動的魯棒性、數據稀少性、低監督性、解決訓練分布中環境的快速變化,并確保符合交戰規則和安全要求。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

(2020年2月5日,美海軍陸戰隊網絡空間司令部的海軍陸戰隊員在馬里蘭州米德堡的網絡作戰中心觀察計算機操作)

二十一世紀最近的一些沖突,如2014年的克里米亞,2020年的第二次納戈爾諾-卡拉巴赫戰爭,以及2022年正在進行的俄烏戰爭,都表明了戰場上信息的重要性。雖然對信息的理解在戰爭的各個層面和整個沖突過程中都是至關重要的,但在作戰和戰術層面的概念化卻是一個挑戰。隨著向多領域作戰(MDO)的轉變,在即將出版的條令出版物--戰場手冊(FM)3-0《作戰》,陸軍條令出版物(ADP)3-13《信息》的支持下,陸軍開始努力解決如何實現信息優勢以擊敗敵軍并實現目標。

圖1. 對作戰環境的整體看法(圖自聯合出版物5-0,聯合規劃[2020])

為了成功地滿足MDO的要求,即決策主導權,信息將需要成為所有作戰功能的規劃過程的一個核心方面。為了確保這一點,FM3-0草案提出了一種將作戰環境(OE)可視化的整體方法。此外,ADP 3-13草案詳細說明了如何通過五條努力路線實現信息優勢。雖然從聯合部隊的角度來看,陸軍新的作戰環境模型是一個改進,但需要有一個更好的方法來概念化信息在每個作戰功能中發揮的作用。更新陸軍的框架可以使信息在整個作戰功能中得到整合,同時允許各級按照任務指揮的原則進行靈活和知情的決策。這一更新的框架釋放了信息在規劃過程中的全部潛力,并最終實現了任務的執行。

表. 聯合/軍種對信息優勢/信息戰定義的比較

理解作戰環境(OE)中的信息

目前,聯合出版物5-0《聯合規劃》中對作戰環境的聯合觀點做了最好的介紹,圖1。一個重要的區別是,該模型將信息環境(IE)描述為作戰環境的一個獨特部分。此外,聯合模型將信息環境分解為三個維度(物理、信息和認知),并包括網絡空間領域。從聯合的角度來看,信息目前正在接受更新,即將發布的聯合出版物3-04《信息》,部分原因是在2017年將信息增加為一項聯合職能。這次更新并沒有改變聯合部隊如何理解信息環境的核心概念;然而,有一些小的變化。相比之下,陸軍新興的OE概念更有助于整合信息。如圖2所示,陸軍的模式是真正的整體性的。陸軍沒有單獨的信息環境,而是將物理、人類和信息層面視為存在于每個作戰領域中。換句話說,沒有必要有一個單獨的信息環境,因為信息在每個領域都是存在的,而且是持久的。雖然聯合模式中表達了信息環境與操作環境完全整合的想法,但陸軍故意刪除了明確命名的 "信息環境",這有助于提供清晰的信息能力并防止偷工減料。最終在MDO期間,軍隊可以通過這些維度實現對敵人的相對優勢,包括信息優勢。

圖2. 新興的陸軍作戰環境概念(《戰地手冊》3-0,作戰[即將出版])

獲取信息優勢的途徑

無論采用哪種方法來處理作戰環境或IE,有一點是明確的:信息是規劃過程的一部分,對有效決策至關重要。這可以從所有軍種用來描述信息在作戰和戰術層面的作用的定義中看出。然而,就像聯合部隊和陸軍對OE的看法的細微差別一樣,聯合部隊和各軍種對什么是信息優勢也有一些明顯的區別。下表顯示了各軍種和聯合部隊在理解信息優勢方面的各種方法。

盡管存在差異,但所有這些定義的核心都是信息對決策過程至關重要的觀點。然而,同樣重要的是,這些定義都是在與另一行為體競爭的背景下談論決策。在促進友好決策的同時擾亂對手的決策的能力是信息優勢的核心。這種競爭的理念在FM3-0草案中提出的陸軍決策優勢概念的圖示中得到了明確的闡述,見圖3。

圖3. 決策主導權和決策周期的競爭(陸軍條令出版物3-13,信息[即將出版])

正如所描述的那樣,陸軍的方法使用了作戰過程,特別是指揮官在作戰過程中的作用(理解、可視化、描述、指導、領導和評估,或稱UVDDLA),來描述這個決策周期。正如ADP 5-0《作戰過程》所概述的,作戰過程是指揮和控制的框架,指揮官的核心作用是 "推動必要的概念和詳細規劃,以了解他們的作戰環境;可視化并描述行動的最終狀態和作戰方法;做出并闡明決策;指導、領導和評估行動";這可以從圖4看出。重要的是,ADP 5-0指出,"行動過程的目標是做出及時和有效的決定,并比敵人更快地采取行動"。然而,在行動過程中使用UVDDLA作為信息優勢的框架是有缺陷的,原因有幾個。首先,最重要的是,雖然作戰過程的核心是做決定,但作戰過程本身并沒有對決策如何發生給出額外的見解。因此,在圖3中,與作戰功能的聯系并不明顯,因為這些功能要么加強了決策周期,要么降低了決策周期。圖中顯示了作戰功能的作用,但卻沒有說明如何發揮這一作用。最后,與其他決策框架不同,作戰過程直接與陸軍的指揮和控制方法聯系在一起。這種缺乏通用性的情況意味著它沒有靈活性,不能照搬和應用于理解對手的決策過程。應該指出的是,在決策主導權定義的早期迭代中,作戰過程并不是用來描述決策過程的。詹姆斯-麥康威爾將軍在他的參謀長一號文件中指出,"決策主導權是一種理想狀態,在這種狀態下,指揮官比對手更快、更有效地感知、理解、決定、行動和評估[SUDAA]。" 這種SUDAA過程在陸軍未來司令部關于決策主導權的小冊子中得到了形象的描述,見圖5。使用這個定義比使用行動過程有幾個好處。首先,信息在做出更有效的決策中的作用很容易被應用到這個過程的 "感覺和理解 "部分。第二,雖然這個過程本身是由指揮官在指揮和控制過程中使用的,但SUDAA過程卻沒有那么嚴格地只與指揮官聯系在一起。

盡管有了這些對行動過程的改進,SUDAA的理念仍然沒有得到完善。然而,它顯然受到了另一個決策框架的啟發,這個框架更加成熟,也可以應用于整個作戰職能和所有組織層面,即由退役的約翰-博伊德上校創建的方向-觀察-決定-行動(OODA)循環。

圖4. 作戰過程 (圖自陸軍條令出版物5-0《作戰過程》[2019])

利用OODA循環獲得信息優勢

博伊德的OODA循環經常被簡化;然而,圖6中的完整版本則突出了決策的復雜性。這種復雜性集中體現在定位步驟上,博伊德將其稱為 "大O"。空軍戰爭學院的Grant Hammond總結了定位步驟的重要性。

圖 5. 感知、理解、決定、行動、評估框架(圖來自 AFC小冊子71-20-9,《陸軍指揮與控制2028的未來概念:追求決策主導》 [2021])

它是遺產、文化傳統、以前的經驗、教育和新信息的混合體,以及隨之而來的分析和綜合。這些都是一套復雜的過濾器,對各種刺激的行動和反應進行調節。在處理所有這些信息時,會形成一個反應菜單。然后對這些反應進行分類、分析和綜合,以做出關于首選程序的決定。

同時注意到,定位步驟是指導和控制人們如何在其環境中觀察和行動。所概述的方向與陸軍對人的層面的理解完全吻合。正如ADP 3-13草案中所概述的,"人的層面包括個人的推理、情感和行為,以及群體互動的更廣泛的社會背景,包括文化、群體身份和社會權力動態。"

圖6. 博伊德的OODA環的擴展版本

通過將OODA循環框架整合到現有的信息優勢理念中,信息在決策過程中的作用重點更加明確。這個更新的框架可以在圖7中看到。雖然OODA循環在每個步驟之間都有持續的反饋,但信息在觀察和定位步驟中發揮了巨大的作用。因此,通過特別關注這些步驟,陸軍能夠更好地構思如何將各種作戰功能納入規劃過程以實現信息優勢。

這個框架使每個作戰職能部門能夠更清楚地看到他們在加強或削弱決策周期方面的作用。例如,網絡電磁活動可以用來降低對手的觀察部分(如干擾敵方雷達的電磁攻擊),也可以在定位步驟(如操縱數據的網絡效應)。正如上面的例子所示,有時這些角色的定義非常明確。情報作戰職能部門的人不會對他們在支持友軍OODA循環的觀察和定向步驟方面的影響感到驚訝。然而,其他作戰職能部門在信息方面有更微妙的影響。以維持為例,當陸軍更新其陸軍預置庫存(APS)時,維持對敵方決策的影響。它通過使陸軍的供應和移動更加迅速而使敵人的觀察變得復雜。同樣,使用APS可以影響敵人的方向,因為它要求他們現在將APS能力納入他們的決策。這些對敵方決策周期的看似微小的干擾可能足以在短時間內獲得優勢。歸根結底,納入OODA框架意味著在計劃期間,每個作戰功能都應考慮它們如何影響觀察和定位步驟。

圖7. 更新FM3-0框架與OODA循環

結論

為了充分實現MDO的要求,軍隊需要了解如何實現信息優勢。這種理解始于一個堅實的框架。FM3-0的更新和即將發布的ADP3-13是正確的第一步。然而,任何信息優勢框架要想被采納,都需要與戰備狀態和作戰功能明確聯系起來。如果沒有這種聯系,信息優勢的規劃將繼續被那些習慣于處理信息的群體所壟斷,而不是按照要求在整個部隊進行。雖然陸軍對OE的做法比聯合部隊目前使用的模式有所改進,但ADP 3-13草案在提供一個明確整合信息和各種作戰功能的框架方面存在不足。陸軍需要一個更新的框架,納入約翰-博伊德的決策理論和他的OODA循環。作戰功能的作用是加強友軍的決策周期或削弱對手的決策周期。通過將信息優勢的核心目標設定為更有效的決策的助推器,軍事人員可以將他們在信息層面的影響概念化,而不考慮作戰功能。這種影響,以及大多數信息優勢活動,都集中在OODA循環的觀察和定向步驟上。這種明確的重點,嵌套在決策框架內并與MDO的必要條件相聯系,使每個作戰職能部門能夠在復雜的作戰環境中有效地規劃信息優勢。

付費5元查看完整內容

(圖:作家兼戰略家彼得辛格(左)于 2018 年 11 月 1 日在一個未命名的空軍設施與一名軍官和一名國防部文職人員討論新技術。人工智能和腦機接口等進步將改變陸軍作戰的方式。)

長期以來,決策一直是戰爭的核心。最近,戰爭的節奏、規模、不透明性、非線性和連通性的增加對當代決策過程提出了越來越多的挑戰。在未來,這種變化將同時增加及時和有效決策的重要性,同時進一步加劇許多指揮官的認知和決策挑戰。指揮官將尋找結構不良、高度復雜的問題的解決方案,這些問題延伸到空中、陸地、海上、信息、網絡和空間這六個領域。隨著新技術和新應用的實現,未來的事態對復雜性構成了潛在的增長,并將以指數級的速度增加。人類的學習,甚至是最老練的指揮官的直覺能力都無法跟上不斷變化的戰爭特征。要想把贏得戰斗的洞察力帶到未來,必須對人類的認知、決策過程進行改進,或對其進行增強。

決策能力和現有支持的割裂造成了分析性決策過程、指揮官的直覺和有效決策之間日益擴大的能力差距。當前和未來的環境表明,有必要開發更加靈活的決策支持工具,以阻止這種差距,并為指揮官重新獲得決策優勢。在一個不透明和復雜的環境中有效地預測未來幾場戰斗的能力將是成功的關鍵。同時,在一個能夠迅速使以前的計劃失效的動態環境中,理解并首先做出反應的能力對于奪取和保持主動權至關重要。

復雜性科學和混沌研究已經與類似的問題進行了斗爭,并為軍事指揮官的突發挑戰提供了相關的見解。計算機建模和人工智能(AI)方面的工作已經取得了巨大的進展。在許多游戲中,計算機已經超越了人類的決策能力。

從人工智能的主導地位中適應和發展,國際象棋中的人機團隊已經達到了決策的新巔峰,將提前數個回合評估未來動作的算法的卓越戰術與人類的戰略能力相結合。目前美國與人工智能和決策有關的國防努力似乎集中在大數據和數據分析上。然而,如果沒有一個改進的軍事決策框架,就不能利用預測性分析。否則,增加的數據和分析只會加劇理解日益復雜和動態的作戰環境的挑戰。

軍事決策過程(MDMP)雖然在分析上是合理的,但其結構并沒有跟上未來環境的步伐。沖突的速度將超過工作人員處理分析貢獻的能力。

用人工智能對MDMP進行修改和增強,將創造一個過程,以更快的速度產生對環境的理解,并以物理信息的框架為基礎。行動方案的制定將不會像現在這樣,從一個理想的最終狀態向后發展,在理論上運用方法和手段來創造一個想象的未來。由人工智能支持的MDMP將從當前狀態向前工作。它將通過友軍和敵軍決策樹的可能分支向前探索,走向各種環境和敵軍的行動路線,通過最小化風格的決策樹,將其作為適應性代理來實現。替代行動的未來將通過可行性的出現來建立,并通過優化作戰功能的貢獻來完成,固有的區別,然后由人機團隊的人類部分來判斷是否合適和可接受。重新設想的人-機MDMP將與未來的操作環境保持同步,通過以接近機器的速度操作來保持相關性,使人能夠在日益濃厚的戰爭迷霧中獲得卓越的視野。

指揮官雖然得到參謀部的支持,但最終還是利用自己的能力進行決策。當指揮官在進行問題解決以制定對其工作人員或下屬的指導時,他們基本上是在進行 "手段-目的分析,這是一個尋找手段或步驟的過程,以減少當前情況與預期目標之間的差異"。即使是直覺,即對一個事件或數據的突然有洞察力的解釋,也以類似的方法發揮作用。"盡管表面上突然閃現的洞察力似乎產生了問題的解決方案,但研究表明,人們在解決洞察力問題時使用的思維過程最好被描述為一種漸進的、手段-目的的分析。" 領導者認識到相似性,并將其與個人和所研究的歷史聯系起來,從而獲得洞察力。心理學家、經濟學家和諾貝爾獎獲得者丹尼爾-卡尼曼(Daniel Kahneman)用這樣的描述來解釋內部的、經常是半意識的過程:"產生印象、直覺和許多決定的心理工作在我們的頭腦中默默地進行"。數學物理學家、科學哲學家和諾貝爾獎獲得者羅杰-彭羅斯描述了一種無意識的思想發展和對這些思想的有意識判斷。

MDMP有一個類似的、不亞于人類的動態。參謀部通過行動方案(COA)的制定產生備選方案,并由指揮官決定。然而,在行動方案的制定過程中,正如在手段-目的推理中一樣,用于簡化計算的啟發式方法以及一些神經心理學上的缺陷,限制了選擇并注入主觀性。歸根結底,目前MDMP內部的COA開發過程仍然需要大量的頭腦風暴來解決。

與主觀開發選項形成對比的是基于衡量和計算的選項開發,而這一過程將由人工智能支持的程序執行。通過一些基于現有信息和過去沖突的數據的計算,可以對比出AI賦能的MDMP會提供的建議。

對2008年俄格戰爭期間的決策和計劃進行評估,在與歷史上的決策、行動和結果進行對比時,可以深入了解人工智能驅動的MDMP的好處。以下是人工智能驅動的MDMP背后的邏輯和過程

