亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

隨著信息技術的快速發展,網絡攻擊逐漸呈現多階段、分布式和智能化的特性,單一的防火墻、入侵檢測系統等傳統網絡防御措施不能很好地保護開放環境下的網絡系統安全。網絡攻擊模型作為一種攻擊者視角的攻擊場景表示,能夠綜合描述復雜多變環境下的網絡攻擊行為,是常用的網絡攻擊分析與應對工具之一。本文首先介紹主要網絡攻擊模型,包括傳統樹、圖、網結構模型和現代殺傷鏈、ATT&CK、鉆石模型等;然后再對網絡攻擊模型的分析與應用進行說明,其中以求解攻擊指標為目的的分析過程主要包括概率框架、賦值方法和求解方法,基于生命周期的攻擊模型應用則包括了攻擊者視角和防守者視角的應用過程;最后總結了網絡攻擊模型及其分析應用的現有挑戰與未來方向。

//www.sicris.cn/CN/abstract/abstract862.shtml

付費5元查看完整內容

相關內容

摘要: Web 2.0時代,消費者在在線購物、學習和娛樂時越來越多地依賴在線評論信息,而虛假的評論會誤導消費者的決策,影響商家的真實信用,因此有效識別虛假評論具有重要意義。文中首先對虛假評論的范圍進行了界定,并從虛假評論識別、形成動機、對消費者的影響以及治理策略4個方面歸納了虛假評論的研究內容,給出了虛假評論研究框架和一般識別方法的工作流程。然后從評論文本內容和評論者及其群組行為兩個角度,對近十年來國內外的相關研究成果進行了綜述,介紹了虛假評論效果評估的相關數據集和評價指標,統計分析了在公開數據集上實現的虛假評論有效識別方法,并從特征選取、模型方法、訓練數據集、評價指標值等方面進行了對比分析。最后對虛假評論識別領域的有標注語料規模限制等未來研究方向進行了探討。

付費5元查看完整內容

深度學習模型被證明存在脆弱性并容易遭到對抗樣本的攻擊,但目前對于對抗樣本的研究主要集中在計算機視覺領域而忽略了自然語言處理模型的安全問題.針對自然語言處理領域同樣面臨對抗樣本的風險,在闡明對抗樣本相關概念的基礎上,文中首先對基于深度學習的自然語言處理模型的復雜結構、難以探知的訓練過程和樸素的基本原理等脆弱性成因進行分析,進一步闡述了文本對抗樣本的特點、分類和評價指標,并對該領域對抗技術涉及到的典型任務和數據集進行了闡述;然后按照擾動級別對主流的字、詞、句和多級擾動組合的文本對抗樣本生成技術進行了梳理,并對相關防御方法進行了歸納總結;最后對目前自然語言處理對抗樣本領域攻防雙方存在的痛點問題進行了進一步的討論和展望.

//www.jsjkx.com/CN/10.11896/jsjkx.200500078

付費5元查看完整內容

深度學習作為人工智能技術的重要組成部分,被廣泛應用于計算機視覺和自然語言處理等領域。盡管深度學習在圖像分類和目標檢測等任務中取得了較好性能,但是對抗攻擊的存在對深度學習模型的安全應用構成了潛在威脅,進而影響了模型的安全性。在簡述對抗樣本的概念及其產生原因的基礎上,分析對抗攻擊的主要攻擊方式及目標,研究具有代表性的經典對抗樣本生成方法。描述對抗樣本的檢測與防御方法,并闡述對抗樣本在不同領域的應用實例。通過對對抗樣本攻擊與防御方法的分析與總結,展望對抗攻擊與防御領域未來的研究方向。

//www.ecice06.com/CN/10.19678/j.issn.1000-3428.0059156

付費5元查看完整內容

摘要 近年來,跨模態研究吸引了越來越多學者的關注,尤其是連接視覺和語言的相關課題。該文針對跨視覺和語言模態研究中的核心任務——圖像描述生成,進行文獻綜述。該文從基于視覺的文本生成框架、基于視覺的文本生成研究中的關鍵問題、圖像描述生成模型的性能評價和圖像描述生成模型的主要發展過程四個方面對相關文獻進行介紹和總結。最后,該文給出了幾個未來的重點研究方向,包括跨視覺和語言模態的特征對齊、自動化評價指標的設計以及多樣化圖像描述生成。

//jcip.cipsc.org.cn/CN/abstract/abstract2995.shtml

付費5元查看完整內容

近年來,三維人臉識別研究取得了較大進展.相比 二維人臉識別,三維人臉識別更具有優勢,主要特點是在識 別中利用了三維形狀數據.該文首先根據三維形狀數據的 來源,將三維人臉識別分為基于彩色圖像的三維人臉識別、 基于高質 量 三 維 掃 描 數 據 的 三 維 人 臉 識 別、基 于 低 質 量 RGBGD圖像的三維人臉識別,分別闡述了各自具有代表性 的方法及其優缺點;其次分析了深度學習在三維人臉識別 中的應用方式;然后分析了三維人臉數據與二維圖像在雙 模態人臉識別中的融合方法,并介紹了常用的三維人臉數 據庫;最后 討 論 了 三 維 人 臉 識 別 面 臨 的 主 要 困 難 及 發 展 趨勢.

