亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

我們根據預測中包含的信息而不是訓練算法的輸出來推導有監督學習算法的信息理論泛化邊界。這些邊界改進了現有的信息理論界限,適用于更廣泛的算法,并解決了兩個關鍵的挑戰: (a)它們為確定性算法提供了有意義的結果;(b)它們明顯更容易估計。我們通過實驗證明,在深度學習的實際場景中,所提出的邊界與泛化差距密切相關。

//www.zhuanzhi.ai/paper/0c63babe0fe06d384258215e6ab8f74c

付費5元查看完整內容

相關內容

學習用于分布外預測的因果語義表示

Learning Causal Semantic Representation for Out-of-Distribution Prediction 論文摘要:標準的有監督學習方法特別是深度學習方法對分布外樣例的預測表現欠佳,主要由于其學到的表示難免會混淆語義因素和多樣因素,因為兩者在特定環境下具有特定的相關性,但只有語義因素是輸出變量的因。為此,我們通過對變量間因果關系的分析,將這兩個因素分開建模,進而提出了一個因果語義生成模型,并建立了相應的分布外預測方法用于解決常見且有挑戰性的單訓練域的情況。此方法源自因果不變性原理,并基于變分貝葉斯框架實現,其中引入了一個新穎的設計既實現了高效訓練又便于預測。理論上,我們證明了一定條件下,此模型可通過擬合訓練數據來識別語義因素,且這種識別保證了分布外泛化誤差的有界性和成功的領域自適應。實驗結果表明所提方法比主流基線方法具有更好的分布外預測表現。

付費5元查看完整內容

類不平衡問題作為學習節點表示的一個重要問題,越來越受到社會的關注。盡管現有研究中所考慮的不平衡源于不同類別中標記示例的數量不等(數量不平衡),但我們認為,圖數據暴露了不平衡的唯一來源,即標記節點的不對稱拓撲屬性,即:標記節點在圖中的結構角色不平等(拓撲不平衡)。在本工作中,我們首先探討了之前未知的拓撲不平衡問題,包括其特征、原因和對半監督節點分類學習的威脅。然后通過標簽傳播算法考慮節點影響轉移現象,提供了一個統一的視角來共同分析數量不平衡和拓撲不平衡問題。根據我們的分析,我們設計了一種基于影響沖突檢測——基于度量的Totoro來測量圖拓撲不平衡的程度,并提出了一種模型無關的ReNode方法來解決拓撲不平衡問題,方法是根據標記節點相對于類邊界的相對位置對其影響進行自適應加權。系統實驗證明了該方法在緩解拓撲不平衡問題和促進半監督節點分類方面的有效性和可泛化性。進一步的分析揭示了不同的圖神經網絡對拓撲不平衡的敏感性不同,為評價圖神經網絡體系結構提供了新的視角。

//www.zhuanzhi.ai/paper/e4392c7e18418db5eab9b0f759470985

付費5元查看完整內容

機器學習(ML)最近的快速進展提出了一些科學問題,挑戰了該領域長期存在的教條。最重要的謎題之一是過度參數化模型的良好經驗泛化。過度參數化的模型對于訓練數據集的大小來說過于復雜,這導致它們完美地擬合(即插值)訓練數據,而訓練數據通常是有噪聲的。這種對噪聲數據的插值傳統上與有害的過擬合有關,但最近觀察到,從簡單的線性模型到深度神經網絡的各種插值模型在新測試數據上都能很好地泛化。事實上,最近發現的雙下降現象表明,在測試性能上,高度過度參數化的模型往往比最好的欠參數化模型更好。理解這種過度參數化的學習需要新的理論和基礎的實證研究,即使是最簡單的線性模型。這種理解的基礎已經在最近對過度參數化線性回歸和相關統計學習任務的分析中奠定,這導致了雙下降的精確分析特征。本文簡要概述了這一新興的過度參數化ML理論(以下簡稱為TOPML),并從統計信號處理的角度解釋了這些最新發現。我們強調將TOPML研究領域定義為現代ML理論的一個子領域的獨特方面,并概述了仍然存在的有趣的未決問題。

//www.zhuanzhi.ai/paper/182ad6c4b994aa517d10319504e9bb3a

引言

深度學習技術已經徹底改變了許多工程和科學問題的解決方式,使數據驅動方法成為實踐成功的主要選擇。當前的深度學習方法是經典機器學習(ML)設置的極限開發版本,以前這些設置受到有限的計算資源和訓練數據可用性不足的限制。目前已建立的實踐是從一組訓練示例中學習高度復雜的深度神經網絡(DNN),這些示例雖然本身很大,但相對于DNN中的參數數量來說相當小。雖然這種過度參數化的DNN在ML實踐中是最先進的,但這種實際成功的根本原因仍不清楚。特別神秘的是兩個經驗觀察結果: 1) 模型中添加更多參數的明顯益處(在泛化方面),2) 這些模型即使完美地擬合了噪聲訓練數據,也能很好地泛化。這些觀察結果在現代ML的不同結構中都得到了體現——當它們首次被用于復雜的、最先進的DNN時(Neyshabur et al., 2014; Zhang et al., 2017)),它們已經在更簡單的模型家族中出土,包括寬神經網絡、核方法,甚至線性模型(Belkin et al., 2018b; Spigler et al., 2019; Geiger et al., 2020; Belkin et al., 2019a)。

