我們討論關于圖神經網絡(GNNs)的兩個基本問題。首先,我們證明了幾個重要的圖屬性是不能由完全依賴于局部信息的GNN計算的。這樣的GNN包括標準的消息傳遞模型,以及更強大的空間變體,利用本地圖結構(例如,通過消息的相對方向,或本地端口排序)來區分每個節點的鄰居。我們的處理包括一種新的圖論形式主義。其次,我們為消息傳遞GNN提供了第一個依賴數據的泛化邊界。該分析明確地說明了GNN的局部置換不變性。我們的邊界比現有的基于VC維的GNN保證更緊,并且可與遞歸神經網絡的Rademacher邊界相媲美。
本文研究如何更好聚合網絡拓撲信息和特征信息。中心思想是,構造了結構圖,特征圖(feature graph),以及兩者的組合來提取特定的和通用的嵌入,并使用注意機制來學習嵌入的自適應重要性權重。實驗發現,AM-GCN可以從節點特征和拓撲結構中提取自適應地提取相關的信息,對應不同的參數取值。 //arxiv.org/abs/2007.02265
摘要:圖卷積網絡(GCNs)在處理圖數據和網絡數據的各種分析任務方面得到了廣泛的應用。然而,最近的一些研究提出了一個問題,即GCNs是否能夠在一個信息豐富的復雜圖形中優化地整合節點特征和拓撲結構。在本文中,我們首先提出一個實驗研究。令人驚訝的是,我們的實驗結果清楚地表明,當前的GCNs融合節點特征和拓撲結構的能力遠遠不是最優的,甚至是令人滿意的。由于GCNs無法自適應地學習拓撲結構與節點特征之間的一些深層次關聯信息,這一弱點可能會嚴重阻礙GCNs在某些分類任務中的能力。我們能否彌補這一缺陷,設計出一種新型的GCNs,既能保留現有GCNs的優勢,又能大幅度提高拓撲結構和節點特征融合的能力?為了解決這個問題,我們提出了一種自適應多通道半監督分類圖卷積網絡。其核心思想是同時從節點特征、拓撲結構及其組合中提取具體的和常見的嵌入,并利用注意機制學習嵌入的自適應重要度權值。我們在基準數據集上進行的大量實驗表明,AM-GCN從節點特征和拓撲結構中提取了最多的相關信息,顯著提高了分類精度。
【導讀】作為世界數據挖掘領域的最高級別的學術會議,ACM SIGKDD(國際數據挖掘與知識發現大會,簡稱 KDD)每年都會吸引全球領域眾多專業人士參與。今年的 KDD大會計劃將于 2020 年 8 月 23 日 ~27 日在美國美國加利福尼亞州圣地亞哥舉行。上周,KDD 2020官方發布接收論文,共有1279篇論文提交到Research Track,共216篇被接收,接收率16.8%。近期KDD官網公布了接受論文列表,為此,上個月專知小編為大家整理了圖神經網絡相關的論文,這期小編繼續為大家奉上KDD 2020必讀的五篇圖神經網絡(GNN)相關論文-Part 2——多層次GCN、無監督預訓練GCN、圖Hash、GCN主題模型、采樣
KDD 2020 Accepted Paper: //www.kdd.org/kdd2020/accepted-papers
KDD2020GNN_Part1、CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、
1. Multi-level Graph Convolutional Networks for Cross-platform Anchor Link Prediction
作者:Hongxu Chen, Hongzhi Yin, Xiangguo Sun, Tong Chen, Bogdan Gabrys, Katarzyna Musial
摘要:跨平臺的賬號匹配在社交網絡分析中發揮著重要作用,并且有利于廣泛的應用。然而,現有的方法要么嚴重依賴于高質量的用戶生成內容(包括用戶興趣模型),要么只關注網絡拓撲結構,存在數據不足的問題,這使得研究這個方向變得很困難。為了解決這一問題,我們提出了一種新的框架,該框架統一考慮了局部網絡結構和超圖結構上的多級圖卷積。該方法克服了現有工作中數據不足的問題,并且不一定依賴于用戶的人口統計信息。此外,為了使所提出的方法能夠處理大規模社交網絡,我們提出了一種兩階段的空間協調機制,在基于網絡分區的并行訓練和跨不同社交網絡的帳戶匹配中對齊嵌入空間。我們在兩個大規模的真實社交網絡上進行了廣泛的實驗。實驗結果表明,該方法的性能比現有的模型有較大幅度的提高。
網址:
2. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training
