亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

隨著無人駕駛系統在各個領域日益普及,確保智能體有能力獲得可靠的導航估計變得更加重要。對抗性環境會產生更多的問題,限制了無人智能體可用的導航方法。可以假定,除全球導航衛星系統(GNSS)接收器外,無人智能體還攜帶一種或多種傳感能力。在有爭議的環境中,無法保證使用全球導航衛星系統進行位置估計,因此必須考慮其他方法。隨著替代導航技術的日益普及,必須將最新技術納入自主規劃,以便在規劃問題期間考慮到導航狀態的需要。

雖然許多規劃算法都展示了對單一非全球導航衛星系統測量過程的使用,但還沒有一種算法展示了對多個傳感域和替代導航(alt-nav)技術的使用,以提供通過有爭議環境的穩健導航計劃。本文包括開發一種基于采樣的信念空間規劃(BSP)算法,該算法考慮到了多種替代導航測量技術,命名為快速探索隨機信念替代導航圖(RRBANG)算法。這項研究填補了規劃研究與 Alt-nav 研究之間的空白,充分利用了兩者的優勢,根據智能體的各種感知能力,為到達目的地制定了穩健的計劃。

附帶的工作側重于通過可觀測環境進行規劃,利用多個感知域找到通往目標區域的最佳路徑。RRBANG 算法利用離線規劃中可用的信息,通過各種導航技術和可用的傳感器,在避開障礙物的同時,制定出一條通過空間的初始最佳軌跡。該算法采用用戶自定義的成本函數,允許用戶確定可接受的風險以及目標區域內路徑長度和不確定性之間的權衡。

RRBANG 能夠利用域內更多可用的多個傳感域,從而克服某些輔助導航技術的局限性。有些領域因環境而存在很大的局限性,例如在缺乏一致視覺地標的水體或大森林中嘗試使用基于視覺的導航(VisNav)技術。RRBANG 同時實現了視覺導航、通信測距和標量地圖匹配(SMM)等導航方法,為無人智能體提供了強大的初始計劃。

圖6。規劃框架

圖 33. 頂部) 僅利用視覺豐富的區域,在障礙物密集的環境中找到的解決方案路徑。這樣做是為了確保至少有一個域存在穩健可行的路徑。中圖)使用測距測量域返回的可行解決方案。下圖)利用所有傳感域找到的多域解決方案,風險系數為 δ = 0.05。單獨使用 SMMNav 時未發現可行方案。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

美國國防部(DoD)和蘭德公司(RAND)等研究機構都記錄了在進行探索性分析以支持能力發展方面存在的戰略差距,這些分析旨在利用技術和條令概念解決方案。進行探索性分析涉及許多方面,從研究技術發展趨勢到對潛在對手能力進行情報評估;歸根結底,創建模型和模擬以探索各種場景的工作是為高級領導人提供分析支持的核心。在這項工作中,總體戰略差距被分解為需要研究的更多重點領域,首先是探索當前整合不同模型的方法,以滿足國會在質量、準確性和可靠性方面的關切;注意到這些方法在探索大型設計或決策空間方面的計算量已變得過于龐大。進一步的意見指出,性能指標的預期值需要復雜和潛在的非線性模型來量化,在不同層次的模型抽象之間使用時,無法提供足夠的可追溯性。此外,當前的模型抽象方法難以考慮與日益復雜的模型或模擬相關的維度增加。這些觀察結果引出了本研究的目標,即制定并演示一種方法,利用降階建模(ROM)方法進行可追溯的模型抽象,在當前的軍事行動建模與仿真方法中有效、高效地捕捉復雜的系統行為。