俗話說,如果情報是用來推動機動的,那么對戰場的情報準備的產出必須作為COA發展的起點,使友軍COA的創建能夠實現對對手的不對稱,并執行對對手行動最有利的行動。

從對敵方力量的評估中,可以根據具體的任務變量來確定所需的友軍力量。要做到這一點,需要一種衡量對手戰斗力的方法。有許多復雜程度不同的方法來確定一個代表戰斗力的數值。

人工智能程序可以使最繁瑣的系統變得可行,所以它不像參謀部那樣受到復雜性的限制,特別是在時間有限的時候。雖然這個例子使用了戰區分析模型(TAM),但TAM并不是重點。指揮官、參謀部或學說推薦的任何東西都可以使用。

在2008年俄格戰爭爆發前,俄羅斯部隊在北奧塞梯駐扎。這些部隊可以按地點轉化為戰斗力值。例如,在馬米森山口附近的俄羅斯部隊可以按其組成部件進行統計,如人員、T-72主戰坦克、2S3自行火炮和BM-21多管火箭炮系統。

圖 1. 俄羅斯軍隊戰斗力計算

圖1中顯示的戰斗力范圍可以告知所需的戰斗力,這些戰斗力來自于格魯吉亞部隊的位置,用藍色矩形標注,以便在各種可能的情況下擊敗這支俄羅斯部隊。圖1中描述的兩種情況是俄羅斯使用西面的馬米森山口或東面的羅基隧道(帶箭頭的紅線)。

與戰斗力計算一樣,從計算機建模中得出的計算結果可以用來預測基于部隊和手段的相應相關性的傷亡。在這里使用的算法中,戰斗力是根據地形和任務類型對每種能力或系統進行調整。一旦對戰斗力進行了調整,該模型描述了在部隊比例為1:1時的傷亡分布情況,有一條非線性曲線,在戰斗力比例大約為4.4:1時趨于平緩,顯示了一個粗略的收益遞減點。這種計算方法不能提供 "任務成功 "的百分比機會,但可以提供預期戰損和傷亡的迭代,顯示雙方的戰斗力如何隨著時間的推移而受到影響。必須對將導致失敗或撤退的戰斗力損失做出假設,但這是一個很好的例子,說明人類的洞察力可以被迫提供具體的情況。從這些計算中出現的洞察力的開端是,1:1的比例仍然是消耗性的,而2:1的比例有可能在兩次反復中增長到2.4:1然后是4.5:1。這就形成了一種機制,在時間上尋求有利的戰斗比例,可以決定性地改變平衡。這不是一個水晶球,而是現有的最佳估計,能夠由工作人員有條不紊地進行,或由程序以機器速度進行。由于戰爭是一種明顯的人類努力,因此可以將士氣或本例中未包括的其他因素納入到額外的修改因素中。這種對戰斗力隨時間推移的理解提供了一個關鍵的洞察力,并可以為部隊分配的決策提供參考。在這一點上,可以產生一個對應于特定地點的友軍的有利戰斗力要求。圖2強調了格魯吉亞部隊如果在俄羅斯入侵路線上的起伏地形中進行防守時的理想戰斗力。

隨著南奧塞梯局勢的升級,格魯吉亞總統米哈伊爾-薩卡什維利于2008年8月7日為軍隊確定了三個目標。他指示他們 "第一,阻止所有軍車從俄羅斯通過羅基隧道進入格魯吉亞;第二,鎮壓所有攻擊格魯吉亞維和人員和內政部崗位或格魯吉亞村莊的陣地;第三,在執行這些命令的同時保護平民的利益和安全"。正如格魯吉亞國家安全委員會秘書亞歷山大-洛馬亞后來所證實的,"我們行動的邏輯是解除茨欣瓦利郊區的射擊陣地,并試圖通過繞過茨欣瓦利,盡快向羅基隧道靠近"。這一指令和支撐格魯吉亞軍事反應的邏輯為本文中繼續發展人工智能的COA提供了一個有益的對比。

圖2. 兵力比的正反饋循環

前面分析的圖1中的俄羅斯部隊是后來試圖通過羅基隧道進入格魯吉亞的第一梯隊部隊。被描述為向格魯吉亞部隊和村莊開火的部隊在茨欣瓦利附近活動,由奧塞梯人組成,由俄羅斯和奧塞梯 "維和 "營協助,人數增加到830人,大約300名雇傭兵,以及更多的大炮。由于他們有相當多的步兵,不同的任務,以及從茨欣瓦利城市中心倉促防守的地形,通過以前使用的相同方法,他們的戰斗潛力被計算為60。

談到格魯吉亞部隊和繼續發展他們最有利的行動路線,格魯吉亞第二、第三、第四和第五步兵旅以及戈里的一個單獨的坦克營的戰斗力和位置,作為計算的起點。他們與俄軍的距離和旅行時間,或關鍵地形,都可以計算出來。將這些信息與之前概述的俄羅斯部隊和之前討論的兵力比例知識結合起來,就可以利用目標編程,從數學上優化從每個格魯吉亞地點到羅基隧道或茨欣瓦利的戰斗力,以滿足有利的兵力比例,同時最大限度地減少總的旅行距離,從而最大限度地減少時間和后勤要求。

圖3. 戰斗潛力優化Python計劃的結果和建議的第4旅的分步任務組織結果

圖3左上角的優化程序結果顯示,格魯吉亞的戰斗力分配足以達到2:1的兵力比,以對抗進攻的俄羅斯部隊。對于第4步兵旅,建議在各目標之間分配戰斗力,后續的優化程序是按作戰功能確定各目標的不同作戰系統的數量,如圖3右上方所示。其結果是以理論為基礎的理性選擇解決方案,并通過在后期MDMP的COA分析步驟中為裁決戰爭游戲而保留的計算類型形成。人工智能支持的MDMP所實現的是使用詳細的分析來告知行動方案的最初發展,防止未來對次優COA的路徑依賴。

這種輸出就像分析數據以創造信息。合并這些信息的組成部分可以創造出知識,指揮官或參謀部可以對其運用智慧。這種方法不是像直覺所注入的那樣擁有不可解釋的因素,而是可以解釋的,并且可以在指揮官的具體規劃指導下進行修改。在這種情況下,裝甲、步兵和炮兵在進攻和防守中的有效性,以及丘陵和城市地形,都被納入優化的考慮范圍,輸出結果將炮兵優先送到羅基隧道。這一建議,雖然源于算法,但遵守人類的軍事判斷,認識到在城市中使用火炮的相對困難,以及步兵的相對優勢。毫不奇怪,行動后的審查指出,格魯吉亞的炮兵在丘陵地帶對付前進中的俄羅斯縱隊是有效的。

同樣,在這種修改中,通常為COA分析的后期步驟保留的計算類型被應用于COA的最初發展。正如加里-卡斯帕羅夫所描述的與計算機合作的好處一樣,人類也可以將作戰藝術應用于已經納入科學的概念。

許多計算可以被整合到程序中,以減少認知負擔,讓工作人員進步到更高層次的人工分析,其中一個例子就是時間。對于建議的每條路線,可以進行計算,根據車輛數量和其他變量確定更準確的時間。

將上述初級人機開發的COA的輸出與格魯吉亞國家安全委員會對其一般行動方案的闡述相比較,突出了人工智能支持的MDMP可以提供的優勢。人工智能的建議將一支更強大的格魯吉亞部隊引向羅基隧道,同時向茨欣瓦利投入部隊。很可能更早和更多地將部隊投入到羅基隧道附近的防御中,會極大地擾亂已經被渠化的入侵俄羅斯部隊,并阻止他們將火箭系統移到茨欣瓦利的射程內,并通過隧道將彈道導彈炮組進一步嵌入格魯吉亞,這對俄羅斯人來說是決定性的。

到目前為止,修改后的方法已經建立了一種發展 "下一步行動 "的方法,其基礎是對友軍和敵軍戰斗力的理解,這種戰斗力如何受到任務類型和地形的影響,以及部隊在移動和機動接觸中的時間關系。地面部隊的這些例子必須自然延伸到所有領域的戰斗力和效果的應用。這種技術能夠同時分析各個領域,并為跨領域效果的整合提供一個機制。近距離空中支援的架次可以被整合到地面領域,以便在地面戰斗的關鍵地點和時間提供更好的戰斗力比率。此外,在進行空對空作戰計算時,可以將地面防空資產納入空對空計算的因素。圖4顯示了通過羅基隧道進攻的俄羅斯地面部隊和推薦的格魯吉亞地面部隊的戰斗力,另外還強調了如何將俄羅斯的蘇-25戰斗機或格魯吉亞的SA-11系統納入其中。這為在領域內和跨領域進行的作戰行動創建了一個多維框架,并提供了一種同步匯合的方法。當一個領域的條件發生變化時,對其他領域和行動的影響可以在開始大大超過工作人員計算的復雜程度上進行。

隨著核心COA的制定,每個作戰功能的最佳整合可以通過算法來確定。例如,有了通往目標的路線和距離,以及燃燒率和其他規劃因素,可以計算出支持概念的要素。

這個例子表明,有能力在多個領域整合所有作戰功能的規劃。有了充分的細節說明COA的完成和廣度,現在可以把解釋轉向深度。為了在作戰層面創建一個在時間和空間上都有深度的COA,它必須提前預測幾個交戰,以實現相對優勢的位置,并尋求實現轉化為成功的失敗機制。而之前的過程主要是將現有的軍事理論或學術研究進行算法連接的創造,它們很難實現超越即時決策的飛躍,并創造出作戰藝術。對于這一點,現有的人工智能提供了適用的例子。

國際象棋人工智能中使用的基本微分法對所有棋盤上的處置方式提前兩步進行打分,包括行動和反應,然后根據程序對分數進行比較,分數最差的那個選項被修剪掉。在排除了未來兩步棋中最差的選項后,剩下的最佳選項被選中。修剪和消除的過程可以防止出現這樣的情況:人們可以在最近的一步棋中拿下一個低價值的棋子,但在下一步棋中又會失去一個高價值的棋子。該算法基于每一步后續棋重復這一過程。在許多程序中,該算法會分析更多的未來棋步,以指數形式增加棋盤的處置,以評估和排列潛在的棋步。為了簡化計算機的計算,一個被稱為阿爾法-貝塔修剪的過程可以在明確它們不會是最佳選擇時刪除分支,并停止評估它們。根據已經證明的根據力量和手段的相關性來評估軍事編隊的能力,可以看到即使是簡單的國際象棋人工智能方法也可以成為發展作戰藝術的基礎。

圖4. 多域COFM框架

當使用決策樹和國際象棋人工智能的最小算法時,程序會對棋盤上的大多數或所有的替代性未來進行評估,并產生一個可比較的值。俄羅斯軍隊最初從西邊的馬米森山口進攻,而不是從東邊的羅基隧道進攻,就是一個選項的例子。這將產生一個不同的動作,格魯吉亞部隊需要對此作出反應。除了國際象棋人工智能中棋子的總價值外,還經常使用位置的修改器。對每一方的剩余棋子進行估值的方法在概念上類似于之前用于分析俄羅斯和格魯吉亞部隊的戰斗力的TAM計算方法。而不是單個棋子的價值,將考慮軍事編隊的戰斗力。這種機制設計起初似乎是以消耗為重點,保留友軍的戰斗力,消除對手的戰斗力,并根據價值來確定優先次序。從一開始看起來非常機械的東西中出現的顯著特征是在時間和空間上創造和連接有利的力量比例,實現不對稱性,以大量消耗對手并保存友軍的戰斗力。簡而言之,它創造了作戰藝術。

當以這種方式對格魯吉亞的多個行動方案進行比較時,就會出現與圖3中描述的不同的行動方案。由于通往羅基隧道的旅行時間的變化,以及對交戰的預測是如何沿著各自的決策樹展開的,因此確定了對通往羅基隧道的部隊的改變,如圖5所示。

當人工智能支持的COA開發過程繼續向前搜索時,在Troitskye的俄羅斯第503摩托步槍團(MRR)和在Khankala的第42摩托步槍師和第50自行火炮團被確定為需要考慮的俄羅斯作戰力量。以最小的方式,在最初決定在羅基隧道和茨欣瓦利之間分配部隊之前,沿著決策樹進一步考慮這一事件。一旦理解了時間上的力量以及二階和三階效應,就會發現一個非直覺性的決定,即與戈里的坦克營和第比利斯的第4旅一起向羅基隧道進攻,這是由于預測到俄羅斯第二梯隊部隊在未來的行動。

圖 5. 俄羅斯-格魯吉亞聯合決策樹和進化

如圖3所示,如果俄軍同時開始行動,格魯吉亞部隊的原始部署無法及時趕到羅基隧道進行防御。然而,當動用哥里的坦克營或第4步兵旅時,一支有利的部隊能夠在迪迪古普塔或爪哇附近進行防御,使俄軍在山丘上保持渠化,有足夠的戰斗力來預測俄軍的進攻會被擊敗。這種防御可以抵御俄軍第二梯隊的第503摩托化步兵師,但不能抵御緊隨其后的第42摩托化步兵師,圖5右上方描繪的是第503步兵師。正因為如此,格魯吉亞的防御部隊如果要完成他們的任務,就需要在503摩托化步兵師到來之前向隧道進行反擊,以在嚴重的渠化隧道處進行防御。有了這些從復雜中出現的聯系,格魯吉亞的領導層可以及時思考并產生贏得戰斗的洞察力。

建立可用COA的算法過程在很大程度上緩解了因時間不足而產生的差距,同時為MDMP引入了一定程度的學術嚴謹性,否則可能只是主觀評估,而這種評估中隱含著所有未知的危險。

在目前的作戰環境中,往往沒有時間來制定多個作戰行動方案,對所有制定的作戰行動方案進行戰爭演習,應用作戰行動方案評估標準,然后確定一個推薦的作戰行動方案。有了人工智能支持的MDMP,COA分析和比較就被烘托出來,并最大限度地利用現有的技術,所有這些都是在傳統的工作人員可以收集到的工具。

通過COA分析和COA比較步驟合并和修改COA開發步驟,以利用當前人工智能能力的速度、力量和洞察力,將提高預測多種替代性未來和選擇的能力,使指揮官不僅能夠在三維空間中思考,而且能夠在時間中思考。鑒于時間越來越稀少,了解時間,并擁有在多個領域與之合作并通過它的工具,可能是人工智能提供的最大優勢。

其他領域的人工智能工具已經展示了它們在提供快速、一致和準確計算的任務方面的能力。為了具有價值,人工智能不需要自主運作或復制有生命的人。人工智能只需要彌合當前規劃和決策工具的適用性與人類認知在復雜適應性系統中的有效性之間不斷擴大的差距。處理復雜性的適度改進,即使只是減少導致錯誤的認知負擔,也會確保比無助的指揮官有決策優勢。

在人工智能支持的MDMP的意義上更進一步,人工智能可以在第一次迭代后半自動地完成MDMP,幾乎連續地進行完整的MDMP過程,沒有疲勞感,納入每一個新發展。一個持續的人工智能運行的MDMP將提供關于部隊當前位置和行動的反饋。近乎實時的反饋將使我們能夠跟蹤下屬單位的當前行動、控制措施的遵守情況和進展。

其次,近乎連續的MDMP可以通過評估根據當前條件應該執行什么COA來預測分支,甚至預測隨著條件的變化,未來決定性交戰的設置。持續的人工智能支持的MDMP將與敵人而不是計劃作戰。一個人工智能支持的過程將有額外的好處,即為任何新出現的COA整合資源,同步和優化所有領域的效果,并使過渡到一個新的分支計劃更加可行。這種能力將在使部隊迅速適應在未來動蕩環境中的混亂邊緣茁壯成長方面取得不可思議的進展。

