深度視覺生成是計算機視覺領域的熱門方向,旨在使計算機能夠根據輸入數據自動生成預期的視覺內容。深度視覺生成使用人工智能技術賦能相關產業,推動產業自動化、智能化改革與轉型。生成對抗網絡(generative adversarial networks,GANs)是深度視覺生成的有效工具,近年來受到極大關注,成為快速發展的研究方向。GANs能夠接收多種模態的輸入數據,包括噪聲、圖像、文本和視頻,以對抗博弈的模式進行圖像生成和視頻生成,已成功應用于多項視覺生成任務。利用GANs實現真實的、多樣化和可控的視覺生成具有重要的研究意義。本文對近年來深度對抗視覺生成的相關工作進行綜述。首先介紹深度視覺生成背景及典型生成模型,然后根據深度對抗視覺生成的主流任務概述相關算法,總結深度對抗視覺生成目前面臨的痛點問題,在此基礎上分析深度對抗視覺生成的未來發展趨勢。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=20211201&flag=1
聯邦學習由于能夠在多方數據源聚合的場景下協同訓練全局最優模型,近年來迅速成為安全機器學習領域的研究熱點。首先,歸納了聯邦學習定義、算法原理和分類;接著,深入分析了其面臨的主要威脅與挑戰;然后,重點對通信效率、隱私安全、信任與激勵機制3個方向的典型研究方案對比分析,指出其優缺點;最后,結合邊緣計算、區塊鏈、5G等新興技術對聯邦學習的應用前景及研究熱點進行展望。
//www.infocomm-journal.com/cjnis/EN/10.11959/j.issn.2096-109x.2021056
人臉特征點定位是根據輸入的人臉數據自動定位出預先按人臉生理特征定義的眼角、鼻尖、嘴角和臉部輪廓等面部關鍵特征點,在人臉識別和分析等系統中起著至關重要的作用。本文對基于深度學習的人臉特征點自動定位進行綜述,闡釋了人臉特征點自動定位的含義,歸納了目前常用的人臉公開數據集,系統闡述了針對2維和3維數據特征點的自動定位方法,總結了各方法的研究現狀及其應用,分析了當前人臉特征點自動定位技術在深度學習應用中的現狀、存在問題及發展趨勢。在公開的2維和3維人臉數據集上對不同方法進行了比較。通過研究可以看出,基于深度學習的2維人臉特征點的自動定位方法研究相對比較深入,而3維人臉特征點定位方法的研究在模型表示、處理方法和樣本數量上都存在挑戰。未來基于深度學習的3維人臉特征點定位方法將成為研究趨勢。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=20211108&flag=1
圖像/視頻的獲取及傳輸過程中,由于物理環境及算法性能的限制,其質量難免會遭受無法預估的衰減,導致其在實際場景中的應用受到限制,并對人的視覺體驗造成顯著影響。因此,作為計算機視覺領域中一項重要任務,圖像/視頻質量評價應運而生。其目的在于通過構建計算機數學模型來衡量圖像/視頻中的失真信息以判斷其質量的好壞,達到自動預測質量的效果。在城市生活、交通監控以及多媒體直播等多個場景中具有廣泛的應用前景。近年來,圖像/視頻質量評價研究取得了長足的發展,為計算機視覺領域中其他任務提供了一定的便利。本文在廣泛調研前人研究的基礎上,回顧了整個圖像/視頻質量評價領域的發展歷程,分別列舉了傳統方法和深度學習方法中一些具有里程碑意義的算法和影響力較大的算法,然后從全參考、半參考和無參考三個方面分別對圖像/視頻質量評價領域的一些文獻進行了綜述,具體涉及的方法包含基于結構信息、基于人類視覺系統和基于自然圖像統計的方法等;在LIVE、CSIQ、TID2013等公開數據集的基礎上,基于SROCC、PLCC等評價指標,對一些具有代表性算法的性能進行了分析;最后總結當前質量評價領域仍存在的一些挑戰與問題,并對其進行了展望。論文旨在為質量評價領域的研究人員提供一個比較全面的參考。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?flag=2&file_no=2021&journal_id=jig