在本文中,我們綜述了最近發展起來的過度參數化機器學習理論(簡稱TOPML),該理論建立了與訓練數據插值(即完美擬合)相關的現象相關的基本數學原理。我們很快將提供一個過度參數化ML的正式定義,但在這里描述一些模型必須滿足的顯著屬性,以合格為過度參數化。首先,這樣的模型必須是高度復雜的,因為它的獨立可調參數的數量要遠遠高于訓練數據集中的示例數量。其次,這樣的模型絕不能以任何方式被明確地規范化。DNN是過度參數化模型的常見實例,這些模型通常沒有明確的正則化訓練(參見,例如,Neyshabur et al., 2014; Zhang et al., 2017)。這種過度參數化和缺乏顯式正則化的組合產生了一個可插值訓練示例的學習模型,因此在任何訓練數據集上都實現了零訓練誤差。訓練數據通常被認為是來自底層數據類(即噪聲數據模型)的噪聲實現。因此,插值模型完美地擬合了基礎數據和訓練示例中的噪聲。傳統的統計學習總是將噪聲的完美擬合與較差的泛化性能聯系在一起(例如,Friedman et al., 2001, p. 194);因此,值得注意的是,這些插值解決方案通常能很好地泛化到訓練數據集以外的新測試數據。

在本文中,我們回顧了TOPML研究的新興領域,主要關注在過去幾年發展的基本原理。與最近的其他綜述相比(Bartlett et al., 2021; Belkin, 2021),我們從更基本的信號處理角度來闡明這些原則。形式上,我們將TOPML研究領域定義為ML理論的子領域,其中1. 明確考慮訓練數據的精確或近似插值 2. 相對于訓練數據集的大小,學習模型的復雜性較高。

本文組織如下。在第2節中,我們介紹了過度參數化學習中插值解的基礎知識,作為一個機器學習領域,它超出了經典偏方差權衡的范圍。在第3節中,我們概述了最近關于過度參數化回歸的結果。在這里,我們從信號處理的角度直觀地解釋了過度參數化學習的基本原理。在第4節中,我們回顧了關于過度參數化分類的最新發現。在第5節中,我們概述了最近關于過度參數化子空間學習的工作。在第6節中,我們考察了最近關于回歸和分類以外的過度參數化學習問題的研究。在第7節中,我們討論了過度參數化ML理論中的主要開放問題。

付費5元查看完整內容

大量大維度數據是現代機器學習(ML)的默認設置。標準的ML算法,從支持向量機這樣的內核方法和基于圖的方法(如PageRank算法)開始,最初的設計是基于小維度的,在處理真實世界的大數據集時,即使不是完全崩潰的話,往往會表現失常。隨機矩陣理論最近提出了一系列廣泛的工具來幫助理解這種新的維數詛咒,幫助修復或完全重建次優算法,最重要的是提供了處理現代數據挖掘的新方向。本編著的主要目的是提供這些直覺,通過提供一個最近的理論和應用突破的隨機矩陣理論到機器學習摘要。針對廣泛的受眾,從對統計學習感興趣的本科生到人工智能工程師和研究人員,這本書的數學先決條件是最小的(概率論、線性代數和真實和復雜分析的基礎是足夠的):與隨機矩陣理論和大維度統計的數學文獻中的介紹性書籍不同,這里的理論重點僅限于機器學習應用的基本要求。這些應用范圍從檢測、統計推斷和估計,到基于圖和核的監督、半監督和非監督分類,以及神經網絡: 為此,本文提供了對算法性能的精確理論預測(在不采用隨機矩陣分析時往往難以實現)、大維度的洞察力、改進方法,以及對這些方法廣泛適用于真實數據的基本論證。該專著中提出的大多數方法、算法和圖形都是用MATLAB和Python編寫的,讀者可以查閱(//github.com/Zhenyu-LIAO/RMT4ML)。本專著也包含一系列練習兩種類型:短的練習與修正附加到書的最后讓讀者熟悉隨機矩陣的基本理論概念和工具分析,以及長期指導練習應用這些工具進一步具體的機器學習應用程序。

付費5元查看完整內容

我們提出了一個嚴格的方法,使用一組任意相關的弱監督源,以解決多類分類任務時,只有一個非常小的標記數據集可用。我們的學習算法可證明收斂于一個模型,該模型對于一組未標記數據的可行標記的對抗性選擇具有最小的經驗風險,其中標記的可行性是通過對弱監督源的嚴格估計統計量定義的約束來計算的。我們為這種依賴于弱監督來源提供的信息的方法提供了理論保障。值得注意的是,該方法不要求弱監督源具有與多類分類任務相同的標注空間。我們通過實驗證明了我們的方法在各種圖像分類任務中的有效性。