付費5元查看完整內容

自動化使系統能夠執行通常需要人類投入的任務。英國政府認為自動化對保持軍事優勢至關重要。本論文討論了當前和未來全球自動化的應用,以及它對軍事組織和沖突的影響。同時還研究了技術、法律和道德方面的挑戰。

關鍵要點

  • 在軍事行動中部署自動化技術可以提高有效性并減少人員的風險。
  • 在英國和國際上,自動化正被用于情報收集、數據分析和武器系統。
  • 英國政府正在開發自動化系統;技術挑戰包括數據管理、網絡安全以及系統測試和評估。
  • 軍事自動化的法律和道德影響受到高度爭議,特別是在武器系統和目標選擇方面。

背景

許多軍事系統都有自動化的特點,包括執行物理任務的機器人系統,以及完全基于軟件的系統,用于數據分析等任務。自動化可以提高某些現有軍事任務的效率和效力,并可以減輕人員的 "枯燥、骯臟和危險 "的活動。 許多專家認為,自動化和自主性是與系統的人類監督水平有關的,盡管對一些系統的定位存在爭議,而且對系統是否應被描述為 "自動化 "或 "自主 "可能存在分歧。英國防部在其 "自主性譜系框架 "中概述了5個廣泛的自主性水平,從 "人類操作 "到 "高度自主"。一個系統可能在不同的情況下有不同的操作模式,需要不同程度的人力投入,而且只有某些功能是自動化的。方框1概述了本公告中使用的定義。

方框1:該領域的術語并不一致,關鍵術語有時可以互換使用。

  • 自動化系統。自動系統是指在人類設定的參數范圍內,被指示自動執行一組特定的任務或一系列的任務。這可能包括基本或重復的任務。

  • 自主系統。國防科學與技術實驗室(Dstl)將自主系統定義為能夠表現出自主性的系統。自主性沒有公認的定義,但Dstl將其定義為 "系統利用人工智能通過自己的決定來決定自己的行動路線的特點"。自主系統可以對沒有預先編程的情況作出反應。

  • 無人駕駛車輛。朝著更高水平的自主性發展,使得 "無人駕駛 "的車輛得以開發,車上沒有飛行員或司機。有些是通過遠程控制進行操作,有些則包括不同程度的自主性。最成熟的無人駕駛軍事系統是無人駕駛航空器,或稱 "無人機",其用途十分廣泛。

  • 人工智能。人工智能沒有普遍認同的定義,但它通常是指一套廣泛的計算技術,可以執行通常需要人類智慧的任務(POSTnote 637)。人工智能是實現更高水平的自主性的一項技術。

  • 機器學習:(ML,POSTnote 633)是人工智能的一個分支,是具有自主能力的技術的最新進展的基礎。

英國政府已經認識到自主系統和人工智能(AI,方框1)的軍事優勢以及它們在未來國防中可能發揮的不可或缺的作用。在其2021年綜合審查和2020年綜合作戰概念中,它表示致力于擁抱新的和新興的技術,包括自主系統和人工智能。2022年6月,英國防部發布了《國防人工智能戰略》,提出了采用和利用人工智能的計劃:自動化將是一個關鍵應用。在全球范圍內,英國、美國、中國和以色列擁有一些最先進的自主和基于AI的軍事能力。方框2中給出了英國和全球活動的概述。

方框2:英國和全球活動

  • 英國 英國政府已表明其投資、開發和部署用于陸、海、空和網絡領域軍事應用的自主和人工智能系統的雄心。最近的投資項目包括NELSON項目,該項目旨在將數據科學整合到海軍行動中;以及未來戰斗航空系統,該系統將為皇家空軍提供一個有人員、無人員和自主系統的組合。在2021年綜合審查發表后,政府成立了國防人工智能中心(DAIC),以協調英國的人工智能國防技術的發展。這包括促進與學術界和工業界的合作,并在紐卡斯爾大學和埃克塞特大學以及艾倫-圖靈研究所建立研究中心。

  • 全球背景 對自主軍事技術的投資有一個全球性的趨勢:25個北約國家已經在其軍隊中使用一些人工智能和自主系統。有限的公開信息給評估軍隊的自主能力帶來了困難,但已知擁有先進系統的國家包括。

    • 美國。美國國防部2021年預算撥款17億美元用于自主研發,以及20億美元用于人工智能計劃。
    • 以色列。國有的以色列航空航天工業公司生產先進的自主系統,包括無人駕駛的空中和陸地車輛以及防空系統。
    • 中國。據估計,中國在國防人工智能方面的支出與美國類似。 分析師認為,這包括對情報分析和自主車輛的人工智能的投資。

俄羅斯和韓國也在大力投資于這些技術。在俄羅斯,機器人技術是最近成立的高級研究基金會的一個重點,該基金會2021年的預算為6300萬美元。

應用

自主系統可以被設計成具有多種能力,并可用于一系列的應用。本節概述了正在使用或開發的軍事應用系統,包括情報、監視和偵察、數據分析和武器系統。

情報、監視和偵察

自動化正越來越多地被應用于情報、監視和偵察(ISR),通常使用無人駕駛的車輛(方框1)。無人駕駛的陸上、空中和海上車輛配備了傳感器,可以獲得數據,如音頻、視頻、熱圖像和雷達信號,并將其反饋給人類操作員。一些系統可以自主導航,或自主識別和跟蹤潛在的攻擊目標。英國有幾架ISR無人機在服役,還有一些正在試用中。這些無人機的范圍從非常小的 "迷你 "無人機(其重量與智能手機相似)到可以飛行數千英里的大型固定翼系統。英國正在試用的一個系統是一個被稱為 "幽靈 "無人機的迷你直升機,它可以自主飛行,并使用圖像分析算法來識別和跟蹤目標。無人駕駛的水下航行器被用于包括地雷和潛艇探測的應用,使用船上的聲納進行自主導航。這些車輛還可能配備了一種技術,使其能夠解除地雷。

數據分析

許多軍事系統收集了大量的數據,這些數據需要分析以支持操作和決策。人工智能可用于分析非常大的數據集,并分辨出人類分析員可能無法觀察到的模式。這可能會越來越多地應用于實地,為戰術決策提供信息,例如,提供有關周圍環境的信息,識別目標,或預測敵人的行動。英國軍隊在2021年愛沙尼亞的 "春季風暴 "演習中部署了人工智能以提高態勢感知。美國的Maven項目旨在利用人工智能改善圖像和視頻片段的分析,英國也有一個類似的項目,利用人工智能支持衛星圖像分析。

武器系統

以自動化為特征的武器系統已被開發用于防御和進攻。這些系統包括從自動響應外部輸入的系統到更復雜的基于人工智能的系統。

  • 防御系統。自動防空系統可以識別和應對來襲的空中威脅,其反應時間比人類操作員更快。這種系統已經使用了20多年;一份報告估計有89個國家在使用這種系統。目前使用的系統可以從海上或陸地發射彈藥,用于應對來襲的導彈或飛機。英國使用Phalanx CIWS防空系統。雖然沒有在全球范圍內廣泛采用,但以色列將固定的無機組人員火炮系統用于邊境防御,并在韓國進行了試驗。這些系統能夠自動瞄準并向接近的人或車輛開火。

  • 導向導彈。正在使用的進攻性導彈能夠在飛行中改變其路徑,以達到目標,而不需要人類的輸入。英國的雙模式 "硫磺石"(DMB)導彈于2009年首次在阿富汗作戰中使用,它可以預先設定搜索特定區域,利用傳感器數據識別、跟蹤和打擊車輛。

  • 用于武器投送的無人平臺。為武器投送而設計的無人空中、海上和陸地運載工具可以以高度的自主性運行。這些系統可以自主地搜索、識別和跟蹤目標。大多數發展都是在空中領域。英國唯一能夠自主飛行的武裝無人機是MQ-9 "收割者",但有幾個正在開發中。英國防部還在開發 "蜂群 "無人機(方框3)。雖然存在技術能力,但無人駕駛的進攻性武器并不用于在沒有人類授權的情況下做出射擊決定;報告的例外情況很少,而且有爭議。 自主系統在識別目標和作出射擊決定方面的作用,是廣泛的倫理辯論的主題(見下文)。

方框3:無人機蜂群

無人機蜂群是指部署多個能夠相互溝通和協調的無人機和人員,以實現一個目標。在軍事環境中,蜂群可能被用來監視一個地區,傳遞信息,或攻擊目標。2020年,英國皇家空軍試驗了一個由一名操作員控制的20架無人機群,作為Dstl的 "許多無人機做輕活 "項目的一部分。蜂群技術還沒有廣泛部署。據報道,以色列國防軍于2021年首次在戰斗中使用無人機蜂群。

影響

自動化技術和人工智能的擴散將對英國軍隊產生各種影響,包括與成本和軍事人員的角色和技能要求有關的影響。對全球和平與穩定也可能有影響。

財務影響

一些專家表示,從長遠來看,軍事自動化系統和人工智能可能會通過提高效率和減少對人員的需求來降低成本。然而,估計成本影響是具有挑戰性的。開發成本可能很高,而且回報也不確定。提高自動化和人工智能方面的專業知識可能需要從提供高薪的行業中招聘。軍隊可能不得不提高工資以進行競爭,英國防部將此稱為 "人工智能工資溢價"。

軍事人員的作用和技能

自動化可能會減少從事危險或重復性任務的軍事人員數量。然而,一些軍事任務或流程,如高層戰略制定,不太適合自動化。在許多領域,自主系統預計將發揮對人類的支持功能,或在 "人機團隊 "中與人類合作。專家們強調,工作人員必須能夠信任與他們合作的系統。一些角色的性質也可能會受到自動化的影響,所需的技能也是如此。例如,對具有相關技術知識的自主系統開發者和操作者的需求可能會增加。英國防部已經強調需要提高整個軍隊對人工智能的理解,并承諾開發一個 "人工智能技能框架",以確定未來國防的技能要求。一些利益相關者對自動化對軍事人員福祉的影響表示擔憂,因為它可能會限制他們的個人自主權或破壞他們的身份和文化感。

人員對自動化的態度:

關于軍事人員對自動化的態度的研究是有限的。2019年對197名英國防部人員的研究發現,34%的人對武裝部隊使用可以使用ML做出自己的決定的機器人有普遍積極的看法,37%的人有普遍消極的態度。有報道稱,人們對某些自主武器系統缺乏信任,包括在2020年對澳大利亞軍事人員的調查中。在這項研究中,30%的受訪者說他們不愿意與 "潛在的致命機器人 "一起部署,這些機器人在沒有人類直接監督的情況下決定如何在預定的區域使用武力。安全和目標識別的準確性被認為是兩個最大的風險。有證據表明,信任程度取決于文化和熟悉程度。

升級和擴散

一些專家提出了這樣的擔憂:在武器系統中越來越多地使用自主權,有可能使沖突升級,因為它使人類離開了戰場,減少了使用武力的猶豫性。蘭德公司最近的一份戰爭游戲報告(上演了一個涉及美國、中國、日本、韓國和朝鮮的沖突場景)發現,廣泛的人工智能和自主系統可能導致無意中的沖突升級和危機不穩定。這部分是由于人工智能支持的決策速度提高了。升級也可能是由自動系統的非預期行為造成的。

還有人擔心,由于自動化和基于人工智能的技術變得更便宜和更豐富,非國家行為者更容易獲得這種技術。這些團體也可能獲得廉價的商業無人機,并使用開放源碼的人工智能對其進行改造,以創建 "自制 "武器系統。關于非國家行為者使用自主系統的報告是有限的和有爭議的。然而,非國家團體確實使用了武裝無人機,而且人們擔心人工智能會使這種系統更加有效。

技術挑戰

正在進行的包括機器人和人工智能在內的技術研究,主要是由商業驅動的,預計將增加自動化系統的應用范圍和采用程度。該領域的一些關鍵技術挑戰概述如下。一個更普遍的挑戰是,相對于數字技術的快速發展,軍事技術的發展速度緩慢,有可能在部署前或部署后不久組件就會過時。

數據傳輸

無人駕駛的車輛和機器人經常需要向人員傳輸數據或從人員那里接收數據。這可以讓人類監督和指導它們的運作或接收它們收集的數據。在某些情況下,系統也可能需要相互通信,如在無人機群中(方框3)。軍方通常使用無線電波在陸地上傳輸數據,其帶寬(頻率的可用性)可能有限。在傳輸大量數據,如高分辨率圖像時,這可能是個問題。5G技術(POSTbrief 32)可能會促進野外更有效的無線通信。系統之間的無線電通信可以被檢測到,提醒對手注意秘密行動。對手也可能試圖阻止或破壞系統的通信數據傳輸。目前正在研究如何最大限度地減少所需的數據傳輸和優化數據傳輸的方法。更多的 "板載 "或 "邊緣 "處理(POSTnote 631)可以減少傳輸數據的需要。然而,減少通信需要系統在沒有監控的情況下表現得像預期的那樣。

數據處理

具有更高水平的自主性的更復雜的系統通常在運行時在船上進行更多的數據處理和分析。這要求系統有足夠的計算能力。一般來說,一個系統能做多少嵌入式數據處理是有限制的,因為硬件會占用空間并需要額外的電力來運行。這可能會限制需要電池供電運行的系統的敏捷性和范圍。然而,人工智能的進步也可能使系統更有效地運行,減少計算要求。由于未來軟件、算法和計算機芯片技術的進步,計算機的處理能力也有望提高。

訓練數據

創建和整理與軍事應用相關的大型數據集,對生產可靠的人工智能自主系統非常重要。機器學習(ML,方框1)依賴于大型數據集來訓練其基礎算法,這些數據可以從現實世界中收集,或者在某些情況下,使用模擬生成。一般來說,用于訓練ML系統的數據越有代表性、越準確、越完整,它就越有可能按要求發揮作用。準備訓練數據(分類并確保其格式一致)通常需要手動完成,并且是資源密集型的。

數據隱私:

一些人工智能系統可能會在民用數據上進行訓練。人們普遍認為,如果使用與個人有關的數據,他們的隱私必須得到保護。這可以通過對個人數據進行匿名化處理或只分享經過訓練的人工智能系統來實現。

網絡安全

由計算機軟件支撐的系統數量的增加增加了網絡攻擊的機會。網絡攻擊者可能試圖控制一個系統,破壞其運作,或收集機密信息。基于人工智能的系統也可以通過篡改用于開發這些系統的數據而遭到破壞。英國防部在2016年成立了網絡安全行動中心,專注于網絡防御。在英國,2021年成立的國防人工智能中心,有助于促進行業伙伴或其他合作者對高度機密數據的訪問。

測試和評估

重要的是,軍事系統要可靠、安全地運行,并符合法律和法規的規定。人工智能和自動化給傳統軟件系統帶來了不同的測試和保證挑戰。 進一步的挑戰來自于ML的形式,它可能不可能完全理解輸出是如何產生的(POSTnote 633)。人工智能軟件可能還需要持續監測和維護。利益相關者已經強調缺乏適合的測試工具和流程,并正在開發新的工具和指南。英國政府的國防人工智能戰略致力于建立創新的測試、保證、認證和監管方法。

倫理、政策和立法

目前的準則和立法

目前還沒有專門針對將自動化或人工智能用于軍事應用的立法。雖然它們在戰爭中的使用受現有的國際人道主義法的約束,但這與新技術的關系是有爭議的。在國家和國際層面上有許多關于人工智能更普遍使用的準則,這些準則可以適用于自動化系統。然而,2021年數據倫理與創新中心(CDEI)的人工智能晴雨表研究發現,工業界很難將一般的法規適應于特定的環境。2022年,英國防部與CDEI合作發布了在國防中使用人工智能的道德原則。

