圖像/視頻的獲取及傳輸過程中,由于物理環境及算法性能的限制,其質量難免會遭受無法預估的衰減,導致其在實際場景中的應用受到限制,并對人的視覺體驗造成顯著影響。因此,作為計算機視覺領域中一項重要任務,圖像/視頻質量評價應運而生。其目的在于通過構建計算機數學模型來衡量圖像/視頻中的失真信息以判斷其質量的好壞,達到自動預測質量的效果。在城市生活、交通監控以及多媒體直播等多個場景中具有廣泛的應用前景。近年來,圖像/視頻質量評價研究取得了長足的發展,為計算機視覺領域中其他任務提供了一定的便利。本文在廣泛調研前人研究的基礎上,回顧了整個圖像/視頻質量評價領域的發展歷程,分別列舉了傳統方法和深度學習方法中一些具有里程碑意義的算法和影響力較大的算法,然后從全參考、半參考和無參考三個方面分別對圖像/視頻質量評價領域的一些文獻進行了綜述,具體涉及的方法包含基于結構信息、基于人類視覺系統和基于自然圖像統計的方法等;在LIVE、CSIQ、TID2013等公開數據集的基礎上,基于SROCC、PLCC等評價指標,對一些具有代表性算法的性能進行了分析;最后總結當前質量評價領域仍存在的一些挑戰與問題,并對其進行了展望。論文旨在為質量評價領域的研究人員提供一個比較全面的參考。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?flag=2&file_no=2021&journal_id=jig
圖像的模糊問題影響人們對信息的感知、獲取及圖像的后續處理. 無參考模糊圖像質量評價是該問題的主要研究方向之一. 本文分析了近20年來模糊圖像無參考質量評價相關技術的發展. 首先, 本文結合主要數據集對圖像模糊失真進行分類說明; 其次, 對主要的模糊圖像無參考質量評價方法進行分類介紹與詳細分析; 隨后, 介紹了用來衡量模糊圖像無參考質量評價方法性能優劣的主要評價指標; 接著, 選擇典型數據集及評價指標, 并采用常見的模糊圖像無參考質量評價方法進行性能比較; 最后, 對無參考模糊圖像質量評價的相關技術及發展趨勢進行總結與展望.
基于圖像的三維重建,旨在從一組二維多視角圖像精確地恢復真實場景的幾何形狀,是計算機視覺和攝影測量中一個基礎且活躍的研究領域,具有重要的理論研究意義和應用價值,在智慧城市、虛擬旅游、數字遺產保護、數字地圖和導航等領域有著廣泛的應用。近年來,隨著圖像采集系統(包括智能手機、消費級數碼相機、民用無人機)的普及和互聯網的高速發展,用戶可以通過搜索引擎(例如谷歌)輕松獲取大量的關于某個室外場景的互聯網圖像。如何利用這些圖像進行高效、魯棒、準確的三維重建,為用戶提供真實感知和沉浸式體驗,已經成為研究熱點,引發了學術界和產業界的廣泛關注,現已涌現多種多樣的解決方法。特別地,深度學習的出現為大規模室外圖像三維重建的研究提供了新的契機。本文首先闡述大規模室外圖像三維重建的基本串行過程,包括圖像檢索、圖像特征點匹配、運動恢復結構、多視圖立體。然后,本文將區分傳統方法和基于深度學習的方法,系統而全面地回顧大規模室外圖像三維重建技術在各個重建子過程中的發展和應用。之后,本文詳細總結各個子過程中適用于大規模室外場景的數據集和評價指標。最后,本文將介紹現有主流的開源和商業三維重建系統以及國內相關產業的發展現狀。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?flag=2&file_no=2020&journal_id=jig
摘要 在線社交網絡中的消息流行度預測研究,對推薦、廣告、檢索等應用場景都具有非常重要的作用。近年來,深度學習的蓬勃發展和消息傳播數據的積累,為基于深度學習的流行度預測研究提供了堅實的發展基礎。現有的流行度預測研究綜述,主要是圍繞傳統的流行度預測方法展開的,而基于深度學習的流行度預測方法目前仍未得到系統性地歸納和梳理,不利于流行度預測領域的持續發展。鑒于此,該文重點論述和分析現有的基于深度學習的流行度預測相關研究,對近年來基于深度學習的流行度預測研究進行了歸納梳理,將其分為基于深度表示和基于深度融合的流行度預測方法,并對該研究方向的發展現狀和未來趨勢進行了分析展望。