生成對抗網絡(GAN)已經在計算機視覺、自然語言處理等領域推廣了各種應用,因為它的生成模型能夠從現有的樣本分布中合理地生成真實的例子。GAN不僅在基于數據生成的任務上提供了令人印象深刻的性能,而且由于其博弈優化策略,也為面向隱私和安全的研究提供了有利條件。遺憾的是,目前并沒有對GAN在隱私和安全方面進行全面的綜述,這也促使了本文對這些最新的研究成果進行系統的總結。現有的作品根據隱私和安全功能進行適當的分類,并對其優缺點進行綜合分析。鑒于GAN在隱私和安全方面仍處于非常初級的階段,并提出了有待解決的獨特挑戰,本文還闡述了GAN在隱私和安全方面的一些潛在應用,并闡述了未來的一些研究方向。
生成對抗網絡(Generative Adversarial Networks, GAN)帶來的技術突破迅速對機器學習及其相關領域產生了革命性的影響,這種影響已經蔓延到各個研究領域和應用領域。作為一種強大的生成框架,GAN顯著促進了許多復雜任務的應用,如圖像生成、超分辨率、文本數據操作等。最近,利用GAN為嚴重的隱私和安全問題制定優雅的解決方案,由于其博弈優化策略,在學術界和業界都變得越來越流行。本綜述的目的是提供一個關于GAN的全面的回顧和深入總結的最新技術,并討論了一些GAN在隱私和安全領域有前途的未來研究方向。我們以對GAN的簡要介紹開始我們的綜述。
許多自然場景圖像中都包含著豐富的文本,他們對于場景理解有著重要的作用。隨著移動互聯網技術的飛速發展,許多新的應用場景都需要利用這些文本信息,例如招牌識別和自動駕駛等。因此,自然場景文本的分析與處理也越來越成為計算機視覺領域的研究熱點之一,該任務主要包括文本檢測與識別。傳統的文本檢測和識別方法依賴于人工設計的特征和規則,且模型設計復雜、效率低、泛化性能差。近年來隨著深度學習的發展,自然場景文本檢測、自然場景文本識別以及端到端的自然場景文本檢測與識別都取得了突破性的進展,其性能和效率都得到了顯著提高。本文介紹了該領域相關的研究背景,對近幾年基于深度學習的自然場景文本檢測、識別以及端到端自然場景文本檢測與識別的方法進行整理分類、歸納和總結,闡述了各類方法的基本思想和優缺點。并針對隸屬于不同類別下的方法,進一步論述和分析這些主要模型的算法流程、適用場景和他們的技術發展路線。此外還列舉說明了一些主流公開數據集,并對比了各個模型方法在代表性數據集上的性能情況。最后本文總結了目前不同場景數據下的自然場景文本檢測、識別以及端到端自然場景文本檢測與識別算法的局限性以及未來的挑戰和發展趨勢。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?flag=2&file_no=2023&journal_id=jig