作者:Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang
摘要:圖表示學習已經成為解決現實問題的一種強有力的技術。包括節點分類、相似性搜索、圖分類和鏈接預測在內的各種下游圖學習任務都受益于它的最新發展。然而,關于圖表示學習的現有技術集中于領域特定的問題,并為每個圖訓練專用模型,這通常不可轉移到領域之外的數據。受自然語言處理和計算機視覺在預訓練方面的最新進展的啟發,我們設計了圖對比編碼(Graph Contrastive Coding,GCC)一個無監督的圖表示學習框架來捕捉跨多個網絡的通用網絡拓撲屬性。我們將GCC的預訓練任務設計為網絡內部和網絡之間的子圖級別的實例判斷,并利用對比學習來增強模型學習內在的和可遷移的結構表征能力。我們在三個圖學習任務和十個圖數據集上進行了廣泛的實驗。結果表明,GCC在一組不同的數據集上進行預訓練,可以獲得與從頭開始的特定任務訓練的方法相媲美或更好的性能。這表明,預訓練和微調范式對圖表示學習具有巨大的潛力。
網址:
代碼鏈接:
3. GHashing: Semantic Graph Hashing for Approximate Similarity Search in Graph Databases
作者:Zongyue Qin, Yunsheng Bai, Yizhou Sun
摘要:圖相似搜索的目的是根據給定的鄰近度,即圖編輯距離(GED),在圖形數據庫中找到與查詢最相似的圖。這是一個被廣泛研究但仍具有挑戰性的問題。大多數研究都是基于剪枝驗證框架,該框架首先對非看好的圖進行剪枝,然后在較小的候選集上進行驗證。現有的方法能夠管理具有數千或數萬個圖的數據庫,但由于其精確的剪枝策略,無法擴展到更大的數據庫。受到最近基于深度學習的語義哈希(semantic hashing)在圖像和文檔檢索中的成功應用的啟發,我們提出了一種新的基于圖神經網絡(GNN)的語義哈希,即GHash,用于近似剪枝。我們首先用真實的GED結果訓練GNN,以便它學習生成嵌入和哈希碼,以保持圖之間的GED。然后建立哈希索引以實現恒定時間內的圖查找。在回答一個查詢時,我們使用哈希碼和連續嵌入作為兩級剪枝來檢索最有希望的候選對象,并將這些候選對象發送到精確的求解器進行最終驗證。由于我們的圖哈希技術利用了近似剪枝策略,與現有方法相比,我們的方法在保持高召回率的同時,實現了顯著更快的查詢時間。實驗表明,該方法的平均速度是目前唯一適用于百萬級數據庫的基線算法的20倍,這表明GHash算法成功地為解決大規模圖形數據庫的圖搜索問題提供了新的方向。
網址:
4. Graph Structural-topic Neural Network
作者:Qingqing Long, Yilun Jin, Guojie Song, Yi Li, Wei Lin
摘要:圖卷積網絡(GCNS)通過有效地收集節點的局部特征,取得了巨大的成功。然而,GCNS通常更多地關注節點特征,而較少關注鄰域內的圖結構,特別是高階結構模式。然而,這種局部結構模式被顯示為許多領域中的節點屬性。此外,由于網絡很復雜,每個節點的鄰域由各種節點和結構模式的混合組成,不只是單個模式,所有這些模式上的分布都很重要。相應地,在本文中,我們提出了圖結構主題神經網絡,簡稱GraphSTONE,這是一種利用圖的主題模型的GCN模型,使得結構主題廣泛地從概率的角度捕捉指示性的圖結構,而不僅僅是幾個結構。具體地說,我們使用 anonymous walks和Graph Anchor LDA(一種LDA的變體,首先選擇重要的結構模式)在圖上建立主題模型,以降低復雜性并高效地生成結構主題。此外,我們設計了多視圖GCNS來統一節點特征和結構主題特征,并利用結構主題來指導聚合。我們通過定量和定性實驗對我們的模型進行了評估,我們的模型表現出良好的性能、高效率和清晰的可解釋性。
網址:
代碼鏈接:
5. Minimal Variance Sampling with Provable Guarantees for Fast Training of Graph Neural Networks
作者:Weilin Cong, Rana Forsati, Mahmut Kandemir, Mehrdad Mahdavi