通過對當前文獻的回顧,得出了對 ROM 的以下要求:需要考慮非線性相互依存關系、潛在的物理現象和隨機效應。提出并完成了一系列研究問題、假設和實驗,以進一步了解和解決已發現的差距。所有這些都為制定降階非侵入式(RONIN)建模方法提供了指導,從而實現了既定的研究目標。與 “查找 ”表或簡單傳遞預期值等傳統方法相比,RONIN 建模方法創建并實施了預測性減階替代模型,可捕獲更多有關行為和交互的信息。最后,為了證明 RONIN 建模方法能夠實現研究目標,我們定義了一個名義上的美國空軍使用案例,并使用國防部標準模擬框架生成了一個全階模型(FOM),該模型輸出了一組響應分布。任務級模型的響應可量化系統行為,范圍從簡單的資產、武器或燃料計數到旨在計算作戰效能的高級指標。本用例模擬了一次壓制敵方防空(SEAD)任務,探索不同的決策和部隊結構如何影響友軍損失和敵方殺傷的總數。最終,使用 RONIN 建模方法創建了一個預測代用模型,該模型能夠重建與原始 FOM 輸出數據靜態一致的輸出分布。

圖 1.1: 國防規劃流程用于將戰略指導轉化為可操作的支出、部隊結構設計和能力發展目標[127]。

付費5元查看完整內容

本文旨在研究天基激光武器系統對抗高超音速滑翔飛行器的有效性。高超音速滑翔飛行器是一種新興的武器系統,兼具彈道導彈的射程和巡航導彈的機動性。這些系統對軍事資產構成了獨特的威脅,不僅因為其能力擴大,還因為缺乏有效的防御對策。天基激光武器系統可為這一問題提供解決方案。本文首先模擬了天基激光系統抵御高超音速滑翔飛行器的動力學過程。在假定點質量三自由度條件下,定義了兩個物體的空間軌道力學和大氣飛行力學的支配運動方程。交戰模型中的幾個變量允許變化,包括天基激光系統的真實異常和上升節點的赤經的初始條件,以及高超音速滑翔飛行器的速度比、攻擊角和地面目標的航向。每個物體的運動從初始條件開始向前傳播,分析視線沿線的相對運動和激光。然后將激光的預定攔截范圍與高超音速滑翔飛行器的飛行路徑進行比較,以確定何時成功攔截高超音速滑翔飛行器。最后,研究激光攔截高超音速滑翔飛行器的解集。結果表明,確實存在可用的解決方案集,天基激光系統可以防御高超音速滑翔飛行器對特定地面目標的攻擊。

付費5元查看完整內容

近年來,隨著機器人技術和電子技術的發展,無人駕駛飛行器(UAV)的體積越來越小,價格越來越低。由于無人飛行器易于購買和控制,人們開始越來越頻繁地使用它們。在本研究中,我們將從網絡的角度研究無人機群。一般來說,多架無人機可以組成一個蜂群網絡。每個無人機都是一個網絡節點。無人機之間的鏈接被視為網絡數據鏈路。在第 2 章中,我們將設計一種新穎的雙層 MAC: 我們將設計支持同步、并發多波束傳輸/接收的上層 MAC 層,以及與 802.11 兼容但充分發揮多波束天線優勢的下層 MAC 層;我們建議調整兩個 MAC 層的參數,以支持不同的任務優先級。在第 3 章中,我們為典型的機載網絡提出了一種吞吐量最優、異構(同時具有計劃通信和隨機通信)的介質訪問控制(MAC)策略。我們提出的 MAC 方案允許無人機使用上行/下行 MAC 方案與飛行器通信。我們的仿真結果表明,與傳統的 MAC 協議相比,性能有了顯著提高。在第 4 章中,我們針對機載網絡中的 MAC 設計問題提出了以下建議: (1) 長距離 Ku 波段鏈路。(2) 多波束天線。(3) 全雙工通信。我們的 MAC 設計具有 3ent 特性,即彈性、高效和智能。特別是,通過在每個波束中對流量進行編碼,它可以抵御干擾攻擊。此外,它還通過整合全雙工流量控制和多波束數據轉發實現了高吞吐量的通信。在第 5 章中,我們提出了一個采用 USRP-RIO 的多波束智能天線無線網狀網絡硬件測試平臺。我們測試了天線的方向性,實現了全雙工傳輸系統和中繼系統。此外,USRP還實現了MBSA的兩個重要特征CPT和CPR。