隨著人臉表情識別任務逐漸從實驗室受控環境轉移至具有挑戰性的真實世界環境,在深度學習技術的迅猛發展下,深度神經網絡能夠學習出具有判別能力的特征,逐漸應用于自動人臉表情識別任務。目前的深度人臉表情識別系統致力于解決以下兩個問題:1)由于缺乏足量訓練數據導致的過擬合問題;2)真實世界環境下其他與表情無關因素變量(例如光照、頭部姿態和身份特征)帶來的干擾問題。本文首先對近十年深度人臉表情識別方法的研究現狀以及相關人臉表情數據庫的發展進行概括。然后,將目前基于深度學習的人臉表情識別方法分為兩類:靜態人臉表情識別和動態人臉表情識別,并對這兩類方法分別進行介紹和綜述。針對目前領域內先進的深度表情識別算法,對其在常見表情數據庫上的性能進行了對比并詳細分析了各類算法的優缺點。最后本文對該領域的未來研究方向和機遇挑戰進行了總結和展望:考慮到表情本質上是面部肌肉運動的動態活動,基于動態序列的深度表情識別網絡往往能夠取得比靜態表情識別網絡更好的識別效果。此外,結合其他表情模型如面部動作單元模型以及其他多媒體模態,如音頻模態和人體生理信息能夠將表情識別拓展到更具有實際應用價值的場景。
深度學習作為人工智能技術的重要組成部分,被廣泛應用于計算機視覺和自然語言處理等領域。盡管深度學習在圖像分類和目標檢測等任務中取得了較好性能,但是對抗攻擊的存在對深度學習模型的安全應用構成了潛在威脅,進而影響了模型的安全性。在簡述對抗樣本的概念及其產生原因的基礎上,分析對抗攻擊的主要攻擊方式及目標,研究具有代表性的經典對抗樣本生成方法。描述對抗樣本的檢測與防御方法,并闡述對抗樣本在不同領域的應用實例。通過對對抗樣本攻擊與防御方法的分析與總結,展望對抗攻擊與防御領域未來的研究方向。
摘要: 深度學習作為人工智能技術的重要組成部分,被廣泛應用在計算機視覺、自然語言處理等領域。盡管深 度學習在圖像分類和目標檢測等方向上取得了較好性能,但研究表明,對抗攻擊的存在對深度學習模型的安全應 用造成了潛在威脅,進而影響模型的安全性。本文在簡述對抗樣本的概念及其產生原因的基礎上,分析對抗攻擊 的主要思路,研究具有代表性的經典對抗樣本生成方法。描述對抗樣本的檢測方法與防御方法,并從應用角度闡 述對抗樣本在不同領域的應用實例。通過對對抗樣本攻擊與防御方法的分析與總結,預測未來對抗攻擊與防御的 研究方向。
機器視覺是建立在計算機視覺理論工程化基礎上的一門學科,涉及到光學成像、視覺信息處理、人工智能以及機電一體化等相關技術。隨著我國制造業的轉型升級與相關研究的不斷深入,機器視覺技術憑借其精度高、實時性強、自動化與智能化程度高等優點,成為了提升機器人智能化的重要驅動力之一,并被廣泛應用于工業生產、農業以及軍事等各個領域。在廣泛查閱相關文獻之后,針對近十多年來機器視覺相關技術的發展與應用進行分析與總結,旨在為研究學者與工程應用人員提供參考。首先,總結了機器視覺技術的發展歷程、國內外的機器視覺發展現狀;其次,重點分析了機器視覺系統的核心組成部件、常用視覺處理算法以及當前主流的機器視覺工業軟件;然后,介紹了機器視覺技術在產品瑕疵檢測、智能視頻監控分析、自動駕駛與輔助駕駛與醫療影像診斷等四個典型領域的應用;最后分析了當前機器視覺技術所面臨的挑戰,并對其未來的發展趨勢進行了展望。希望為機器視覺技術的發展和應用推廣發揮積極作用。
近年來,生成式對抗網絡(generative adversarial nets, GAN)迅速發展,已經成為當前機器學習領域的主要研究方向之一。GAN來源于零和博弈的思想,其生成器和鑒別器對抗學習,獲取給定樣本的數據分布,生成新的樣本數據。對GAN模型在圖片生成、異常樣本檢測和定位、文字生成圖片以及圖片超分辨率等多方面進行了大量的調查研究,并在這些GAN的應用所取得的實質性進展進行了系統的闡述。對GAN的提出背景與研究意義、理論模型與改進結構,以及其主要應用領域進行了總結。通過對GAN在各方面的應用分析,對GAN的不足以及未來發展方向進行綜述。