責任感

一些利益相關者強調,如果自主系統的行為不合法或不符合預期,那么它的責任是不明確的。這可能導致系統及其決定與設計或操作它的人類之間出現 "責任差距",使法律和道德責任變得復雜。英國防部的原則說,在人工智能系統的整個設計和實施過程中,應該有明確的責任。國防人工智能戰略為供應商設定了類似的期望。

圍繞自主武器系統的辯論

這一領域的大部分法律和道德辯論都集中在武器系統上。然而,某些非武裝系統(例如,基于軟件的決策支持工具)可能在識別目標方面發揮關鍵作用,因此提出了許多與那些同時部署武器的系統相同的道德問題。

國際上對 "致命性自主武器系統"(LAWS)的使用存在著具體的爭論。這個術語沒有普遍認同的定義,它被用來指代具有不同自主能力的廣泛的武器。關于使用致命性自主武器系統的報告存在很大爭議,例如,由于系統使用模式的不確定性。 聯合國《特定常規武器公約》(CCW)自2014年以來一直在討論致命性自主武器系統的可能立法。它在2019年發布了指導原則,但這些原則沒有約束力,也沒有達成進一步的共識。雖然大多數參加《特定常規武器公約》的國家支持對致命性自主武器進行新的監管,但包括英國、美國和俄羅斯在內的其他國家認為,現有的國際人道主義法已經足夠。根據運動組織 "阻止殺手機器人"(SKR)的說法,83個國家支持關于自主武器系統的具有法律約束力的文書,12個國家不支持。

許多利益相關者認為,必須保持人類對武器和瞄準系統的某種形式的控制,才能在法律和道德上被接受。某些組織,如SKR,呼吁禁止不能由 "有意義的人類控制 "的自主武器系統,并禁止所有以人類為目標的系統。他們還呼吁制定法規,確保在實踐中保持足夠的人為控制。在其2022年國防人工智能戰略中,英國政府表示,識別、選擇和攻擊目標的武器必須有 "適當的人類參與"。作為回應,一些呼吁監管的非政府組織表示,需要更加明確如何評估或理解 "適當的人類參與"。包括英國政府在內的利益相關者建議的維持人類控制的潛在措施包括限制部署的時間和地理范圍。被認為會破壞人類控制的因素包括人類做出決定的有限時間和 "自動化偏見",即個人可能會過度依賴自動化系統,而不太可能考慮其他信息。

公眾對該技術的態度

大多數關于軍事自動化的公眾意見調查都集中在自主武器系統上。SKR委托對28個國家的19,000人進行了民意調查。62%的受訪者反對使用致命性武器系統;這一數字在英國是56%。關于公眾對人工智能、數據和更廣泛的自動化的態度的研究發現,公眾關注的主要問題包括數據安全、隱私和失業。然而,公眾的觀點會因系統的功能和使用環境的不同而有很大差異。

付費5元查看完整內容

多域作戰(MDO)概念的核心是利用由分布在多個合作伙伴之間的遠程和自主傳感器以及人類智能組成的重疊系統的情報、監視和偵察(ISR)網絡。實現這一概念需要人工智能(AI)的進步,以改善分布式數據分析,以及智能增強(IA),以改善人機認知。本文的貢獻有三點。(1)我們將聯盟態勢理解(CSU)的概念映射到MDO ISR的要求上,特別關注對有保障和可解釋的人工智能的需求,以便在資產分布于多個合作伙伴的情況下進行強有力的人機決策。(2) 我們提出了MDO ISR中人工智能和IA的說明性情景,包括人機合作、密集的城市地形分析和增強資產互操作性;(3) 我們評估了與情景相關的可解釋人工智能的最新進展,重點是人機合作,以實現更快速和敏捷的聯盟決策。這三個要素的結合旨在展示CSU方法在MDO ISR背景下的潛在價值,基于三個不同的用例,強調了在多伙伴聯盟環境下對可解釋性的需求是如何的關鍵

引言

多域作戰(MDO)需要在有爭議的環境中,針對近鄰對手,在多個領域--從密集的城市地形到空間和網絡空間--開展行動的能力、能力和耐力(美國陸軍2018年)。MDO作戰環境的一個關鍵特征是,對手將在所有領域、電磁頻譜和信息環境中進行爭奪,而盟軍的主導地位是無法保證的。敵人試圖通過在時間上、空間上、功能上和政治上等多個方面將友軍分開來實現對峙。通過降低盟軍的識別、決策和行動的速度,以及通過多種手段(外交、經濟、常規和非常規戰爭,包括信息戰)瓦解聯盟來實現對峙。在這種情況下,快速和持續地整合收集、處理、傳播和利用可操作的信息和情報的能力變得比以往任何時候都更重要。

為了應對這一挑戰,MDO中的分層ISR概念設想利用 "與合作伙伴開發的現有情報、監視和偵察(ISR)網絡。...由遠程和自主傳感器、人類情報和友好的特種作戰部隊的重疊系統組成'(美國陸軍2018年,第33-34頁)。在空前激烈的競爭環境中實現ISR資產的價值最大化,需要有能力在合作伙伴之間共享資源--在作為聯合、機構間和多國團隊的一部分進行的行動中--在一個可控但開放的聯盟環境中,以可知的信任和信心水平。

人工智能(AI)和機器學習(ML)技術被視為實現MDO中分層ISR愿景的關鍵:"迅速將數據傳播給采用人工智能或其他計算機輔助技術的野戰軍或軍團分析小組,以分析大量數據"(美國陸軍2018年,第39頁)。事實上,MDO環境的要求被視為需要一種能力,以超過人類認知能力的速度和規模,融合包括ISR在內的多個領域的能力。強大的、可互操作的人工智能/ML被認為是融合來自多種資產的數據并在行動伙伴之間傳播可操作的知識以告知決策和任務完成的關鍵(Spencer, Duncan, and Taliaferro 2019)。

總之,挑戰是使人類和機器智能體(軟件和機器人)能夠在聯合、機構間、多國和高度分散的團隊中有效運作,arXiv:1910.07563v1 [cs.AI] 2019年10月16日 在分布式、動態、復雜和雜亂的環境中。從人類的角度來看,人工智能和ML是克服人類因操作速度和規模而產生的認知限制的必要工具,其目的是增強--而不是取代--人類的認知和決策。在這里,我們把智能增強(IA)看作是對人工智能的補充,正如在人工智能歷史的最早時期(Engelbart 1962)所設想的那樣。我們專注于由人類和AI/ML智能體組成的快速形成的聯盟團隊,在網絡邊緣運作,具有有限的連接、帶寬和計算資源,發揮決策作用,例如,陸軍士兵在密集的城市環境中。然而,大部分的討論也將適用于其他領域的一系列其他角色,例如,進行網絡領域決策的情報分析員。

我們之前在一個相關的背景下研究了這一挑戰:聯盟情境理解(CSU)(Preece等人,2017年),其中我們確定了人機協作中兩個特別重要的屬性:可解釋性以支撐信心,可講述性以提高操作的靈活性和性能。本文主要關注其中的第一個屬性,但也涉及到第二個屬性。我們首先在MDO背景下重新審視了CSU的概念,然后研究了該概念在三個MDO小故事中的應用:人機協作、密集城市地形分析和增強資產互操作性。最后,我們評估了與小插曲相關的可解釋人工智能的最先進技術,強調了分層解釋的概念(Preece等人,2018)是如何與MDO分層ISR中的人工智能/ML保證需求相適應的。

在繼續之前,我們退一步指出,MDO環境的關鍵特征--(i)快速變化的情況;(ii)獲得真實數據來訓練AI的機會有限;(iii)行動期間的嘈雜、不完整、不確定和錯誤的數據輸入;以及(iv)采用欺騙性技術來擊敗算法的同行對手--并非軍事背景所獨有;它們通常在政府和公共部門的應用中更普遍存在,正如這些努力的聯合、機構間和多國方面。事實上,一般來說,MDO概念的多領域廣度及其對競爭和沖突階段的考慮,意味著MDO影響到屬于政府和公共部門的政治和社會領域。

MDO的聯盟態勢理解

形勢理解(SU)是 "將分析和判斷應用于單位的形勢意識,以確定現有因素的關系,并形成關于對部隊或任務完成的威脅、任務完成的機會和信息差距的邏輯結論的產物"(Dostal 2007)。英國的軍事學說(英國國防部2010年)對理解的定義如下:

理解(洞察力)=對形勢的認識和分析

理解力(預見力)=理解力和判斷力

在這里,理解包括預見性,即推斷(預測)潛在的未來狀態的能力,這與SU涉及能夠得出有關威脅的結論的常見定義是一致的(Dostal 2007)。預見性必然包括在時間上處理和推理信息的能力。這些關于SU的觀點與信息融合有著內在的聯系,因為它們涉及收集和處理來自多個環境來源的數據,作為得出SU的輸入。就數據融合的JDL(Joint Directors of Laboratories)模型而言(Blasch 2006),就考慮的語義實體和關系的種類而言,CSU問題可能涉及相對較高或相對較低的理解水平。例如,在相對較低的層次上,CSU問題可能只涉及車輛或建筑物等物體的探測、識別和定位(JDL 1級和2級)。在更高層次上,CSU問題將涉及到確定威脅、意圖或異常情況(JDL 3級)。此外,來源通常會跨越多種模式,例如,圖像、聲音和自然語言數據(Lahat, Adali, and Jutten 2015)。

圖1:CSU分層模型(來自(Preece等人,2017))虛擬分布于多個合作伙伴,并采用多種技術:人機協作(HCC)、知識表示和推理(KRR);多智能體系統(MAS);機器學習(ML);自然語言處理(NLP)、視覺和信號處理(VSP)。

我們在聯盟行動背景下的SU的概念架構--聯盟態勢理解(CSU)--如圖1所示。最底層由數據源(物理傳感器和人類產生的內容)的集合組成,可在整個聯盟內訪問,收集多模式數據。上面的三層大致對應于JDL模型的0-3層。對于每一層,圖中顯示了所采用的主要技術--包括人工智能和ML--,盡管其他技術也可能被利用。信息表示層使用傳入的數據流來學習概念,并對實體以及它們在多層次語義顆粒度上的關系進行建模。過去的觀察歷史以明確或隱含的方式被編碼在這些表示中。信息融合層采用所開發的算法和技術,對來自信息表示層的概念和實體進行賦值。該層估計世界的當前狀態,提供洞察力(態勢感知)。然后,預測和推理層使用估計的當前狀態,加上模型的狀態空間來預測未來的狀態,提供預見性(情景理解)。圖中描述了聯盟的虛擬視圖:所有四個層都分布在聯盟中。

根據用戶融合模型(Blasch 2006),圖1中的上層需要對人類開放,為推理提供專家知識;這些層也需要對人類用戶開放,即能夠對系統產生的洞察力和預見力進行解釋。不同層之間存在著雙向的信息交流:在向上(前饋)的方向,低層的推理作為下一層的輸入;在向下(反饋)的方向,信息被用來調整模型和算法參數,并可能以不同的方式給傳感器分配任務。要創建更好的系統來支持CSU,就必須開發成熟的模型和算法,在一段時間內減少人類的干預,實現更大的自主性,但不能取代人類的參與和監督。

CSU-MDO情節

情節1:增強資產的互操作性

以MDO的分層ISR概念為出發點("遠程和自主傳感器、人類智能和友好特種作戰部隊的重疊系統"(美國陸軍2018年)第34頁 ),我們認為人類是圖2中描述的多智能體環境中的三種ISR智能體之一,同時還有基于(i)亞符號AI技術(例如深度神經網絡(LeCun, Bengio, and Hinton 2015))和(ii)符號AI技術(例如基于邏輯的方法)的軟件智能體。為了實現這三種智能體(ISR資產)之間的互操作性,我們需要:

1.使亞符號人工智能智能體能夠分享不確定性意識到的見解和知識的表示,然后可以傳達給符號人工智能智能體。

2.使符號人工智能智能體能夠從數據中學習因果聯系的不確定性分布,同時能夠與亞符號人工智能智能體分享洞察力;以及

3.開發共生人工智能技術,以有效地與人類互動,首先是通過從人機合作活動中不斷學習來適應定型的行為。

圖2:CSU的多智能體非層次方法:(上)人類智能體,(左下)亞符號AI智能體,(右下)符號AI智能體。

前兩個案例的重點是機器資產之間的互操作性。在第三個案例中,我們超越了傳統的分層架構,即人類只與裝備了符號化人工智能的智能體進行互動,而這些智能體又利用亞符號化人工智能在特定任務上實現人類水平或卓越的性能。這樣的傳統架構是有限的,因為:(1)并不總是需要符號AI與人類互動(Ribeiro, Singh, and Guestrin 2016);(2)有些任務,符號AI可以支持亞符號AI智能體(Xu等人,2018);(3)有些任務,人類可以支持符號和/或亞符號AI智能體(Phan等人,2016),因此AI智能體需要配備學習和推理人類層次和結構的能力。

圖3提供了(Spencer, Duncan, and Taliaferro 2019)中設想的MDO分層ISR架構與前面對資產的符號化、亞符號化或混合化特征之間的映射。

圖3:來自(Spencer, Duncan, and Taliaferro 2019)的簡化版圖:矩形代表符號系統;圓形代表亞符號系統;圓角矩形代表混合元素。

情節2:人機編隊

我們的工作旨在提高能力,以促進復雜的聯盟任務,支持MDO,其中聯合和多國團隊和多領域的需求是至關重要的(美國陸軍2018)。最重要的是,在作戰情況發生時提供一個連貫的觀點和評估,從而在復雜、有爭議的環境中整合CSU的學習和推理,為網絡邊緣的決策者提供信息。如前所述,CSU既需要集體洞察力--從不確定且通常稀少的數據中獲得對局勢的準確和深刻理解,也需要集體預見力--預測未來會發生什么的能力(Preece等人,2017)。

多年來,承受力的概念一直是人機交互(HCI)領域的核心,指的是一個物體的 "用途",即 "該事物的感知和實際屬性,主要是那些決定該事物如何可能被使用的基本屬性"(Norman 1988)。在MDO分層ISR的背景下,有必要考慮人類和機器資產對一系列ISR任務的承受力。人機合作的目的是為了讓每一方都能利用對方的優勢,并彌補對方的弱點(Cummings 2014)。例如,(Crouser和Chang,2012年)將視覺分析范圍內的機器能力描述如下:

  • 大規模數據操作。
  • 大量數據的收集和存儲。
  • 高效的數據移動。
  • 無偏見的分析。

基于目前的機器能力,以下內容構成了人類資產的負擔(Crouser和Chang 2012):

  • 視覺和聽覺語言的感知。
  • 社會文化意識。
  • 創造力。
  • 廣泛的背景領域知識。

在履行MDO的過程中,設想部署有人和無人的戰術總部(HQ)將變得很普遍,如圖4所示,該圖是根據(White等人,2019年)中的情景闡述的。在這里,在部署有人值守的總部A的同時,在高威脅地區進一步建立了第二個無人值守的總部B,由 "虛擬參謀 "組成。這些人被設計成與有人值守的總部中的對應人員一起工作,并減少總部的足跡以及人類操作員的工作量和威脅。自主和載人的傳感器混合在一起進入無人總部,人機合作提供了持久的要求,即有一個 "人在循環",以做出關鍵的最終決定。