付費5元查看完整內容

無人潛航器(UUV)為在水下領域實現目標提供了一種謹慎的手段,這在灰色區域行動中至關重要。然而,無人潛航器也面臨著巨大的操作挑戰,如電池壽命有限、有效載荷容量受限以及存在敵對威脅等。為解決這些問題,建議開發一種整合了線性規劃和在線優化的調度工具。該工具受論文 "灰色區域環境中的路由優化 "中路由優化方法的啟發,旨在為 UUV 安排后勤支持。該工具旨在通過考慮對手的最新位置來規避移動中的對手,同時還能根據對手的具體要求確定服務任務的優先級。通過利用一系列適應最新信息的路徑計算,工具確定最佳路線。根據該工具在模擬場景中提供可行解決方案的能力對其有效性進行了評估,在該模擬場景中,一艘后勤保障船在一個由隨機移動的敵方船只巡邏的區域內為一支 UUV 艦隊提供服務。此外,評估還包括該工具在不同 UUV 艦隊規模下的最優性能和計算復雜性。本文致力于在對手威脅下改進后勤路由,提高灰色區域環境中的軍事效率。

圖 3.1. 南海假想行動區地圖片段。

在和平與戰爭的傳統界限之間,存在著一個模糊不清的領域,國家行為體及其軍事力量經常利用國際法和國際準則中的漏洞。這些區域通常被稱為灰色地帶(GZs),這些實體在其中努力實現其目標,而不引起全面的軍事反應。灰色地帶的概念雖然并不新鮮,但近年來由于地緣政治格局的不斷變化而日益突出。無人自主飛行器的進步和廣泛使用大大增強了軍事部隊開展 GZ 行動的能力。與有人駕駛飛行器相比,無人駕駛飛行器沒有人類操作員,這有助于提高可信度,降低風險。在水下戰爭領域,無人潛航器已成為現代軍隊實現 GZ 目標的重要工具。

盡管無人潛航器技術不斷進步,但仍受到當前技術限制的制約。它們的電池容量有限、有效載荷能力受限、需要維護和修理,因此往往需要人工干預后勤工作,從而為表面上的無人系統引入了有人操作的一面。本論文旨在通過設計一種工具來改進 UUV 的物流路由,從而加強 UUV 服務的路由和調度。其目的是確定后勤保障船(LSV)進入 UUV 的最佳路徑和服務時間,同時應對隨機移動對手的挑戰,這是 GZ 地區普遍存在的問題。本論文借鑒 Chu(2023 年)開發的混合整數線性規劃(MILP)路由優化工具,結合在線優化(OO)原理,開發出一種可迭代更新其解決方案的工具,以適應對手的動態移動。這種能力有助于避免被發現,而這是避免 GZ 中潛在沖突的重要策略。

研究伊始,我們首先提出了 MILP 模型。在 MILP 框架內,我們的模型利用平均延遲作為主要指標,在整個網絡中有效生成最優調度建議。通過關注平均延遲時間的最小化,我們的模型旨在促進 UUV 的及時訪問以提供高效服務,同時規劃路線以規避對手。鑒于 UUV 可能有不同的服務時間要求和分配優先級,我們設計的模型在生成最佳路由和調度計劃時考慮了這些因素。在該模型中,用戶可以指定指定的服務時間窗口和持續時間,并根據以下四個不同級別分配服務優先級:(1) 電池更換;(2) 常規維護;(3) 存儲更換;(4) 關鍵維護。

為了實現 OO,我們采用了 Marler(2022 年)提出的決策過程,將敵方移動下的后勤路由概念化為以下五個步驟:

步驟 1. 獲取最新戰術信息。

步驟 2. 生成路由計劃。

步驟 3. 前往推薦的 UUV。

步驟 4. 執行服務任務。

步驟 5. 重復上述步驟,直至達到終止標準。

通過時間索引,模型可以在每個時間步驟中利用對手位置的最新數據和上一步驟的模型狀態進行重新優化。這種方法有效地實現了五步決策過程,從而體現了 OO 的原則。

為了改善用戶體驗,我們設計的工具將所有輸出整合到統一的瀏覽器界面中,并通過交互式地圖進一步加強用戶控制和參與。為了證明該工具的計算可行性和功能性,我們進行了一次概念驗證模擬,讓一艘 LSV 在 120 x 120 海里(nm)的作戰區域內,為由 10 艘 UUV 組成的艦隊提供服務,并與三個對手進行對抗。當 LSV 穿過模型時,我們的算法會動態生成對手的隨機移動。因此,LSV 必須戰略性地避開這些對手,通過最短路徑到達 UUV。我們展示了模擬結果,以證明我們工具的功能,并通過分析相關的最優性差距和計算復雜性深入研究其性能。

盡管本文中開發的仿真模型和原型工具還不適合立即應用于軍事作戰規劃,但它們為未來的進步建立了一個基本框架。這項工作為在該領域設計更復雜、更實用的解決方案奠定了基礎。提出了未來研究的幾個方向。其中包括擴展模型,以適應在 UUV 網絡中運行的多個 LSV(可能通過同步協調或分散優化)。還建議通過納入多目標優化來擴大服務優先級和復雜性的范圍,加強在線更新的因素范圍,并改進參數以更準確地反映真實世界的操作條件。此外,探索實施欺騙性路由計劃等策略以增強路由能力是未來另一個值得研究的領域。

付費5元查看完整內容

多無人機協同升降系統使用多個無人機共同升降和運輸有效載荷。從可擴展性和便攜性的角度來看,這些系統有可能大大降低空中運輸任務的物流成本。與傳統的單機物流模式不同,通過在多架廉價飛機之間分配起升能力,可以有針對性地運送大量有效載荷。為了以高度自主的方式完成大跨度的任務,合作飛機必須能夠在多個點可靠地與單一有效載荷對接,并在系統參數未知的情況下,以可變幾何配置的方式在飛行途中穩健地穩定下來。本論文提出了一種新穎的自適應飛行控制框架,該框架使用擴展卡爾曼濾波器在控制分配方案中更新相關系統參數。此外,這項研究還對之前開發的模塊化對接系統進行了擴展,該系統支持在不同的復合系統幾何結構中進行自組裝,考慮了多智能體操作,并通過模擬交易研究優化了設計參數。論文介紹了高保真模型和模擬,利用多體反饋線性化約束穩定和基于約束的脈沖接觸模型等技術,以驗證控制策略,并在復雜動力學條件下優化設計。本論文還介紹了無人飛行器合作飛行控制和參數估計的實驗結果。

付費5元查看完整內容

完全自主的航空系統(FAAS)將邊緣和云硬件與無人機和大量軟件支持結合起來,以創建自主系統。FAAS 通過對環境的實時感知和響應,在無人駕駛的情況下完成復雜的任務。FAAS 需要高度復雜的設計才能正常運行,包括機載、邊緣和云硬件和軟件層。FAAS 還需要復雜的軟件,用于控制無人機的底層操作、數據收集和管理、圖像處理、機器學習、任務規劃和高層決策,這些軟件必須在整個計算層次結構中有效集成,以實時實現自主目標。

