我們知道,目前的圖神經網絡(GNNs)由于被稱為過度平滑的問題,很難變深。多尺度GNN是一種很有前途的方法,以減輕過度平滑問題。然而,很少有人從學習理論的角度解釋為什么它在經驗上有效。在本研究中,我們推導了包括多尺度GNN的轉導學習算法的優化和泛化保證。利用boosting理論,證明了訓練誤差在弱學習類型條件下的收斂性。通過將其與泛化間隙邊界在轉導距離復雜度上的結合,我們證明了在此條件下,某一特定類型的多尺度GNN的測試誤差邊界隨深度的減小而相應減小。我們的結果為多尺度結構對抗過平滑問題的有效性提供了理論解釋。我們將boosting算法應用于訓練多尺度的GNN來完成真實的節點預測任務。我們證實其性能與現有的GNNs相當,實際行為與理論觀測一致。代碼可在//github.com/delta2323/GB-GNN下載。
Code://github.com/Shen-Lab/GraphCL Paper:
對于當前的圖神經網絡(GNNs)來說,圖結構數據的可泛化、可遷移和魯棒表示學習仍然是一個挑戰。與為圖像數據而開發的卷積神經網絡(CNNs)不同,自監督學習和預訓練很少用于GNNs。在這篇文章中,我們提出了一個圖對比學習(GraphCL)框架來學習圖數據的無監督表示。我們首先設計了四種類型的圖擴充來包含不同的先驗。然后,我們在四種不同的環境下系統地研究了圖擴充的各種組合對多個數據集的影響:半監督、無監督、遷移學習和對抗性攻擊。結果表明,與最先進的方法相比,即使不調優擴展范圍,也不使用復雜的GNN架構,我們的GraphCL框架也可以生成類似或更好的可泛化性、可遷移性和健壯性的圖表示。我們還研究了參數化圖增強的范圍和模式的影響,并在初步實驗中觀察了性能的進一步提高。
確定輸入是否在分布外(OOD)是在開放世界中安全部署機器學習模型的一個重要基石。然而,以往依賴softmax置信評分的方法對OOD數據存在過自信的后驗分布。我們提出了一個使用能量分數的OOD檢測的統一框架。我們表明,能量分數比使用softmax分數的傳統方法更好地區分分布內和分布外的樣本。與softmax信心分數不同,能量分數理論上與輸入的概率密度一致,不太容易受到過度自信問題的影響。在這個框架內,能量可以被靈活地用作任何預訓練的神經分類器的評分函數,也可以作為可訓練的代價函數來明確地塑造能量表面,用于OOD檢測。在CIFAR-10預訓練的WideResNet中,使用能量分數比softmax信心分數降低平均FPR (TPR 95%) 18.03%。在以能量為基礎的訓練中,我們的方法在一般的基準上比最先進的方法表現得更好。
持續學習和適應新任務的能力,同時又不失去對已經獲得的知識的掌握,是生物學習系統的一個特征,這是目前的深度學習系統所欠缺的。在這項工作中,我們提出了一種新的持續學習方法,稱為MERLIN:持續學習的元鞏固。
我們假設一個用于解決任務t的神經網絡的權值是來自于一個元分布p(lenian| t)。這種元分布是逐步學習和鞏固的。我們在具有挑戰性的在線持續學習設置中操作,其中一個數據點只被模型看到一次。
我們對MNIST、CIFAR-10、CIFAR-100和Mini-ImageNet數據集的持續學習基準進行的實驗顯示,在五個基線上,包括最近的最先進水平,都證明了MERLIN的前景。
在本文中,我們提出了一種端到端的圖學習框架,即迭代深度圖學習(IDGL),用于共同迭代地學習圖結構和圖嵌入。IDGL的關鍵原理是學習基于更好的節點嵌入的更好的圖結構,反之亦然(即基于更好的圖結構的更好的節點嵌入)。我們的迭代方法動態停止時,學習圖接近足夠優化的圖預測任務。此外,我們將圖學習問題轉換為一個相似度量學習問題,并利用自適應圖正則化來控制學習圖的質量。最后,結合基于錨點的近似技術,我們進一步提出了一個可擴展的IDGL版本,即IDGL- anch,在不影響性能的前提下,顯著降低了IDGL的時間和空間復雜度。我們在9個基準上進行的廣泛實驗表明,我們提出的IDGL模型始終能夠優于或匹配最先進的基線。此外,IDGL還能更魯棒地處理對抗圖,并能同時處理傳導學習和歸納學習。