圖4:戰術領域的人機協作:部署配備了亞符號和符號AI智能體的有人和無人戰術總部;闡述自(White等人,2019)。

情節3:密集的城市地形分析

全球城市化速度的加快,以及城市和特大城市的戰略重要性,確保了MDO行動將在密集的城市地形中進行。在這里,密度指的是這種環境的物理和人口性質,產生了特定的物理、認知和行動特征。在密集的城市地形中進行MDO的準備工作,需要進行情報活動以了解人類、社會和基礎設施的細節;這些地區的特點是多樣化的、相互聯系的人類和物理網絡,以及提供不同程度的現成掩護和隱蔽的三維交戰區。

在這種環境下,ISR將利用和增強民用基礎設施。例如,民用CCTV(閉路電視攝像機)的使用將越來越多地得到自動面部識別處理的增強,以探測和跟蹤高價值目標,或支持建筑的生活模式。隨著目標進入車輛,民用自動車牌識別技術可能被利用。這種城市基礎設施的多樣性--在某些情況下擴展到全面的 "智能城市 "整合--為ISR資產之間的敏捷互操作性提出了進一步的要求,特別是由于ISR任務不一定能事先計劃需要什么樣的收集和處理。在這種情況下,分析的構成將是動態的和針對具體情況的,并不斷地重新提供和優化資源(White等人,2019)。

在密集的城市地形中,對聯合、機構間以及經常是多國合作的需求進一步凸顯。如上所述,在這種情況下,CSU取決于人與人工智能的合作:AI智能體等機器流程在數據分析方面提供了強大的能力,但它們需要為其產出提供一定程度的保證(解釋、問責、透明),特別是當這些產出被沒有接受過信息科學技術培訓的決策者所使用,并且他們可能正在利用相對陌生的當地ISR資產。目前的ML方法在生成CSU所需的世界的可解釋模型(即表征)的能力上是有限的(Lake等人,2017)。此外,這些方法需要大量的訓練數據,并且缺乏像人和基于知識表示的系統那樣從少量的例子中學習的能力(Guha 2015)。人類專家告訴機器相關信息的能力--通常來自他們對當地環境的生活經驗--增加了人類與人工智能互動的節奏和顆粒度,以及系統在滿足任務要求方面的整體響應能力。因此,重要的是為聯盟機器智能體配備綜合學習和知識表示機制,以支持CSU,同時提供保證(可解釋性)和被告知關鍵信息的能力,以減輕稀疏數據的問題(可講述性)。在最近的研究中,我們為神經符號混合環境建立了重要的基礎,包括多模態數據的多智能體學習(Xing等人,2018)、證據性深度學習(Sensoy、Kaplan和Kandemir,2018)、概率邏輯編程(Cerutti等人,2019)、正向推理架構,其中神經網絡的輸出被送入概率邏輯引擎,檢測具有復雜時空特性的事件(Vilamala等人,2019)。

MDO 中分層 ISR 的分層解釋

上一節中的三個小情節所產生的目標是,通過創建系統架構,使機器和人類智能體人之間能夠協同合作,在有爭議的環境中獲得可操作的洞察力和預見力,從而應對在MDO中快速利用適應性ISR知識為各聯盟提供決策依據這一挑戰。

在我們早期對CSU的研究中,我們發現需要將來自各聯盟伙伴的人類和機器智能體敏捷地整合到動態和反應的團隊中。我們已經將其正式化為人類-智能體知識融合(HAKF):一種支持這種深度互動的能力,包括可解釋性和可告知性的雙向信息流,從而使人工智能和人類之間進行有意義的溝通(Braines, Preece, and Harborne 2018),如圖5所示。這種HAKF能力支持可解釋性和可講述性自然地成為人類和機器智能體之間的對話過程(Tomsett等人,2018),使AI智能體能夠對復雜的機器/深度學習分類產生的結果提供解釋,并接收修改其模型或知識庫的知識。

圖5:人類-智能體知識融合,提高信心和性能,支持更好的決策。

一個關鍵的要求是在上一節強調的分布式符號/亞符號整合中加入人類互動,并建立各種人類和AI智能體需要掌握的最低限度的共同語言集,以確保特定任務的有效溝通。為了支持動態情境感知收集和信息處理服務背景下的直觀的機器可處理的表述,我們特別關注機器生成的信息的人類可消費性,尤其是在對話式交互的背景下,以及決策者可能缺乏信息科學的深度技術訓練的情況下。這種共同語言必須能夠傳達不確定性和適當的結構,以實現與亞符號層的整合,以及與該領域相關的更傳統的語義特征。我們并不局限于純粹的語言形式,新的視覺或圖表符號,或者其他交流技術,都可以作為解決方案的一部分。

此外,有必要考慮各種自主智能體之間自動談判的情況,其中一些將是人類。同時,人類本身也可以成為學習任務的對象:如果機器智能體對單個人類智能體(或一般的人類智能體)有足夠的了解,可以推斷出建議或變化的影響,他們自己的行為就有可能被推到特定的方向。此外,機器智能體可能需要在人類智能體中找出最適合某項任務的人,而歷史數據可以幫助他們實現這一目標。這種共生的人工智能技術可以用來更有效地與人類互動,起初是通過從人機互動中不斷學習來適應定型行為。

在有爭議的環境中,這種復雜和動態的混合設置特別有風險,容易被利用,因此需要整合不確定性意識和概率能力。所有這些都要在與決策任務和人類用戶的參與相適應的節奏下實現,機器智能體能夠支持實時互動。

分層解釋

在最近的工作中,我們從解釋接受者的角度研究了可解釋性,有六種(Tomsett等人,2018):系統創建者、系統操作者、根據系統輸出做出決定的執行者、受執行者決定影響的決策主體、其個人數據被用于訓練系統的數據主體,以及系統審查者,例如審計師或監察員。基于這個框架,我們提出了一種 "分層 "的方法,通過復合解釋對象為不同的利益相關者提供不同的解釋(Preece等人,2018),該對象將滿足多個利益相關者所需的所有信息打包在一起,并可以根據接收者的特定要求進行解包(例如,通過訪問器方法)。我們認為這樣一個對象是分層的,具體如下。

第1層--可追溯性:基于透明度的模型內部狀態的綁定,所以解釋并不完全是事后的合理化,顯示系統 "做了正確的事情"。

第二層--證明:與第一層相聯系的事后表述(可能是多種模式),提供輸入和輸出特征之間的語義關系,表明系統 "做了正確的事情"。

第三層--保證:與第二層相聯系的事后表述(同樣,可能是多種模式),明確提及政策/本體元素,以使接受者相信系統 "做了正確的事"。

集成示例

我們考慮了一個密集的城市地形環境,借鑒了(Kaplan等人,2018),其中包括CCT V在內的民用傳感基礎設施得到了聯盟ISR資產的補充。正如(Vilamala等人,2019年)所闡述的那樣,使用活動識別AI/ML服務監測來自公共市場的視頻資料。在閉路電視畫面中突然檢測到爆發了異常的、"暴力 "的身體活動。此時,通過增強的資產互操作性,聯盟ISR系統按需訪問其他傳感方式,以獲得更多關于情況的數據,挖掘最近從市場上收集的音頻數據,這些數據通過聲學傳感器獲得。處理音頻流的相關部分顯示出有節奏的吟唱,與視覺活動融合在一起,表明該活動是該地區特有的無害舞蹈儀式。請注意,該活動不具威脅性的推論構成了情景理解:具有預見性的洞察力。此外,雖然可以想象,當有足夠的數據對活動進行分類時,無害的舞蹈可以通過機器處理來識別,但在(Kaplan等人,2018)中,我們考慮的情況是,識別這種活動需要當地的文化知識,并由人機合作處理:機器將異常的視覺活動,包括來自音頻的額外背景,提請有經驗的人類智能體注意。

我們的分層解釋概念支持 "打包 "三個層次的解釋,以支持本例中人類的自信決策。

  • 就視頻和音頻中的突出特征而言的可追溯性,例如,使用(Hiley等人,2019年)中的技術來區分重要的空間和時間特征(在后者,"暴力 "運動)。

  • 假設可以通過機器處理來推斷活動的意義(洞察力和預見力),那么推斷的理由就很充分;以及

  • 保證反事實已被考慮(無害與攻擊性行動的可能性),可能通過(Kaplan等人,2018)的不確定性意識方法表示。

結論和未來工作

在本文中,我們將聯盟態勢理解的概念應用于在多領域作戰中實現分層ISR的問題,特別是在人工智能和機器學習服務提供改進的分布式數據分析,以及情報增強--特別是對有保證和可解釋的人工智能的需求--支持改進人機認知的情況下。我們重點關注實現分層ISR愿景的三個要素:人機協作、密集的城市地形分析和增強的資產互操作性,強調在多伙伴聯盟環境下對可解釋的人工智能的需求是如何的關鍵。

我們目前和未來的工作集中在圖2所示的一般問題上:使亞符號AI智能體分享不確定性意識到的見解和知識表示,然后可以傳達給符號AI智能體,同時也使符號AI智能體有能力將見解分享給亞符號AI智能體(即機器對機器的可解釋性)。最終,我們尋求開發技術,使人工智能/語言智能體能夠通過從人機合作活動中不斷學習而與人類協同互動。

付費5元查看完整內容

人工智能(AI)應用于武器系統是過去10年研究的一個主要趨勢。這些舉措旨在提高武器的準確性,執行非主動的瞄準手段,幫助導航和制導與控制(例如,在全球定位系統被拒絕的情況下),并減少與傳統的基于物理學的方法相比的整體計算資源,以便在更小、更實惠的武器系統上實現智能瞄準。這項研究還包括將作戰人員的戰斗空間擴展到無人駕駛飛行器,并使用蜂群方法與有人和無人平臺進行合作。

我們首先概述了人工智能的描述和歷史,并概述了人工智能在武器系統中的原理、技術和應用。這包括對監督自主系統;制導、導航和控制;行為和路徑規劃;傳感器和信息融合;智能戰略和規劃;兵棋推演建模;以及認知電子戰的研究和計劃的回顧。

然后,對將人工智能應用于武器系統的系統和項目進行了調查。雖然重點是基于美國的系統和項目,但也包括一個關于俄羅斯和中國相關系統的小節。最后,我們對將人工智能用于武器系統的倫理考慮進行了簡要評論。

引言

1.1 問題陳述

機器學習(ML)和人工智能研究的最新進展揭示了人工智能在實現創新、增加機器的效用以及增強人類能力和經驗方面的力量和潛力。人工智能技術的顛覆性和其影響的深度還沒有被廣大公眾完全掌握。考慮到新時代的新興技術威脅,展示關鍵和相關的人工智能研究和最先進的技術是很重要的,這些技術不僅為武器系統提供了比傳統武器系統更多的自主權,而且大大增加了它們的殺傷力和戰斗生存能力。最終,人工智能在開發改變游戲規則的技術方面帶來了巨大的戰略機遇,這將確保國家安全、繁榮和技術領先地位。

1.2 常規武器系統

美國軍方在創造先進的常規武器技術方面取得了巨大的進步,這些技術支持了士兵在戰場上的任務并增強了他們的能力。這些常規武器技術大多是自動化系統,在計劃、執行和完成一項任務或使命時依靠一套預先編程的規則。然而,在中國和俄羅斯等國家新開發的武器的前沿陣地上,人工智能支持的戰爭和高超音速武器給美國武裝部隊帶來了新一代的質量挑戰。下一代戰斗的步伐要求為戰略決策進行時間緊迫和大量的戰斗信息處理,這使得美國的許多常規武器系統只能執行低風險的任務,并在核領域之外處于威懾力減弱的態勢。

必須承認,人是昂貴的訓練資產。在戰場上增加更多的人員并不是推進最先進的戰爭的優雅或廉價的解決方案。相反,用支持人工智能的智能硬件來增強人在回路中的系統,可以在戰區提供更多的眼睛和耳朵,并通過使人工智能系統執行一些簡單和常規的任務來釋放人類的決策。

此外,無人駕駛作戰飛機系統(UCAS)是一種成熟的具有成本效益的系統解決方案,用于執行情報、監視和偵察(ISR)任務和遠程空襲。然而,自動化能力仍然受到人類在環形操作、評估和接觸的限制。雖然在任何可預見的未來都沒有打算消除武器化人工智能系統中的人類元素,但人類的能力仍然構成這些系統協同潛力的上限。但是,一個由人工智能驅動的智能武器系統的新生態系統將迎來新的戰爭形式和戰略。

人工智能國家安全委員會在其2021年的報告中提出,美國國防部(DoD)的軍事企業在整合人工智能技術方面落后于商業部門,并敦促在2025年前為整個國防部廣泛整合人工智能奠定基礎[1]。

1.3 人工智能的簡要歷史

幾個世紀以來,哲學家們一直在考慮以某種形式人工復制人類智能的某個方面的概念。1869年,威廉-杰農創造了第一臺基于布爾邏輯實現邏輯計算的機器。該機器能夠比人類更快地計算布爾代數和維恩圖。隨著這種邏輯計算機器的發展,人們很自然地質疑機器是否可以通過邏輯推理來為人類解決問題并做出決定。圖1-1中的時間軸顯示了人工智能的歷史和演變,并在本節中進行了詳細說明[2]。

在理論計算機科學的一些最早的工作中,英國數學家阿蘭-圖靈(Alan Turing)思考了機器是否能像人類一樣智能地行為和解決問題的問題。他在他的圖靈測試中提出,如果一臺機器能模糊地模仿人類這樣的智能生物,那么這臺機器就是智能的。這一理論測試成為一種指導性的形式主義,在這種形式主義中,當前的機器被測試其模仿人類智能概念的能力或潛力。作為測試的見證,Loebner獎是一個圖靈測試競賽,其任務是根據圖靈提出的基本問題來評估機器智能研究的現狀。

1928年,約翰-馮-諾伊曼證明了Minimax算法的基本定理,該算法旨在提供一種在零和博弈過程中使最大可能損失最小的策略。

圖1-1. AI歷史年表

在第二次世界大戰的高峰期,阿蘭-圖靈和他的團隊開發了一種機器算法,可以破譯德國的英格瑪信息密碼。他的算法的成功,推動了將復雜任務委托給機器的進一步努力,是機器計算的基礎,也是ML發展的先導。

1943年,McCulloch和Pitts開創了神經網絡(NN)的最早概念--McCulloch-Pitts的形式網絡理論--這在1949年馮-紐曼在伊利諾伊大學的四次演講中得到了體現[3]。

大約在同一時間,約翰-麥卡錫,一位計算機科學家,在1955年創造了 "人工智能 "來指代機器智能;計算機科學家艾倫-紐維爾;以及赫伯特-A-西蒙,一位經濟學家和政治學家,開創了第一個旨在自動推理的真正程序(稱為邏輯理論家)。隨著這一突破性的努力,對智能機器的探索開始了,為人工智能作為計算機科學的一個新的學術研究領域鋪平了道路。

1957年,一位名叫弗蘭克-羅森布拉特博士的心理學家開發了一個名為 "感知器 "的簡化數學模型,描述了我們大腦中的神經元如何運作。這一成就被強調為 "Perceptron收斂定理"。

同年,理查德-貝爾曼開發了動態編程,用于解決一類最佳控制問題。他還介紹了離散隨機最優控制問題的馬爾科夫決策過程表述,這為現在所稱的 "強化學習 "奠定了重要基礎。

在這些發展之后,另一位名叫阿瑟-塞繆爾的人工智能先驅利用他早先在ML方面的開創性工作,成功地開發了第一個檢查者算法。他實現了現在被稱為 "Alpha-Beta修剪 "的早期版本,這是一種搜索樹方法,通過Minimax算法減少評估節點的數量。1959年,一位名叫威廉-貝爾森(William Belson)的統計學家開發了一種名為決策樹的非參數、監督學習方法的早期版本。