許多自然場景圖像中都包含著豐富的文本,他們對于場景理解有著重要的作用。隨著移動互聯網技術的飛速發展,許多新的應用場景都需要利用這些文本信息,例如招牌識別和自動駕駛等。因此,自然場景文本的分析與處理也越來越成為計算機視覺領域的研究熱點之一,該任務主要包括文本檢測與識別。傳統的文本檢測和識別方法依賴于人工設計的特征和規則,且模型設計復雜、效率低、泛化性能差。近年來隨著深度學習的發展,自然場景文本檢測、自然場景文本識別以及端到端的自然場景文本檢測與識別都取得了突破性的進展,其性能和效率都得到了顯著提高。本文介紹了該領域相關的研究背景,對近幾年基于深度學習的自然場景文本檢測、識別以及端到端自然場景文本檢測與識別的方法進行整理分類、歸納和總結,闡述了各類方法的基本思想和優缺點。并針對隸屬于不同類別下的方法,進一步論述和分析這些主要模型的算法流程、適用場景和他們的技術發展路線。此外還列舉說明了一些主流公開數據集,并對比了各個模型方法在代表性數據集上的性能情況。最后本文總結了目前不同場景數據下的自然場景文本檢測、識別以及端到端自然場景文本檢測與識別算法的局限性以及未來的挑戰和發展趨勢。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?flag=2&file_no=2023&journal_id=jig
隨著人工智能技術的深入發展,自動駕駛已經成為人工智能技術的典型應用,近十年得到了長足的發展,作為一類非確定性系統,自動駕駛車輛的質量和安全性得到越來越多的關注.對自動駕駛系統,特別是自動駕駛智能系統(如感知模塊,決策模塊,綜合功能及整車)的測試技術得到了業界和學界的深入研究.本文調研了56篇相關領域的學術論文,分別就感知模塊、決策模塊、綜合功能模塊及整車系統的測試技術、用例生成方法和測試覆蓋度量等維度對目前已有的研究成果進行了梳理,并描述了自動駕駛智能系統測試中的數據集及工具集.最后,對自動駕駛智能系統測試的未來工作進行了展望,為該領域的研究人員提供參考.
//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6266&flag=1
隨著信息技術的快速發展,網絡攻擊逐漸呈現多階段、分布式和智能化的特性,單一的防火墻、入侵檢測系統等傳統網絡防御措施不能很好地保護開放環境下的網絡系統安全。網絡攻擊模型作為一種攻擊者視角的攻擊場景表示,能夠綜合描述復雜多變環境下的網絡攻擊行為,是常用的網絡攻擊分析與應對工具之一。本文首先介紹主要網絡攻擊模型,包括傳統樹、圖、網結構模型和現代殺傷鏈、ATT&CK、鉆石模型等;然后再對網絡攻擊模型的分析與應用進行說明,其中以求解攻擊指標為目的的分析過程主要包括概率框架、賦值方法和求解方法,基于生命周期的攻擊模型應用則包括了攻擊者視角和防守者視角的應用過程;最后總結了網絡攻擊模型及其分析應用的現有挑戰與未來方向。
摘要 近年來,跨模態研究吸引了越來越多學者的關注,尤其是連接視覺和語言的相關課題。該文針對跨視覺和語言模態研究中的核心任務——圖像描述生成,進行文獻綜述。該文從基于視覺的文本生成框架、基于視覺的文本生成研究中的關鍵問題、圖像描述生成模型的性能評價和圖像描述生成模型的主要發展過程四個方面對相關文獻進行介紹和總結。最后,該文給出了幾個未來的重點研究方向,包括跨視覺和語言模態的特征對齊、自動化評價指標的設計以及多樣化圖像描述生成。
摘要: 圖像內容自動描述是計算機視覺和自然語言處理領域的一個重要任務,在生活娛樂、智慧 交通以及幫助視覺障礙者理解視覺內容等領域有著廣泛而重要的應用價值.相比于圖像分類和目標 檢測等感知任務,圖像內容自動描述是一種更高級別、更復雜的認知任務,對幫助分析和理解圖像有 著重要的意義.旨在對現有的圖像自動描述技術進行全面的綜述.討論圖像內容自動描述中常用的數 據集和評價指標,以及現有圖像自動描述技術的性能、優點和局限性。
關鍵詞: 圖像內容描述;卷積神經網絡;循環神經網絡;注意力機制;深度學習