付費5元查看完整內容

近年來,互信息(MI)在限制深度神經網絡(DNNs)泛化誤差方面引起了人們的廣泛關注。然而,由于很難準確估計神經網絡中的信息熵,因此以往的研究大多都需要放寬信息熵的界限,從而削弱了對泛化的信息理論解釋。針對這一局限性,本文引入了一種用于精確估計MI的DNNs的概率表示方法。利用本文提出的MI估計器,我們驗證了對泛化的信息理論解釋,并得出了一個比最先進的松解更緊的概化邊界。

付費5元查看完整內容

Adaptive Methods for Real-World Domain Generalization

不變方法在解決領域泛化問題方面已經取得了顯著的成功,該問題的目標是對不同于訓練中使用的數據分布進行推斷。在我們的工作中,我們研究是否有可能利用未知測試樣本本身的領域信息。我們提出一個域自適應方法包括兩個步驟: a)我們首先學習區別的域嵌入從無監督訓練的例子,和 b)使用該域嵌入作為補充信息來構建一個domainadaptive模型,這需要輸入以及其域考慮而做出的預測。對于看不見的域,我們的方法簡單地使用少數未標記的測試示例來構建域嵌入。這使得對任何看不見的域進行自適應分類成為可能。我們的方法在各種領域泛化基準上實現了最先進的性能。此外,我們還引入了第一個真實世界的大規模域泛化基準Geo-YFCC,該基準包含超過40個訓練域、7個驗證域和15個測試域的1.1萬個樣本,比之前的工作大了幾個數量級。我們表明,現有的方法要么不能擴展到這個數據集,要么不如基于所有訓練領域的數據聯合的訓練模型的簡單基線。相比之下,我們的方法獲得了顯著的1%的改進。

//www.zhuanzhi.ai/paper/6e7661967d0879ebfd0236873a75386b

付費5元查看完整內容

Improved Analysis of Clipping Algorithms for Non-convex Optimization

梯度裁剪在深度神經網絡訓練中應用廣泛,部分原因是其在解決梯度爆炸問題上的實用性。最近,Zhang等人[2020a]通過引入一個新的假設(L0, L1)-平滑性,證明剪切(隨機)梯度下降(GD)比普通的GD/SGD收斂得更快,該假設表征了深度神經網絡中通常遇到的梯度劇烈波動。然而,它們在問題相關參數上的迭代復雜性是相當悲觀的,并且裁剪與其他關鍵技術(如動量加速)相結合的理論證明仍然缺乏。在本文中,我們提出了一個研究剪切算法的一般框架來彌補這一差距,該框架也考慮了動量法。我們提供了框架在確定性和隨機設置的收斂性分析,并通過比較它們與現有的下界來證明我們的結果的緊密性。我們的結果表明,剪裁方法的效率不會退化,即使在景觀的高度非光滑的區域。實驗證明了基于裁剪的方法在深度學習任務中的優越性。

//arxiv.org/abs/2010.02519

付費5元查看完整內容

我們知道,目前的圖神經網絡(GNNs)由于被稱為過度平滑的問題,很難變深。多尺度GNN是一種很有前途的方法,以減輕過度平滑問題。然而,很少有人從學習理論的角度解釋為什么它在經驗上有效。在本研究中,我們推導了包括多尺度GNN的轉導學習算法的優化和泛化保證。利用boosting理論,證明了訓練誤差在弱學習類型條件下的收斂性。通過將其與泛化間隙邊界在轉導距離復雜度上的結合,我們證明了在此條件下,某一特定類型的多尺度GNN的測試誤差邊界隨深度的減小而相應減小。我們的結果為多尺度結構對抗過平滑問題的有效性提供了理論解釋。我們將boosting算法應用于訓練多尺度的GNN來完成真實的節點預測任務。我們證實其性能與現有的GNNs相當,實際行為與理論觀測一致。代碼可在//github.com/delta2323/GB-GNN下載。

付費5元查看完整內容

經典的隨機優化結果通常假設數據的各種屬性的已知值(例如Lipschitz常數、到最優點的距離、平滑性或強凸性常數)。不幸的是,在實踐中,這些值是未知的,因此必須經過長時間的反復試驗才能找到最佳參數。

為了解決這一問題,近年來許多無參數算法已經被開發用于在線優化和在線學習。無參數算法對數據的性質不作任何假設,但收斂速度與最優優化算法一樣快。

這是一項令人興奮的工作,現在已經足夠成熟,可以教授給普通觀眾了。實際上,這些算法還沒有得到機器學習社區的適當介紹,只有少數人完全理解它們。本教程旨在彌補這一差距,介紹使用和設計無參數算法的實踐和理論。我們將介紹該領域的最新進展,包括優化、深度學習和使用內核學習的應用。

//parameterfree.com/icml-tutorial/

付費5元查看完整內容
北京阿比特科技有限公司