在20世紀60年代,人工智能研究的重點是解決數學和優化問題。1960年,羅納德-霍華德提出了馬爾科夫決策過程的策略迭代方法,建立了一些與強化學習有關的最早的工作。

到1968年,著名的路徑搜索算法A-star是由計算機科學家尼爾斯-尼爾森提出的。60年代末,機器人建模、控制和機器視覺方面取得了進展,導致在1972年開發了第一個名為WABOT-1的 "智能 "擬人機器人,并整合了肢體操縱、視覺和語音系統。

Harry Klopf的 "適應性系統的異質理論 "的復興對適應性系統的試錯范式的發展有很大影響。1977年,Ian Witten提出了最早的強化學習系統之一,使用了時間差法。理查德-薩頓和安德魯-巴托設計了一種強化學習算法,稱為演員批評法。

由于70年代中期到80年代末計算機的計算能力限制,人工智能研究在有大量數據處理要求的應用中發現了困難,如視覺學習或優化問題。同時,數學研究 "證明 "了(單層)感知器不能學習某些模式。此外,1973年發表的一份Lighthill報告對人工智能的潛力非常悲觀,這導致人工智能研究的資金被削減。結果,資金短缺導致人工智能的研究經歷了一個被稱為 "人工智能冬天 "的時期。

到了80年代中后期,繼1986年多層感知器的發展之后,在NNs方面也做出了重要的理論貢獻。這些貢獻是David Rumelhart在1986年開發的遞歸神經網絡(RNNs),John Denker等人在1987年開發的貝葉斯網絡,以及Yann LeCun在1989年開發的卷積神經網絡(CNNs)。

此外,Chris Watkins在1989年開發了另一種重要的強化學習方法,稱為 "Q-Learning"。1992年,在IBM的Thomas J. Watson研究中心,Gerald Tesauro通過自我強化學習為雙陸棋游戲訓練了TD Gammon程序。1997年,IBM的 "深藍 "計算機使用粗暴的、基于搜索的算法擊敗了國際象棋世界冠軍加里-卡斯帕羅夫,使其成為第一個在國際象棋中戰勝頂級職業選手的程序。

在90年代末和21世紀初,在ML中看到的大部分進展是由計算機處理、存儲和分布式計算方面的指數級進展所推動的。2007年,需要大量計算資源的保證最優玩法在跳棋中得到了解決。在過去的20年里,圖形處理單元用于通用計算的激增導致了今天人工智能應用的進一步進展,特別是在2012年和2014年,不同的NN拓撲結構,如殘差網絡和生成式對抗網絡的發展。

2015年,ImageNet競賽,一個為約400萬張圖像的ImageNet圖像集開發分類器的公開競賽,有一個冠軍,其錯誤率被認為低于一個人。2016年,DeepMind的AlphaGo程序在擊敗當時被認為是最優秀的圍棋選手李世石后,成為最佳AlphaGo選手。繼AlphaGo的學習能力之后,AlphaZero在2017年擴展了AlphaGo,成為國際象棋和Shogi的最佳棋手。

2019年,美國國防部高級研究計劃局(DARPA)推出了AlphaDogfight,這是基于人工智能的空戰算法在模擬的F-16狗斗中與經過頂級訓練的飛行員進行的一系列三輪競賽。第一輪和第二輪比賽中,人工智能程序相互競爭。第三輪將人工智能勝利者的飛行員提煉出來,與美國空軍武器學校的優秀畢業生進行競爭。蒼鷺系統的人工智能飛行員不僅在競爭激烈的人工智能空中戰斗人員中獲勝,而且在與訓練有素的人類F-16飛行員的較量中取得了令人難以置信的五次勝利。

OpenAI在2020年5月推出了一個名為GP3的 "自然語言處理 "模型,它生成的寫作內容與人類無異。其最新版本可以從簡單的描述性語言生成編程語言代碼[4]。人工智能的歷史繼續向前發展,特別是對國防部的武器系統應用。本報告的其余部分將調查與武器系統有關的當代人工智能技術和系統。

1.4 什么是AI?

根據Barr和Feigenbaum的說法,人工智能被定義為 "計算機科學中與設計智能計算機系統有關的部分,即表現出我們與人類行為中的智能有關的特征的系統--理解語言、學習、推理、解決問題等等"[5]。

Stuart Russel和Peter Norvig在他們的《人工智能:一種現代方法》一書中對人工智能的最新定義是:"設計和建造能夠從環境中接收感知并采取影響環境的行動的智能體" [6]。

Pei Wang優雅地將智能定義為 "在知識和資源不足的情況下的適應"[7]。雖然該定義沒有說明適應的目的(如目標),但它揭示了為達到這種智能需要完成的工作。

如果要以人類為中心定義人工智能,即執行人類智能水平的任務,那么人工智能需要感知、推理、知識構建、推理、決策和計劃、學習、交流,以及有效移動和操縱環境的能力。

人工智能的科學目標是回答哪些關于知識表示、學習、規則系統、搜索等的想法可以解釋各種類型和水平的真實智能。工程目標是為不同的應用領域開發人工智能技術,以解決現實世界的問題。

在人工智能的科學基礎上,我們發現來自不同科學領域的可識別概念--哲學、邏輯/數學、計算、心理學和認知科學、生物學和神經科學以及進化。在尋求發現和更好地理解人工智能是什么或將是什么的過程中,來自這些不同知識領域的貢獻已經被證明是不可避免和不可或缺的了。許多研究人工智能的領域都在同時構建人類認知如何運作的模型,并在它們之間采用有用的概念。例如,NN,一個源于生物學的概念,試圖在簡化的人工神經元的基礎上建立人工系統,這個概念導致了一個簡單的抽象知識結構的表示,足以解決大型計算問題集。

人工智能大致分為三個主要層級--人工狹義智能(ANI)、人工通用智能(AGI)和人工超級智能(ASI)。圖1-2說明了這三個層級中的各種分組,本節將更多地討論這些分組。

1.4.1 人工狹義智能(ANI)

ANI是對一個執行狹窄或單一任務的人工智能系統的描述。它可以包括各種方法來獲得結果,如傳統的ML(以圖像分類為例)或目標檢測(包括ML和基于規則的系統)。給定一組規則或約束,它的目標是提供一組代表狹義任務的輸出。ANI不會擴展或學習新的認知,也不會自我學習新的操作模式。數據挖掘、大多數專家系統和針對某一應用的預測功能(例如,垃圾郵件檢測和面部識別)都被認為是ANI的形式。ANI還包括 "有限記憶人工智能"--用于自動駕駛汽車的系統類型,使用過去的經驗(訓練),并學習做決定,隨著時間的推移而改進。

1.4.2 人工通用智能(AGI)

AGI是一種更強大的智能形式,因為它被更多類似人類智能的特征所增強,例如自主學習的能力和解釋情緒和語音語調的能力。這使得與AGI相關的智能與人類的智能水平相當。AGI的一些關鍵核心能力如下:

  • 推理、解決問題、運用策略和在不確定情況下做出決定的能力。
  • 展示知識的能力。
  • 計劃的能力。
  • 學習的能力。
  • 用自然語言交流的能力。
  • 將所有上述內容整合為一個共同目標的能力。
  • 類似人類的思維與圖靈測試等計算的結合。

1.4.3 人工超級智能(ASI)

ASI是一種超越最聰明的人類頭腦的智能模型。實現ASI的方法仍在概念化中,但將是那些超越AGI并需要某種自我意識的系統。這些系統最好能代表所有人類的認知能力,甚至更多。

1.5 機器學習(ML)

ML是機器從數據中學習的能力,目的是做出準確的預測。它大致分為四類學習,提供了豐富的專用和通用的技術家族。

1.5.1 監督學習

在這種形式的學習中,訓練數據使用包含的輸入和標記的或預定的輸出數據。如果有缺失的輸入或輸出條目,它們會被預處理,以便將一個輸入正確地映射到其真正的對應輸出。通過從正確生成的訓練數據集中學習,系統學會了將不在原始數據集中的輸入與預測的輸出(標簽或值)聯系起來。這種類型的訓練解決的典型問題是回歸和分類[8]。

1.5.2 無監督學習

這種形式的學習中,系統直接從未標記的數據中發現有趣的或隱藏的結構[9]。無監督學習被用于聚類分析、降維或估計可能產生輸入數據的密度[8]。

1.5.3 半監督學習

當數據集包含有標記的和無標記的數據時,這種學習形式的系統利用無標記的數據來更好地捕捉潛在的數據分布,并獲得一個更好的預測,如果它只從標記的數據中訓練的話。這種學習形式適用于訓練數據集中的標注數據遠遠少于未標注數據的情況[8]。

1.5.4 強化學習

在這種學習模式中,系統使用獎勵/懲罰機制進行訓練,這樣它所選擇和執行的行動,當行動可取時,會使系統得到獎勵,當行動不可取時,會受到懲罰。強化學習問題涉及學習如何做(如何將情況映射到行動上)以最大化數字獎勵信號[9]。

03 人工智能在武器系統中的應用

人工智能有可能應用于武器系統生態系統的許多方面。它被用來控制系統,從而實現自主性和提高性能,以在具有挑戰性的環境中選擇指導、導航和控制方面的問題。同樣,人工智能可用于解決任務和路徑規劃中的挑戰性問題,從而實現更高水平的復雜任務目標和操作要求。人工智能也被用于電子戰領域的支持、反制,甚至是反制措施。它還可能被用于來自不同系統層次和領域的信息融合,以泄露抽象的高價值戰場情報,并提供關鍵線索和快節奏的決策,從而在現代戰爭中創造寶貴的戰術優勢。

報告的這一部分將強調最先進的人工智能方法在適用于自主和武器系統的各種人工智能問題領域的使用。它是根據以下問題領域來組織的。

  • 自主性

  • 感知中的人工智能

  • 制導、導航和控制中的人工智能

  • 任務和路徑規劃

  • 智能戰略

  • 對手建模

  • 認知型電子戰

提綱

第一章 引言

1.1問題陳述

1.2常規武器系統

1.3 AI簡史

1.4什么是AI?

1.4.1 ANI

1.4.2 AGI

1.4.3 ASI

1.5 ML

1.5.1監督學習

1.5.2無監督學習

1.5.3半監督學習

1.5.4強化學習

第二章 最先進的方法

2.1學習人工智能范例

2.1.1深度學習

2.1.2強化學習

2.2隨機優化和搜索算法

2.2.1隨機優化

2.2.2圖形搜索算法

2.3新興人工智能范例

2.3.1神經符號AI

2.3.2 NE

第三章 人工智能在武器系統中的應用

3.1自主性

3.1.1定義、級別和框架

3.1.2自主系統的功能組件

3.2感知中的人工智能

3.2.1圖像分割

3.2.2目標檢測、分類和場景理解

3.2.3傳感器融合

3.3制導、導航和控制中的人工智能

3.3.1 GN&C系統

3.3.2常規控制理論方法

3.3.3智能控制

3.3.4本地化和導航

3.3.5系統識別

3.4任務和路徑規劃

3.4.1GAs

3.4.2群體智能

3.5智能策略

3.6對手建模和兵棋推演

3.7認知電子戰

3.7.1電子支持措施

3.7.2 ECMs

3 .7.3 ECCMs

第四章 將人工智能應用于武器系統的系統和程序

4.1天線系統

4.1.1下一代空中優勢計劃

4.1.2 Shield AI Hivemind

4.1.3 Shield AI V-Bat

4.1.4 Kratos XQ-58 Valkyrie

4.1.5 MQ-20 Avenger UCAS

4.1.6自主彈藥

4.1.7 Dynetics X-61小精靈

4.2 海軍系統

4.3 陸軍系統

4.3.1 QinetiQ/Pratt Miller的遠征自主模塊化飛行器

4.3.2Textron系統公司的Ripsaw M5

4.3.3 Rheinmetall公司的Lynx KF41

4.4 群系統

4.4.1 DARPA的攻擊性蜂群戰術

4.4.2自主協同小直徑炸彈群

4.4.3 Perdix群

4.4.4 Mako UTAP22

4.4.5 Coyote UAS Block 3

4.4.6機器人代理命令和傳感群的控制架構

4.4.7激流勇進微型無人潛水器

4.5戰斗管理和智能指揮與控制

4.6 ISR和目標系統

4.6.1 SRC的HPEC Pod

4.6.2復仇女神

4.7導航

第五章 未來作戰中的AI

第六章 人工智能和外來威脅

6.1俄羅斯

6.2中國

第七章 倫理考量

第八章 總結

參考文獻

付費5元查看完整內容

執行摘要

研究要求:

由于傳感器數量和人工智能(AI)應用快速增多,未來的作戰環境將以豐富的信息和機器速度的決策為特征。因此,美國陸軍指揮官和他們參謀人員將需要有能力篩選大量的信息,更快地做出決策。商業人工智能系統有可能提供這種能力,但美國陸軍不能指望"開箱即用"的商業人工智能系統具有通用能力,因為這種系統需要針對美國陸軍的情況進行充分的訓練。此外,還需要進行研究,以了解軍隊中的人工智能目前可以做到什么和不可以做到什么。總的來說,人工智能往往擅長于主要通過模式識別來解決的任務,以及可以從任務數據中進行預測的任務,如圖像識別、醫療診斷和文本轉錄。然而,目前還不知道人工智能是否可以用于提高美國陸軍信息收集效率。因此,在目前的研究中,探討了以下問題:人工智能能否用于提高美國陸軍任務指揮過程中的信息收集效率?