圖的深度學習方法在許多節點級和圖級預測任務中都取得了顯著的效果。然而,盡管這些方法大量涌現并取得了成功,但主流的圖神經網絡(GNNs)忽略了子圖,使得子圖預測任務在許多有影響的應用中難以處理。此外,子圖預測任務提出了幾個獨特的挑戰,因為子圖可以有非平凡的內部拓撲,但也攜帶了相對于其存在的底層圖的位置和外部連接信息的概念。在這里,我們介紹了子GNN,一種學習解糾纏子圖表示的子圖神經網絡。特別是,我們提出了一種新的子圖路由機制,它在子圖的組件和隨機抽樣的基礎圖錨塊之間傳播神經信息,從而產生高度精確的子圖表示。SUB-GNN指定了三個通道,每個通道都設計用于捕獲子圖結構的不同方面,我們提供了經驗證據證明這些通道編碼了它們預期的屬性。我們設計了一系列新的合成的和真實的子圖數據集。對8個數據集進行子圖分類的實證結果表明,子GNN實現了可觀的性能提升,比最強的baseline方法(包括節點級和圖級gnn)的性能高出12.4%。當子圖具有復雜的拓撲結構,甚至包含多個斷開連接的組件時,子GNN在具有挑戰性的生物醫學數據集上表現得非常好。
//www.zhuanzhi.ai/paper/9c11ef35cfb6b6a3ac7f8d547b9b59e6
圖神經網絡(GNNs)已被證明是有效的模型,用于對圖結構數據的不同預測任務。最近關于它們表達能力的工作集中在同構任務和可數特征空間。我們對這個理論框架進行了擴展,使其包含連續的特性——在真實世界的輸入域和gnn的隱藏層中定期出現——并演示了在此上下文中對多個聚合函數的需求。為此,我們提出了一種新的聚合器結構——主鄰域聚合(PNA),它將多個聚合器與度標器相結合,從而推廣了總和聚合器。最后,我們通過一個新的基準來比較不同模型捕獲和利用圖結構的能力,該基準包含了來自經典圖理論的多個任務,以及來自現實領域的現有基準,所有這些都證明了我們模型的強大。通過這項工作,我們希望引導一些GNN研究轉向新的聚合方法,我們認為這對于尋找強大和健壯的模型至關重要。
//www.zhuanzhi.ai/paper/bee47b0e291d163fae01c
圖神經網絡(GNNs)通常應用于靜態圖,這些靜態圖可以認為是預先已知的。這種靜態輸入結構通常完全由機器學習從業者的洞察力決定,對于GNN正在解決的實際任務可能不是最佳的。在缺乏可靠的領域專家知識的情況下,人們可能求助于推斷潛在的圖結構,但由于可能的圖的搜索空間很大,這往往是困難的。這里我們引入了點針圖網絡(PGNs),它增加了集合或圖的推斷邊的能力,以提高模型的表達能力。PGNs允許每個節點動態地指向另一個節點,然后通過這些點針傳遞消息。這種可適應圖結構的稀疏性使學習變得容易處理,同時仍然具有足夠的表現力來模擬復雜的算法。關鍵的是,指向機制可以直接監督的,以對經典數據結構上的長期操作序列建模,并結合了來自理論計算機科學的有用的結構歸納偏差。定性地說,我們證明了PGNs可以學習基于點針的數據結構的可并行變體,即不相交集并和鏈接/修剪樹。PGNs在動態圖連通性任務中將分布外概括為5個較大的測試輸入,優于不受限制的GNNs和深度集合。
我們討論關于圖神經網絡(GNNs)的兩個基本問題。首先,我們證明了幾個重要的圖屬性是不能由完全依賴于局部信息的GNN計算的。這樣的GNN包括標準的消息傳遞模型,以及更強大的空間變體,利用本地圖結構(例如,通過消息的相對方向,或本地端口排序)來區分每個節點的鄰居。我們的處理包括一種新的圖論形式主義。其次,我們為消息傳遞GNN提供了第一個依賴數據的泛化邊界。該分析明確地說明了GNN的局部置換不變性。我們的邊界比現有的基于VC維的GNN保證更緊,并且可與遞歸神經網絡的Rademacher邊界相媲美。
題目: MEMORY-BASED GRAPH NETWORKS
摘 要:
圖神經網絡是一類對任意拓撲結構的數據進行操作的深度模型。我們為GNNs引入了一個有效的記憶層,它可以聯合學習節點表示并對圖進行粗化。在此基礎上,我們還引入了兩個新的網絡:基于記憶的GNN (MemGNN)和可以學習層次圖表示的圖存儲網絡(GMN)。實驗結果表明,所提出的模型在9個圖分類和回歸基準中有8個達到了最新的結果。我們也證明了這些表示學習可以對應于分子數據中的化學特征。