亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

隨著第五代移動通信系統(5th generation wireless systems, 5G)及其演進系統的商用和其在物聯網、車聯網等垂直領域的融合發展, 其安全問題越來越受到關注. 本文從潛在威脅、安全架構和安全技術3個方面闡述了相關研究進展. 首先, 根據攻擊者對系統有效性、信息完整性、身份認證、隱私和機密性保護的不同安全目標, 將5G 潛在的安全威脅進行了分類, 分析了各個層次可能面臨的威脅與攻擊手段. 其次, 簡述了相關標準中的5G 安全架構, 討論了5G 及其演進系統潛在的物理層、網絡層和應用層安全技術. 最后, 本文指出了未來繼續提升5G 及B5G安全的潛在研究方向.

付費5元查看完整內容

相關內容

第五代移動通信技術

日前,賽迪智庫發布《6G全球進展與發展展望白皮書》(以下簡稱“白皮書”)。白皮書從全球各國 6G 戰略布局、行業龍頭企業研究、潛在關鍵技術、應用場景的最新進展以及面臨的形勢及挑戰等方面展開論述,并提出加快推進我國 6G 研發的相關建議。

白皮書提到,隨著全球 5G 網絡規模化商用步入快車道,針對 6G 研發的戰略性布局已全面拉開帷幕。目前,全球多個國家和地區、國際組織以及學術界、產業界均開展了6G 研究。業界雖然還尚未對 6G 的愿景、關鍵技術、標準等形成統一的共識,但對于 6G 商用演進時間節點看法較為一致,目前一般預期將在 2030 年左右開始商用。

白皮書指出,全球范圍內 6G 的研究總體來說仍處于起步階段,整體技術路線尚不明確,目前主要在 6G 愿景目標、應用場景、基本指標、潛在關鍵技術等方面的研究取得了一定進展。從目前的研究來看,6G 總體愿景是基于 5G 愿景的進一步擴展和升級。針對 5G 在信息交互方面存在的空間范圍受限和性能指標難以滿足某些垂直行業應用的不足,6G 將具有更加泛在的連接、更大的傳輸帶寬、更低的端到端時延、更高的可靠性和確定性以及更智能化的網絡特性。

付費5元查看完整內容

摘要: 當前,以網絡數據為代表的跨媒體數據呈現爆炸式增長的趨勢,呈現出了跨模態、跨數據源的復雜關聯及動態演化特性,跨媒體分析與推理技術針對多模態信息理解、交互、內容管理等需求,通過構建跨模態、跨平臺的語義貫通與統一表征機制,進一步實現分析和推理以及對復雜認知目標的不斷逼近,建立語義層級的邏輯推理機制,最終實現跨媒體類人智能推理。文中對跨媒體分析推理技術的研究背景和發展歷史進行概述,歸納總結視覺-語言關聯等任務的關鍵技術,并對研究應用進行舉例。基于已有結論,分析目前跨媒體分析領域所面臨的關鍵問題,最后探討未來的發展趨勢。

//www.jsjkx.com/CN/10.11896/jsjkx.210200086

付費5元查看完整內容

機器視覺是建立在計算機視覺理論工程化基礎上的一門學科,涉及到光學成像、視覺信息處理、人工智能以及機電一體化等相關技術。隨著我國制造業的轉型升級與相關研究的不斷深入,機器視覺技術憑借其精度高、實時性強、自動化與智能化程度高等優點,成為了提升機器人智能化的重要驅動力之一,并被廣泛應用于工業生產、農業以及軍事等各個領域。在廣泛查閱相關文獻之后,針對近十多年來機器視覺相關技術的發展與應用進行分析與總結,旨在為研究學者與工程應用人員提供參考。首先,總結了機器視覺技術的發展歷程、國內外的機器視覺發展現狀;其次,重點分析了機器視覺系統的核心組成部件、常用視覺處理算法以及當前主流的機器視覺工業軟件;然后,介紹了機器視覺技術在產品瑕疵檢測、智能視頻監控分析、自動駕駛與輔助駕駛與醫療影像診斷等四個典型領域的應用;最后分析了當前機器視覺技術所面臨的挑戰,并對其未來的發展趨勢進行了展望。希望為機器視覺技術的發展和應用推廣發揮積極作用。

付費5元查看完整內容

仿人智能控制是現代智能控制理論之一, 利用分層遞階的控制結構與多控制模態為強非線性、大遲滯、難建模問題提供了切實可行的解決方案, 近些年來發展迅速并且得到學術界的持續關注, 但缺乏對該理論研究進展系統性的總結. 本文通過系統的梳理仿人智能控制的理論基礎和發展脈絡, 將其劃分為三代控制模型, 分別從每一代控制模型的算法描述、研究進展與應用進展三個角度進行綜述, 同時, 結合當前的研究進展討論仿人智能控制在控制模型、結構功能、參數校正方面進一步研究的方向.

//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c200007

付費5元查看完整內容

目前諸多模式識別任務的識別精度獲得不斷提升,在一些任務上甚至超越了人的水平。單從識別精度的角度來看,模式識別似乎已經是一個被解決了的問題。然而,高精度的模式識別系統在實際應用中依舊會出現不穩定和不可靠的現象。因此,開放環境下的魯棒性成為制約模式識別技術發展的新瓶頸。實際上,在大部分模式識別模型和算法背后蘊含著三個基礎假設:封閉世界假設、獨立同分布假設、以及大數據假設。這三個假設直接或間接影響了模式識別系統的魯棒性,并且是造成機器智能和人類智能之間差異的主要原因。本文簡要論述如何通過打破三個基礎假設來提升模式識別系統的魯棒性。

付費5元查看完整內容

深度學習在很多人工智能應用領域中取得成功的關鍵原因在于,通過復雜的深層網絡模型從海量數據中學習豐富的知識。然而,深度學習模型內部高度的復雜性常導致人們難以理解模型的決策結果,造成深度學習模型的不可解釋性,從而限制了模型的實際部署。因此,亟需提高深度學習模型的可解釋性,使模型透明化,以推動人工智能領域研究的發展。本文旨在對深度學習模型可解釋性的研究進展進行系統性的調研,從可解釋性原理的角度對現有方法進行分類,并且結合可解釋性方法在人工智能領域的實際應用,分析目前可解釋性研究存在的問題,以及深度學習模型可解釋性的發展趨勢。為全面掌握模型可解釋性的研究進展以及未來的研究方向提供新的思路。

付費5元查看完整內容

摘要 大數據是經濟發展的新動能, 社會發展的新引擎, 塑造國家競爭力的戰略制高點, 對人民生活 具有重大影響. 然而隨著社會對數據價值認知的提升和大數據平臺建設的蓬勃發展, 大數據安全問題 日益成為阻礙大數據應用推廣的瓶頸. 同時, 由于大數據技術、框架仍在不斷演變當中, 研究人員對大 數據安全內涵的核心認知和關鍵特征理解還存在差異, 尚未形成相對統一的大數據安全框架. 當前亟 需對大數據安全技術發展現狀進行梳理, 為大數據安全重點問題的研究和突破提供參考. 本文結合典 型大數據系統技術框架, 圍繞大數據安全需求, 構建了大數據安全技術框架. 在此框架下, 從大數據安 全共享與可信服務、大數據平臺安全和大數據安全監管 3 個方面系統梳理了大數據安全關鍵技術的 研究現狀, 囊括了大數據業務流程和大數據系統技術框架所涉及的主要安全機制. 最后總結了大數據 安全技術有待解決的核心問題和發展趨勢.

付費5元查看完整內容
北京阿比特科技有限公司