研究方法:

為了回答研究問題,本文使用了一個商業人工智能應用系統,它反映了軍隊任務指揮部人工智能應用原型的首次開發工作。在這項研究工作中,比較了這個為軍隊量身定做的人工智能系統和其他兩種信息收集方法的參與者在信息收集任務中的表現:傳統的信息收集方法(在計算機文件夾中搜索PDF文件)和非軍隊量身定做的人工智能系統版本。軍隊定制的系統使用軍隊相關的知識來幫助搜索(例如,它知道 "MDMP "等同于 "軍事決策過程"),而非軍隊定制的系統則沒有。我們在以下方面比較了這三種搜索方法:1)參與者找到準確的搜索結果所需的時間,2)參與者搜索結果的準確性,3)參與者對其搜索結果的信任程度,4)參與者對使用該系統工作負荷的看法,5)參與者對該系統可用性的看法。

研究結果:

參與者在使用人工智能系統時比使用傳統搜索方法時既不快也不準確。當使用人工智能系統而不是傳統方法時,參與者對他們的搜索結果也沒有更多信任。然而,在使用軍隊定制的人工智能系統而不是非軍隊定制的系統時,參與者的搜索速度更快,但準確性也更低。最后,在不同的搜索方法之間,參與者對工作負荷和可用性的感知沒有明顯的差異

研究結果的利用和傳播:

這項研究是確定人工智能系統對信息收集效率影響的第一步。總的來說,我們的研究結果表明,人工智能系統可能不會大幅提高美國陸軍任務指揮過程中的信息收集效率,至少不會立即提高。雖然這項研究的重點是在受控實驗室中的無關要害任務(即尋找戰術情況下的理論解決方案),但未來計劃的使用將不會那么無害,這表明需要未來研究來測試假設。對人工智能的投資應該伴隨著對培訓和研究的投資,以獲得人工智能的全部優勢并減少風險。假設人工智能系統是銀彈是不審慎的,事實上,這項研究表明人工智能系統需要被充分審查。

簡介

戰爭正變得越來越復雜。陸軍指揮官需要考慮在地面、空中和海上的戰斗,以及在信息和網絡環境中的戰斗(美陸軍部,2017)。隨著社交媒體的出現和計算機的日益強大,在這些環境中的行動可能會導致地緣政治損失,而在過去,只有通過更傳統的行動,如地面攻擊、空中打擊和海上轟炸才能實現。此外,美陸軍指揮官不僅應該期待來自其他民族國家部隊的復雜和有影響的打擊,而且還應該期待看起來不復雜的對手,因為網上零售商使人們很容易購買到過去難以獲得的產品(包括合法的和非法的),如無人機、夜視鏡和槍支。在這一切之上,陸軍指揮官需要在一個前所未有的水平上做出準確和及時的決策,因為人工智能(AI)正在許多軍事職能和領域中實施,如網絡戰、航空和信息收集。這些因素加在一起,為陸軍指揮官創造了復雜的作戰環境。

為了在復雜的環境中有效運作,陸軍指揮官及其參謀人員需要有能力從不同的來源收集大量的數據,并迅速處理收集到的信息,以便及時對信息采取行動。例如,如果對手正在準備一次大規模的作戰行動,信息環境、網絡環境和物理環境中新的但微妙的多變量模式可能會出賣對手的意圖。然而,為了及時發現這些模式,陸軍指揮官和他們的參謀人員將需要有能力快速匯總和分析從各個環境傳來的數據。此外,為了根據這些數據迅速采取行動,陸軍指揮官及其參謀人員需要有能力迅速找到相關的陸軍和聯合理論,以實施戰術和戰略,并吸取經驗教訓,以利用曾面臨類似情況的指揮官經驗。對于這兩項任務--檢測模式和根據模式采取行動--人工智能可能被證明是一個非常有用的工具。

正如其名稱所暗示的那樣,人工智能是由機器而非人類或動物等非人工實體所展示的智能。在這種情況下,智能包括通常與人類相關的認知功能,如推理、計劃、學習和感知。因此,人工智能的主要目的是取代或增強人類的某些任務,如駕駛、飛行和圖像識別(例如,自動檢測和識別人群中的面孔)。例如,谷歌和優步等公司目前正在自動駕駛汽車中使用人工智能,人工智能充當了車輛的駕駛員,因此是使自動駕駛汽車自動化的實體。此外,美國陸軍目前正在探索將人工智能用于自動車輛識別。

人工智能主要通過兩種方式實現 "智能化"。一種方式是通過編程使人工智能的軟件接受某些輸入并根據輸入做出某些輸出。例如,視頻游戲中的人工智能競爭者可能被編程為在玩家向右移動(輸入)時向左移動(輸出),或者在玩家攻擊時進行阻擋。這種方法使用簡單的算法--人工智能要遵循的規則--除了最基本的任務外,其他都是低效的,因為人工智能的軟件程序員必須思考并手動編程每個規則。這樣做很快就會變得不方便,因為許多任務需要許多規則和嵌套的規則--其他規則中的規則(例如,如果接近一個讓行標志,如果有另一輛車出現,則要讓行,但只有當另一輛車在附近時)。此外,思考一項任務的每一個可能的規則很快就會變得困難,即使是人類認為很容易的任務(如駕駛)。

使人工智能智能化的更好方法是使用機器學習,這是一個從數據中創建統計模型的過程,以提高預測和決策的準確性。機器學習不是明確地告訴人工智能系統如何應對其環境中的某些事件,而是允許人工智能系統從其環境中的行動中學習。更簡單地說,機器學習允許人工智能系統從經驗中學習。例如,谷歌通過向人工智能系統提供組成游戲顯示屏的像素,并允許人工智能系統通過游戲控制器對這些像素進行操作,從而訓練人工智能系統成功地玩視頻游戲Atari Breakout(Leo Benedictus,2016)。人工智能系統的程序很簡單,就是通過游戲控制器的動作來最大化其游戲分數,并使用游戲分數來確定一個動作是否有益。起初,人工智能系統在游戲中做出看似隨機的行動,但一段時間后,它開始獲得得分點,并最終學會了一種人類玩家從未使用過的有用技巧。

機器學習讓人工智能在日常生活中變得非常普遍,以至于人工智能被一些人認為是 "新電"(Lynch, 2017)。人工智能傾向于擅長那些主要通過模式識別就能解決的任務。因此,人工智能擅長于圖像識別、醫療診斷和轉錄等任務。像駕駛這樣的任務給人工智能帶來了更大的難度,因為目前自動駕駛汽車上的傳感器無法檢測到標記模糊的道路上的模式(例如,被雪覆蓋的道路)。人工智能對于從數據中進行預測是異常有用的。例如,醫生可以使用人工智能來幫助醫療診斷,因為人工智能能夠處理病人的所有數據,將這些數據與已知的醫療條件進行比較,并從比較中產生醫療診斷。人工智能在視覺搜索方面也很有用。一家公司使用人工智能系統搜索航拍圖像,以尋找住宅區內水浪費的證據(Griggs, 2016)。該人工智能系統能夠通過使用游泳池的存在、灌木的數量和大小以及房屋周圍草地的綠色程度等因素,準確判斷一個家庭是否在浪費水。該人工智能系統能夠以每秒208張航空圖像的速度完成這項任務。

信息收集是人工智能具有潛力的另一項任務。信息收集是指從一個來源,如文件庫或互聯網上提取所需信息的過程。通過使用自然語言處理--人工智能的一個分支,用于處理自然語言數據--人工智能可以從非結構化數據中提取信息,而非結構化數據占世界數據的80%(High, 2012)。與結構化數據不同,結構化數據是以預先定義的方式組織的,包括電子表格和日志,非結構化數據不是以預先定義的方式組織的。非結構化數據包括文本文件、照片、視頻和音頻記錄。人工智能可以用來從非結構化數據中提取相關信息和意義,并以各種方式利用這些信息和意義。例如,美國陸軍和美國空軍正在探索使用人工智能,從車輛維護和車載系統日志中預測車輛故障(Osborn,2017;Vincent,2018)。此外,未來的人工智能任務指揮系統可能會不斷挖掘從眾多來源流入的數據,包括社交媒體、新聞頻道和衛星數據,并使用這些數據來預測戰略競爭對手的行動。這種方法將通過利用過去的非結構化數據(維護日志、社交媒體帖子等),并確定這些數據的哪些特征可以預測車輛故障和競爭者的行動。例如,人工智能系統可能會發現車輛運行溫度和車輛故障之間的關系,并利用這種關系來預測未來的故障。像這樣的關系將形成一個數學模型,當新的數據出現時,人工智能系統將持續更新。

通過使用自然語言處理,人工智能也可能有助于從陸軍條令和經驗教訓中提取所需信息。陸軍有許多條令出版物,指揮官和他們的工作人員經常需要在一個以上的出版物中尋找信息。例如,如果計劃進行一次接觸行動,指揮官可能不僅需要參考作戰條令,還需要參考與指揮官所在梯隊相關的條令;如果指揮官的部隊要通過一個人口中心,還需要參考民政條令;如果指揮官要使用網絡能力,還需要參考網絡戰條令。此外,指揮官可能還需要快速找到相關條令,特別是在面臨對手的意外行動時。在計劃一項行動時,指揮官也可能會查閱陸軍的經驗教訓集,以利用過去進行過類似行動的指揮官的經驗。

也許有可能使用人工智能來幫助指揮官及其參謀人員在條令和經驗教訓中找到所需的信息。要做到這一點,必須采取一些步驟。首先,必須為人工智能系統建立一個語料庫,將條令和經驗教訓的出版物加載到人工智能系統中。從這個語料庫中,人工智能系統可以學習相關的語言,包括術語,并使用自然語言處理建立一個詞庫。然后,人工智能系統可以通過建立索引和元數據對數據進行預處理,使其更有效地處理數據。最后,人類主題專家必須訓練人工智能系統,以使人工智能系統提供更精確的答案和識別模式。訓練可以通過向人工智能系統上傳問題和答案對形式的訓練數據來完成。這種訓練數據不會為人工智能系統提供每個可能問題的答案,但這些數據將幫助人工智能系統學習相關領域的語言模式。一旦人工智能系統被部署,該系統可以通過與用戶的持續互動進一步學習。

通過使用上述方法創建人工智能系統,指揮官及其參謀人員可能會比沒有人工智能系統可供使用時更快、更準確地從條令和經驗教訓中收集所需信息。如果沒有人工智能系統,指揮官將不得不通過手動搜索每個可能與所需信息有關的條令或經驗教訓出版物來尋找所需信息。這種手工搜索是一個耗時的過程,可能不會產生最佳的信息產品,特別是當進行搜索的人有時間壓力的時候。事實上,人類經常會搜索信息,直到達到一個可接受的閾值(例如,做出決定所需的最小信息量),以避免花費太多的認知資源和精力去尋找一個完美的結果(Simon, 1955; 1956; 1957)。然而,通過使用這種方法,人類可能會產生不那么充分的結果。此外,Simon還觀察到,這種方法不太可能產生一個最佳的結果,因為人類通常不會搜索足夠長的時間來找到這樣一個結果。然而,試圖找到最佳結果可能并不理想,因為這樣做需要時間,而當找到最佳結果時,結果可能已經不再有用。因此,如果指揮官試圖找到一個最佳的結果,指揮官可能無法進入對手的決策周期;指揮官需要平衡尋找結果的時間和結果的質量。另一方面,人工智能信息收集系統可能更有可能找到最佳結果,而且人工智能系統可能更有可能在比人類花費更少的時間內找到最佳結果。

盡管在人類信息處理能力有限的情況下,人工智能系統在尋找條令和經驗教訓中的所需信息方面可能比人類更有效率(Baddeley,1992),但這一結果是以人工智能系統經過充分訓練以識別條令和經驗教訓出版物中的語言模式為前提。如果人工智能系統沒有經過充分的訓練,那么人工智能系統的使用者可能會發現次優的結果,并因此對人工智能系統感到失望,最終使人工智能系統被廢棄。此外,人工智能系統只有在人工智能系統的人類用戶適當地校準他們對系統的信任時才會有用(Hancock等人,2011;de Visser, Pak, & Shaw, 2018)。許多人工智能系統由于各種原因,包括環境背景、用戶錯誤和不同背景下的訓練不一致,導致其性能不一致(Rovira, McGarry, Parasuraman, 2007)。例如,一個人工智能系統產生與火力作戰功能相關的準確結果,與機動作戰功能相比,可能產生不太準確的結果。如果人工智能系統的人類用戶完全信任該系統的結果,可能會出現性能下降(Hancock等人,2011)。訓練人類用戶了解人工智能系統何時可能準確,何時不可能準確是至關重要的(de Visser, Pak, & Shaw, 2018)。相反,如果人工智能系統的人類用戶對人工智能系統缺乏信任,那么該系統很可能會被廢棄。因此,人工智能系統不會提高指揮官尋找信息的效率,即使該系統本身在這方面表現出色(Hancock等人,2011)。

目前的研究

盡管人工智能往往擅長于主要用模式識別來解決的任務,以及可以從任務數據中進行預測的任務,如圖像識別、醫療診斷和轉錄,但目前還不知道人工智能是否可以用于提高美國陸軍背景下的信息收集效率,特別是在陸軍指揮官及其參謀人員需要在陸軍條令中尋找信息的背景下。因此,在目前的研究中,我們探討了以下問題:人工智能能否用于提高美國陸軍任務指揮過程中的信息收集效率?為了回答這個問題,我們使用了一個商業人工智能應用系統,這反映了陸軍任務指揮部人工智能應用原型的首次開發工作。在這項研究工作中,我們比較了這個為陸軍量身定做的人工智能系統和其他兩種信息收集方法的參與者在信息收集任務上的表現:一種傳統的信息收集方法(在計算機文件夾中搜索PDF文件),以及一種非陸軍量身定做的人工智能系統。

付費5元查看完整內容

自從網絡空間被鞏固為第五個戰爭維度以來,國防部門的不同行為者開始了一場實現網絡優勢的軍備競賽,研究、學術和工業利益相關者從雙重角度做出了貢獻,這主要與民用網絡安全能力的大量和異質的發展和采用有關。在這種情況下,加強對背景和戰爭環境的感知,網絡威脅的風險和對動能行動的影響,成為軍事決策者正在考慮的一個關鍵的規則改變。獲得以任務為中心的網絡態勢感知(CSA)的一個主要挑戰是動態推斷和評估從支持任務的信息和通信技術(ICT)發生的情況的垂直傳播,直到它們在軍事戰術、作戰和戰略上的相關性。為了在獲得CSA方面做出貢獻,本文解決了網絡防御領域的一個主要差距:在以任務為中心的背景下動態識別關鍵網絡地形(KCT)。因此,擬議的KCT識別方法探討了指揮官作為評估標準的一部分所定義的任務和資產之間的依賴程度。這些與作戰網絡上的發現以及在支持任務發展過程中發現的資產漏洞相關聯。該建議作為一個參考模型,揭示了以任務為中心的KCT分析的關鍵方面,并通過包括一個說明性的應用案例來支持其執行和進一步執行。

網絡空間被定義為由所有相互連接的通信、信息技術和其他電子系統、網絡及其數據組成的全球領域;最近被合并為現代戰區的第五個領域,加入了陸地、海洋、空中和太空[1]。在那里,聯合功能(JFs),如網絡演習、火力、指揮和控制(C2)、情報、信息、維持或部隊保護,在防御性網絡空間行動(DCOs)和/或進攻性網絡空間行動(OCOs)的背景下實施;支持或被動能領域的行動支持。盡管有這些依賴性,網絡空間與動能領域完全不同,主要是因為它是人造的,部分是非物理的(數字),不受傳統地理邊界的限制[2]。它被描述為CIS(通信和信息系統)資產的高可及性,對網絡行動路線(CoAs)的短時間影響與它們的大量準備時間相比,它們的影響越來越不對稱(通常是垂直/傳播到附帶的混合層面),或者它們的無形性;后者使得網絡損害評估計算變得困難[3]。

與最先進的兩用網絡安全使能器相比,適合軍事行動的原始網絡防御效應器應采用以任務為中心的愿景,其中網絡評估和決策必須與軍事行動背景相適應,包括網絡行動所針對的任務目標和任務、其相互依賴性、階段性、聯合/合并行動、技術、戰術、行動和戰略層面之間的垂直傳播等。這就要求在對通信和信息系統(CIS)維度的原始影響(通常是保密性、完整性和可用性)與任務層面的影響之間進行清晰的轉換,后者的例子是可能導致任務執行的延遲、有益因素的喪失,或減少指揮官做出新決定和規劃CoA的敏捷性[4]。

因此,支持網絡防御行動的能力的一個重要方面是他們能夠考慮哪些任務依賴性是必要的,以便充分評估/評價每個控制論或程序性資產,并隨著任務的進展動態地改變評價結果。在這種情況下,關鍵網絡地形(KCTs)被定義為構成、監督和控制網絡空間的系統、設備、協議、數據、軟件、程序、網絡角色和其他網絡實體[4],構成軍事優勢,如果受到危害,有可能導致任務失敗[5]。但是,盡管KCT概念的相關性,它被研究界模糊地公開探討,文化和跨領域的誤解導致了模糊和誤解,通常從過度的民用角度來處理;并且大多忽略了其以任務為中心的影響。

為了促進以任務為中心的KCT發現和評估的研究,本文回顧并深入分析了KCT概念及其影響。這是從網絡態勢感知(CSA)的角度進行的,并假設其相關性將日益增長,以實現準確的跨域共同作戰圖像(COP)[6]。所進行的研究擴展了在[7]中向研究界和網絡防御從業人員初步介紹的工作,匯編了廣泛收到的反饋,并將其原始范圍從原始技術方面增加到KCT任務的影響。鑒于其引起的高度興趣,本文加強了所介紹的KCT概念化,擴展了KCT發現和評估參考模型,詳細說明了其以任務為中心的影響,并提供了分析和經驗評估的擴展描述。下面列舉了所進行的研究的主要貢獻。