即使是相對簡單的 FAAS,其復雜性也難以保證效率。然而,效率對 FAAS 的有效性至關重要。FAAS 在資源稀缺的環境中執行任務,如自然災害地區、農田和偏遠的基礎設施設施。這些地區的計算資源、網絡連接和電力都很有限。此外,無人機電池壽命短,飛行時間很少超過 30 分鐘。如果 FAAS 設計不合理,無人機可能會浪費寶貴的電池壽命來等待遠程計算資源的進一步指示,從而延誤或無法完成任務。因此,FAAS 設計人員必須謹慎選擇或設計邊緣硬件配置、機器學習模型、自主策略和部署模式。

FAAS 有能力徹底改變許多行業,但要提高其可用性和有效性,還有許多研究工作要做。在本論文中,我將概述自己為設計和實施高效、有效的 FAAS 所做的努力。本文將重點討論以下五個主題,包括 FAAS 的設計、實施和應用:

§1. 創建新的通用和特定領域的機器學習算法,并謹慎使用其他算法

§2. FAAS 層次結構中各級硬件的選擇

§3. 為自主策略、硬件設備、機器學習技術和部署特性的選擇和切換提供動力和環境意識信息。

§4. 在線學習能力可抵御有限的云訪問、網絡中斷和電力短缺。

§5. 全面的應用,展示 FAAS 的技術價值,推動采用,并確定未來的研究挑戰。

圖:FAAS 非常復雜。它們在遠程環境中運行,使用新穎的自主策略和機器學習算法,必須承受功率限制并利用創造性的網絡解決方案來實現其目標。

付費5元查看完整內容

過去幾十年來,在安全、監視、情報收集和偵察等許多領域,對目標跟蹤(OT)應用的需求一直在增加。最近,對無人系統新定義的要求提高了人們對 OT 的興趣。機器學習、數據分析和深度學習的進步為識別和跟蹤感興趣的目標提供了便利;然而,持續跟蹤目前是許多研究項目感興趣的問題。本論文提出了一個系統,實現了一種持續跟蹤目標并根據其先前路徑預測其軌跡的方法,即使該目標在一段時間內被部分或完全隱藏。該系統分為兩個階段: 第一階段利用單個固定攝像機系統,第二階段由多個固定攝像機組成的網狀系統。第一階段系統由六個主要子系統組成:圖像處理、檢測算法、圖像減法器、圖像跟蹤、跟蹤預測器和反饋分析器。系統的第二階段增加了兩個主要子系統:協調管理器和相機控制器管理器。這些系統結合在一起,可以在目標隱藏的情況下實現合理的目標跟蹤連續性。

付費5元查看完整內容

隨著技術的不斷進步和日常對海洋資源的依賴,無人水面航行器(USVs)的作用成倍增加。目前,具有海軍、民用和科學用途的 USV 正在各種復雜的海洋環境中進行廣泛的作業,并對其自主性和適應性提出了更高的要求。USV 自主運行的一個關鍵要求是擁有一個多車輛框架,在此框架下,USV 可以在實際海洋環境中作為一個群體運行,并具有多種優勢,例如可以在更短的時間內勘測更廣闊的區域。從文獻中可以看出,在單體 USV 路徑規劃、制導和控制領域已經開展了大量研究,而在了解多載體方法對 USV 的影響方面卻鮮有研究。本論文整合了高效的最優路徑規劃、穩健的路徑跟蹤制導和合作性集群聚合方法等模塊,旨在開發一種新的混合框架,用于 USV 蟲群的合作導航,以實現海洋環境中的最優自主操作。

首先,設計了一種基于 A* 算法的有效而新穎的最佳路徑規劃方法,其中考慮到了與障礙物的安全距離約束,以避免在移動障礙物和海面洋流的情況下發生碰撞。然后,將這種方法與為 USV 開發的新型虛擬目標路徑跟蹤制導模塊相結合,將路徑規劃器的參考軌跡輸入制導系統。當前工作的新穎之處在于將上述集成路徑跟蹤制導系統與分布式集群聚集行為相結合,通過基于簡單電位的吸引和排斥功能來維持 USV 蟲群的中心點,從而引導 USV 集群進入參考路徑。最后,介紹了一個用于 USV 船隊合作導航和制導的最佳混合框架,該框架可在實際海洋環境中實施,并可在海上有效地實際應用。