//jst.tsinghuajournals.com/CN/Y2021/V61/I1/77

付費5元查看完整內容

摘要: 深度學習作為人工智能技術的重要組成部分,被廣泛應用在計算機視覺、自然語言處理等領域。盡管深 度學習在圖像分類和目標檢測等方向上取得了較好性能,但研究表明,對抗攻擊的存在對深度學習模型的安全應 用造成了潛在威脅,進而影響模型的安全性。本文在簡述對抗樣本的概念及其產生原因的基礎上,分析對抗攻擊 的主要思路,研究具有代表性的經典對抗樣本生成方法。描述對抗樣本的檢測方法與防御方法,并從應用角度闡 述對抗樣本在不同領域的應用實例。通過對對抗樣本攻擊與防御方法的分析與總結,預測未來對抗攻擊與防御的 研究方向。

//www.ecice06.com/CN/10.19678/j.issn.1000-3428.0059156

付費5元查看完整內容

我們生活在一個由大量不同模態內容構建而成的多媒體世界中,不同模態信息之間具有高度的相關性和互補性,多模態表征學習的主要目的就是挖掘出不同模態之間的共性和特性,產生出可以表示多模態信息的隱含向量.該文章主要介紹了目前應用較廣的視覺語言表征的相應研究工作,包括傳統的基于相似性模型的研究方法和目前主流的基于語言模型的預訓練的方法.目前比較好的思路和解決方案是將視覺特征語義化然后與文本特征通過一個強大的特征抽取器產生出表征,其中Transformer[1]作為主要的特征抽取器被應用表征學習的各類任務中.文章分別從研究背景、不同研究方法的劃分、測評方法、未來發展趨勢等幾個不同角度進行闡述.

//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6125&flag=1

付費5元查看完整內容

在大數據時代下,深度學習、強化學習以及分布式學習等理論和技術取得的突破性進展,為機器學習提供了數據和算法層面的強有力支撐,同時促進了機器學習的規模化和產業化發展.然而,盡管機器學習模型在現實應用中有著出色的表現,但其本身仍然面臨著諸多的安全威脅.機器學習在數據層、模型層以及應用層面臨的安全和隱私威脅呈現出多樣性、隱蔽性和動態演化的特點.機器學習的安全和隱私問題吸引了學術界和工業界的廣泛關注,一大批學者分別從攻擊和防御的角度對模型的安全和隱私問題進行了深入的研究,并且提出了一系列的攻防方法. 在本綜述中,我們回顧了機器學習的安全和隱私問題,并對現有的研究工作進行了系統的總結和科學的歸納,同時明確了當前研究的優勢和不足. 最后,我們探討了機器學習模型安全與隱私保護研究當前所面臨的挑戰以及未來潛在的研究方向,旨在為后續學者進一步推動機器學習模型安全與隱私保護研究的發展和應用提供指導.

//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6131&flag=1

付費5元查看完整內容

近年來,隨著web2.0的普及,使用圖挖掘技術進行異常檢測受到人們越來越多的關注.圖異常檢測在欺詐檢測、入侵檢測、虛假投票、僵尸粉絲分析等領域發揮著重要作用.本文在廣泛調研國內外大量文獻以及最新科研成果的基礎上,按照數據表示形式將面向圖的異常檢測劃分成靜態圖上的異常檢測與動態圖上的異常檢測兩大類,進一步按照異常類型將靜態圖上的異常分為孤立個體異常和群組異常檢測兩種類別,動態圖上的異常分為孤立個體異常、群體異常以及事件異常三種類型.對每一類異常檢測方法當前的研究進展加以介紹,對每種異常檢測算法的基本思想、優缺點進行分析、對比,總結面向圖的異常檢測的關鍵技術、常用框架、應用領域、常用數據集以及性能評估方法,并對未來可能的發展趨勢進行展望.

//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6100&flag=1

付費5元查看完整內容

摘要: 隨著人工智能和大數據等計算機應用對算力需求的迅猛增長以及應用場景的多樣化, 異構混合并行計算成為了研究的重點。文中介紹了當前主要的異構計算機體系結構, 包括CPU/協處理器、CPU/眾核處理器、CPU/ASCI和CPU/FPGA等;簡述了異構混合并行編程模型隨著各類異構混合結構的發展而做出的改變, 異構混合并行編程模型可以是對現有的一種語言進行改造和重新實現, 或者是現有異構編程語言的擴展, 或者是使用指導性語句異構編程, 或者是容器模式協同編程。分析表明, 異構混合并行計算架構會進一步加強對AI的支持, 同時也會增強軟件的通用性。文中還回顧了異構混合并行計算中的關鍵技術, 包括異構處理器之間的并行任務劃分、任務映射、數據通信、數據訪問, 以及異構協同的并行同步和異構資源的流水線并行等。根據這些關鍵技術, 文中指出了異構混合并行計算面臨的挑戰, 如編程困難、移植困難、數據通信開銷大、數據訪問復雜、并行控制復雜以及資源負載不均衡等。最后分析了異構混合并行計算面臨的挑戰, 指出目前關鍵的核心技術需要從通用與AI專用異構計算的融合、異構架構的無縫移植、統一編程模型、存算一體化、智能化任務劃分和分配等方面進行突破。

//www.jsjkx.com/CN/10.11896/jsjkx.200600045

付費5元查看完整內容
北京阿比特科技有限公司