  • 本文深入回顧了當前網絡防御和以任務為中心的網絡風險管理的情況,強調了現有的KCT分析工作。

  • 提出了一個動態識別網絡空間關鍵資產的參考框架,它揭示了可能指導進一步研究行動的關鍵支柱的子集。

  • 探討了廣泛采用的動能地形因素與它們在網絡空間軍事行動中的可追溯性。

  • 該提案審查了KCT評估相關能力發展的DOTMLPF-I(理論、組織、訓練、物資、后勤、人員、設施和互操作性)層面。

  • 討論了KCT分析在進攻和防御性軍事思維中的應用。

  • 該建議已被實例化,并在一個說明性用例下進行了分析驗證,其中詳細說明了所有需要的數據處理活動。

本文分為七個部分,其中第一部分是本導論。第二部分回顧了以任務為中心的網絡防御和KCT評估方面的技術現狀。第三節介紹了所進行的研究設計原則。第四節介紹了一種新型的動態KCT識別方案。第五節分析了可預見的KCT評估能力發展層面。這一節還討論了提案在進攻和防守兩方面的應用。第六節詳細介紹了該建議在一個研究案例中的應用。最后,第七節介紹了所取得的結論和對未來工作的建議。

付費5元查看完整內容

隨著美國為大國競爭而重組其軍隊,戰場的有效性將取決于美軍是否有能力超越其近似競爭對手的決策周期。速度是關鍵--軍隊如何快速從其傳感器中收集數據,分析數據,辨別重要信息,將其發送給相關作戰人員并作出最佳反應。一支日益一體化和互操作性的部隊,對共同作戰環境有共同理解,對于軍隊完成能力融合至關重要。

美國防部聯合作戰概念(JWC)描述了全域作戰,并設想了一個聯合殺傷網,它可以通過全域聯合指揮和控制(JADC2)的支持概念,快速有效地將任何傳感器與任何投射能力聯系起來,這就是融合的原則。實現融合要求各軍種之間專注聚焦,確定優先次序并進行協同。美國陸軍將在JADC2中發揮核心作用,因為它為作戰和戰術網絡的發展提供信息;為JWC提供后勤骨干;并在一系列與各部門、機構和國際合作伙伴的合作實驗中測試融合。

0 概述

  • 議題:隨著美國軍隊為大國競爭而進行的轉型,戰場效率將在很大程度上取決于其超越同行競爭對手決策周期的能力。

  • 聚焦范圍:描述了陸軍和聯合實施JADC2的情況。

  • 觀點:

    • 在一個共同的作戰環境中,數據管理和共享對于軍隊實現必要的能力融合至關重要。
    • JADC2要求國防部和陸軍進行變革,特別是在數據共享、網絡支持能力、決策周期中的人工智能(AI) 以及對部隊結構的調整方面。
    • JADC2是關于獲取數據和有效連接;它不是一個特定的平臺。

1 戰略環境

在2020年以后,美國軍隊必須具有戰略上的敏捷性、反應性和致命性。中國和俄羅斯正在大力投資,以減輕美國在陸地、空中、海上、太空和網絡空間各個領域的能力。

  • 通過快速移動平臺維持的反介入/區域拒止(A2/AD)能力,爭奪進入戰場的機會。
  • 利用日益增長的城市化和其他阻礙視距瞄準的地形。
  • 利用戰略上敏感和動態的環境。

在有可能限制聯合部隊戰略部署和使用其部隊能力的情況下,需要一個現代化的指揮和控制(C2)機構,能夠迅速匯集美國及其盟國的所有能力,以威懾,并在必要時擊敗近鄰和其他競爭對手。

1.1 遺留系統的不足之處

目前的C2項目使用的是幾十年前的平臺,"沒有針對未來沖突的速度、復雜性和殺傷力進行優化"。目前的平臺各軍種不能有效地利用或發送數據、命令給其他軍種,而且它們的結構不能支持實現未來的C2。2018年國防戰略(NDS)強調了C2系統現代化的重要性,指出在退化的環境中未來的戰斗將以速度、更多的自主權和分布式的單位獲勝。

2 聯合作戰概念(JWC)

美國防部領導層設想了一個在戰場上沒有界限的未來,圍繞著一個統一的C2系統,其中一個多領域的方法--參與和整合地面、空中、海上、網絡和空間作戰--對于挑戰一個近似的對手是必要的。JWC是一個關鍵的概念,并且正在推動未來的研發和采購,同時也在整合作戰指揮部的審查和服務計劃。因此,該概念的發展是國防部的一個優先事項。

圖:全域聯合指揮與控制(JADC2)通過實時終端用戶報告和協作規劃,協同多個數據源,在國防支持民事當局行動期間,準確地在聯合特遣部隊民事支持(JTF-CS,美軍機構) 可能需要的地方提供支持能力。

注1:聯合作戰概念的四個支持性概念

  • 指揮與控制
  • 火力
  • 后勤
  • 信息優勢

2.1 JADC2

美國防部JADC2戰略于2021年5月由國防部長勞埃德-奧斯汀批準,闡明了國防部實施JADC2的方法;它將JADC2描述為感知、探測和行動的作戰能力,從而提高從沖突到競爭以及所有領域的互操作性和決策速度。JADC2是一個以數據為中心的持續C2能力框架,它支持JWC,并使聯合部隊能夠迅速匯集有助于威懾的效果,并通過決策優勢使任務取得成功。

JADC2指的是所有聯合C2的實施,包括:

  • 構建其連接性的架構。
  • 授予權力。
  • 整合人工智能(AI)決策。
  • 提供梯隊的人員能力。
  • 培訓領導人。
  • 同步工作人員并賦予他們實時決策的權力。

由于速度和規模在未來的戰斗中至關重要,JADC2將建立一個網狀網絡,實時將各部門的數據帶入一個 "可共享的數據湖",將來自所有領域--陸地、空中、海上、太空和網絡空間的傳感器連接起來。利用人工智能軟件、數據庫、處理器和算法,它將把偵察信息轉化為可識別的和優先的目標,比人類分析員更快。目標數據將被發送到處于最佳位置的單位/能力,無論是動能、網絡、電子戰(EW)還是信息作戰(IO)。

JADC2及其網狀網絡可以被看作是一個安全的戰斗互聯網,軍事應用程序在上面進行連接,從所有可用的來源搜尋數據,以迅速將最佳的 "投射 "或 "效應器 "與目標聯系起來。JADC2可以提供無處不在的數據,不同的人類和機械數據可以根據需要使用。歸根結底,JADC2不是一個特定的平臺;它是獲取數據并有效連接。

圖:聯合參謀部的JADC2作戰規劃實驗,允許陸軍、海軍、空軍和海軍陸戰隊的節點共享實時的信息,以實現傳感器與投射的聯系,并將其顯示在一個共同的作戰畫面上(美軍聯合現代化司令部)。

2.2 各軍種間的合作

所有軍種都同意需要將JADC2作為一項組織戰略。2020年,陸軍和空軍簽署了一項協議,在2022財政年度(FY22)之前分享數據并制定共同的數據和接口標準;在多次實驗中,他們在這方面取得了成功。此外,陸軍、海軍和空軍在2021年初簽署了一項合作協議,以測試、整合和分享數據開發,以實現JADC2。

3 陸軍的角色

陸軍現代化戰略描述了陸軍將如何作戰,用什么作戰以及如何組織起來支持聯合部隊。陸軍致力于發展作戰網絡、技術和概念,通過一系列名為 "項目融合"(PC)的演示和實驗來實現超額匹配并為聯合部隊提供信息。這是一場持續的學習運動,旨在迅速 "融合"所有領域(陸地、空中、海上、太空和網絡空間)的效果,并塑造陸軍的新興理論、組織、訓練、能力、研究和發展以及后勤。

通過實驗和學習,"項目融合"有助于確保軍隊在適當的地方擁有適當的人員、適當的系統、適當的能力,以支持聯合戰斗。——陸軍參謀長詹姆斯-麥康威爾將軍

"項目融合"(PC):學習運動

PC由五個核心要素組成:

  • 確保合適的人員和人才。
  • 將陸軍現代化工作與八個陸軍未來司令部跨職能小組(CFT)聯系起來,這些小組與陸軍現代化的六個優先事項相一致。
  • 擁有正確的指揮和控制,以應對節奏越來越快的威脅。
  • 使用人工智能對信息進行分析和分類,并在陸軍網絡中進行傳輸。
  • 在 "最嚴苛的地形"中測試能力。

每項實驗都通過新的架構、編隊和來自陸軍八個CFT的授權來融合現代化舉措,并深化陸軍現代化舉措的整合。這些努力正在加速2018年國防戰略中概述的現代化戰略,該戰略設想未來的戰斗將在退化的環境中以擁有速度、自主性和分布式能力的單位獲勝。

表:陸軍未來司令部項目融合戰略20-22財年

在亞利桑那州尤馬的 "項目融合2020"(PC20)持續了幾個月,展示了人工智能和機器人技術,包括兩次實彈演示。該實驗由士兵、平民、科學家和工程師設計,在最低作戰水平上測試了融合,以挑戰戰術邊緣的決策過程。其中一項測試使用衛星和無人駕駛航空系統:同時感知空中和地面目標;迅速將數據傳遞給平臺,以打擊目標;并在十幾秒內決定性地摧毀該目標。

圖:2021年10月19日,在亞利桑那州尤馬試驗場,被分配到第82空降師的美國陸軍一等兵丹尼爾-坎達爾斯使用戰術機器人控制器來控制遠征模塊化自主車輛,為 "項目融合"做準備。在2021年項目融合期間,士兵們試驗使用該車輛進行半自主偵察和再補給(美國陸軍中士馬里塔-施瓦布攝)。

對實現JADC2能力的另一個貢獻是陸軍繼續倡導將其從聯合(joint)擴展到 "結合(combined)"--CJADC2--因為任何網絡都需要包括盟友和合作伙伴。陸軍在亞洲和歐洲有著深厚的軍隊間關系,應該站在這種重要努力的最前沿。認識到這一點,陸軍21/22財政年度的PC戰略將參與范圍擴大到了結合伙伴和盟友,增加了指揮層級并使之多樣化,并推動了現代化概念和技術的極限。

注2:項目融合(Project Convergence):項目融合是聯合部隊對速度、射程和決策主導權的實驗,以實現超額完成任務,并為聯合作戰概念和全域聯合指揮與控制提供信息。作為一場學習運動,它利用一系列聯合的、多領域的交戰來整合人工智能、機器人技術和自主性,以提高戰場態勢感知,將傳感器與投射連接起來,并加快決策的時間線。因為誰能最先看到、了解并采取行動,誰就能獲勝。

注3:項目融合的五個核心要素

  • 1.人
  • 2.武器系統
  • 3.指揮和控制
  • 4.信息
  • 5.地形

4 挑戰

JADC2要求國防部和陸軍進行轉型,特別是在數據管理和共享、網絡支持能力、人工智能在決策周期中的作用以及為實現這些變化而對部隊結構進行調整。陸軍現代化戰略及其現代化優先事項是持續轉型的框架,以使陸軍能夠在多個領域進行部署與聚合效應。

注4:軍隊現代化的優先事項六大任務

  • 遠距離精確射擊
  • 下一代戰車
  • 未來的垂直升降機
  • 陸軍網絡現代化
  • 空中和導彈防御
  • 士兵殺傷力

4.1 數據共享和網絡能力

一個用于C2的綜合戰斗管理系統需要在數據共享和標準化數據共享接口方面進行通信;然而,許多遺留系統包含數據共享障礙。2021年初,各軍種之間開始認真工作,制定數據標準以連接他們的JADC2項目,并通過 "發現、理解和與所有領域、梯隊和安全級別的合作伙伴交換數據 "來克服這些障礙。

陸軍的網絡CFT正在試驗網絡的現代化,以實現聯合接口、彈性和能力。它的重點是加強地面領域的數據和網絡傳輸能力,連接人工智能和機器學習(AI/ML),開發戰術云和邊緣計算。

4.2 聯合部隊實驗

國防部正在制定和實施一套初步的實驗和原型設計的核心原則,以統一國家安全事業。聯合部隊已經確定了幾個原型能力,通過將真實世界的威脅數據納入響應計算,在即將舉行的演習中進行測試。陸軍聯合現代化司令部建立了聯合系統集成實驗室(JSIL)--一個使用持久性環境場景的實驗網絡,允許各軍種、工業界和盟友通過幾個網絡測試數據共享能力。這將有助于對JADC2戰略進行可靠的評估。

4.3 最大限度地利用空間、人工智能和網絡

由美國太空發展局管理的低地球軌道(LEO)衛星將整合各軍種的戰術網絡,以創建一個網狀網絡的傳輸層。計劃于2022年部署的近30顆衛星將提供一種 "作戰人員沉浸 "能力,其中傳感器、投射和戰術網絡可以與戰術通信連接。PC22將利用這些衛星,開發低地軌道能力。

人工智能國家安全委員會報告稱,國防部有必要在2025年前采用、實施人工智能并為其提供資源。人工智能/ML--陸軍的一個優先研究領域--對于在聯合、全域作戰中實現聯合戰場管理系統至關重要。人工智能的進步提高了對新出現的威脅的反應速度和敏捷性,使指揮官和工作人員能夠將精力集中在加速、優化決策上。

建設網絡安全基礎設施是陸軍網絡計劃的一個關鍵方面,它將為統一的網絡帶來速度、訪問和安全。在平衡這些要求的同時,美國網絡司令部正在與行業伙伴密切合作,擴大用于在國防部、情報界和商業網絡之間傳遞數據的安全共享工具,而不存在被破壞的風險。

圖:作為 "項目融合2020"的一部分,飛馬系列戰術自主系統的一部分在尤馬試驗場進行測試。飛馬系統有能力為無人駕駛航空系統(UAS)、地面行駛履帶式車輛,提供監視能力或創建一個地區的豐富詳細的三維地圖。

5 前進之路

決策主導權--在技術和融合的作用下更快地做出更好的決策的能力--將使美國軍隊從其對手中脫穎而出。JADC2有助于實現信息主導權,并促進快速融合,實現速度關鍵優勢,這是未來AI/ML競爭的基礎。

目前,每個軍種都在其各自領域內管理C2的復雜性。隨著戰爭的特點變得越來越復雜,聯合部隊必須同時有效地整合五個領域。這需要新的C2方法。JADC2是建立一支能夠完成國防戰略目標的聯合部隊的基礎。國會的支持、持續的資助和軍種間的合作對于成功實施JWC和JADC2至關重要。

陸軍在實現這一聯合網絡的技術、創新和實驗方面處于領先地位。它的PC學習運動已經證明了它有能力使用新興技術和創新概念來實現軍種間和跨域的融合。陸軍的未來司令部、CFTs、作戰能力發展司令部和軟件工廠正在結合士兵的經驗、工業界的資源和科學家的專業知識來發展和提供未來的戰斗力量。通過實驗和聯合協作,陸軍正在使JADC2成為現實,從而增強戰略競爭中的威懾力和沖突中的超強戰斗力。

美國陸軍協會

美國陸軍協會是一個非營利性的教育和專業發展協會,為美國的全部軍隊、士兵、陸軍文職人員和他們的家屬、行業伙伴以及強大國防的支持者服務。美國陸軍協會為陸軍提供聲音,支持士兵。

付費5元查看完整內容
北京阿比特科技有限公司