付費5元查看完整內容

無人機(UAVs)在軍事和民用領域發揮著至關重要的作用。本論文的研究有助于智能控制系統(ICS)領域,特別是實現旋轉翼無人飛行器(RUAV)可靠、便捷的自主控制。特別是,本論文解決了如何適應未建模動態和干擾(如在空中改變有效載荷)的難題

無人機可以攜帶額外的重量,如傳感器、貨物,甚至被稱為有效載荷的懸掛物。已經開發了許多策略來穩定不斷變化的有效載荷,但這些策略都假定有效載荷是剛性的,重心(CoG)是靜態和已知的。有效載荷質量及其類型在飛行過程中的變化會極大地影響無人機的動態性能,這就要求控制器進行調整,以保持令人滿意的閉環性能。此外,還沒有探索過在半空中從一架較大的飛機(如氣象氣球)上發射一組具有隨機姿態的送貨無人機的情況。最后,未建模的動力學和陣風等不確定因素給飛行操作帶來了挑戰,因此綜合控制系統對于處理這些不確定因素至關重要,但對非基于模型的綜合控制系統的設計和開發關注不夠。

受這些研究空白的啟發,本論文探討了如何處理有效載荷在空中的 CoG 變化和姿態獨立發射的控制問題。為解決這些問題并實現理想的軌跡跟蹤控制,本文提出了一種新型非基于模型的綜合控制系統,稱為雙向模糊腦情感學習(BFBEL)控制系統。所提出的控制系統融合了模糊推理、神經網絡和基于強化學習的新型雙向腦情感學習(BBEL)算法。所提出的 BFBEL 控制器能夠從零開始快速適應,可用于控制 RUAV 的所有六自由度 (6DOF)。為擴大擬議控制器的適用性,開發了單輸入-單輸出(SISO)和多輸入-多輸出(MIMO)架構。本研究考慮的兩種無人駕駛飛行器模型是四旋翼無人駕駛飛行器(QUAV)和直升機無人駕駛飛行器(HUAV)。SISO 版本的 BFBEL 控制系統被應用于 QUAV,以解決處理 CoG 和重量不同的外部有效載荷的問題。BFBEL 控制系統的 MIMO 版本應用于 HUAV,以解決在空中獨立發射姿勢的問題。對這兩種系統都進行了模擬評估,并通過實驗驗證了如何處理 CoG 不確定的外部有效載荷問題。最后,在相同的控制情況下,將飛行能力和控制性能與傳統的比例積分微分(PID)控制器方案進行了比較。

付費5元查看完整內容

本論文開發了一個基于海底特征導航的模擬框架。使用自動潛航器(AUV)在海底定位感興趣的物品是一種對海軍大有裨益的能力。自動潛航器為消除勞動力需求提供了一個途徑,但其購置和維護成本仍然很高。解決這一問題的辦法是使用兩艘 AUV,其中一艘的能力更強,負責用信標尋找和標記海底物品。配備成本效益型傳感器的消耗性 AUV 將對威脅進行定位、識別和消除。利用海底成像技術將海底圖像與先驗圖像馬賽克關聯起來,再加上超短基線(USBL)信標,AUV 可以在沒有傳統導航系統的情況下完成具有挑戰性的任務目標。增量平滑與測繪 2(iSAM2)是一種同步定位與測繪(SLAM)技術,可用于 AUV 的位置定位,是一種適合實時導航操作的技術,具有圖像和 USBL 傳感功能。模擬框架能夠評估 AUV 的性能,同時將實際操作的風險降至最低。該框架由一個軟件架構組成,可使用與實際操作相同的軟件進行測試。本論文展示了這一框架,并對其在基于圖像的 SLAM 中的可用性進行了分析。

付費5元查看完整內容
北京阿比特科技有限公司