摘要:抽樣方法(如節點抽樣、分層抽樣或子圖抽樣)已成為加速大規模圖神經網絡(GNNs)訓練不可缺少的策略。然而,現有的抽樣方法大多基于圖的結構信息,忽略了最優化的動態性,導致隨機梯度估計的方差較大。高方差問題在非常大的圖中可能非常明顯,它會導致收斂速度慢和泛化能力差。本文從理論上分析了抽樣方法的方差,指出由于經驗風險的復合結構,任何抽樣方法的方差都可以分解為前向階段的嵌入近似方差和后向階段的隨機梯度方差,這兩種方差都必須減小,才能獲得較快的收斂速度。我們提出了一種解耦的方差減小策略,利用(近似)梯度信息自適應地對方差最小的節點進行采樣,并顯式地減小了嵌入近似引入的方差。理論和實驗表明,與現有方法相比,該方法即使在小批量情況下也具有更快的收斂速度和更好的泛化能力。
網址:
消息傳遞被證明是一種設計圖神經網絡的有效方法,因為它能夠利用排列等方差和對學習局部結構的歸納偏差來實現良好的泛化。然而,當前的消息傳遞體系結構的表達能力有限,無法學習圖的基本拓撲性質。我們解決了這個問題,并提出了一個新的消息傳遞框架,它是強大的同時保持置換等方差。具體來說,我們以單熱點編碼的形式傳播惟一的節點標識符,以便了解每個節點的本地上下文。我們證明了我們的模型在極限情況下是通用的,同時也是等變的。通過實驗,我們發現我們的模型在預測各種圖的拓撲性質方面具有優勢,為新型的、功能強大的等變和計算效率的結構開辟了道路。
題目: Continuous Graph Neural Networks
摘要:
本文建立了圖神經網絡與傳統動力系統之間的聯系。我們提出了持續圖神經網絡(CGNN),它將現有的圖神經網絡與離散動力學進行了一般化,因為它們可以被視為一種特定的離散化方案。關鍵思想是如何表征節點表示的連續動力學,即關于時間的節點表示的導數。受現有的基于擴散的圖方法(如社交網絡上的PageRank和流行模型)的啟發,我們將導數定義為當前節點表示、鄰節點表示和節點初始值的組合。我們提出并分析了兩種可能的動態圖,包括節點表示的每個維度(又名特征通道)各自改變或相互作用的理論證明。所提出的連續圖神經網絡在過度平滑方面具有很強的魯棒性,因此允許我們構建更深層次的網絡,進而能夠捕獲節點之間的長期依賴關系。在節點分類任務上的實驗結果證明了我們提出的方法在和基線對比的有效性。
介紹
圖神經網絡(GNNs)由于其在節點分類等多種應用中的簡單性和有效性而受到越來越多的關注;、鏈接預測、化學性質預測、自然語言理解。GNN的基本思想是設計多個圖傳播層,通過聚合鄰近節點的節點表示和節點本身的表示,迭代地更新每個節點表示。在實踐中,對于大多數任務,幾層(兩層或三層)通常就足夠了,更多的層可能導致較差的性能。
改進GNNs的一個關鍵途徑是能夠建立更深層次的網絡,以了解數據和輸出標簽之間更復雜的關系。GCN傳播層平滑了節點表示,即圖中相鄰的節點變得更加相似。當我們堆疊越來越多的層時,這會導致過度平滑,這意味著節點表示收斂到相同的值,從而導致性能下降。因此,重要的是緩解節點過平滑效應,即節點表示收斂到相同的值。
此外,對于提高我們對GNN的理論理解,使我們能夠從圖結構中描述我們可以學到的信號,這是至關重要的。最近關于理解GCN的工作(Oono和Suzuki, 2020)認為GCN是由離散層定義的離散動力系統。此外,Chen等人(2018)證明了使用離散層并不是構建神經網絡的唯一視角。他們指出,帶有剩余連接的離散層可以看作是連續ODE的離散化。他們表明,這種方法具有更高的記憶效率,并且能夠更平滑地建模隱藏層的動態。
我們利用基于擴散方法的連續視角提出了一種新的傳播方案,我們使用來自常微分方程(即連續動力系統)的工具進行分析。事實上,我們能夠解釋我們的模型學習了什么表示,以及為什么它不會遭受在GNNs中常見的過度平滑問題。允許我們建立更深層次的網絡,也就是說我們的模型在時間價值上運行良好。恢復過平滑的關鍵因素是在連續設置中使用了最初在PageRank中提出的原始分布。直觀上,重新開始分布有助于不忘記鄰接矩陣的低冪次信息,從而使模型收斂到有意義的平穩分布。
本文的主要貢獻是:
Hierarchical Inter-Message Passing for Learning on Molecular Graphs
我們提出了一個在分子圖上學習的遞階神經信息傳遞架構。我們的模型采用了兩種互補的圖表示:原始的分子圖表示和相關的結樹,其中節點表示原始圖中有意義的簇,如環或橋接化合物。然后,我們通過在每個圖中傳遞消息來學習分子的表示,并使用粗到細和細到粗的信息流在兩種表示之間交換消息。我們的方法能夠克服經典GNN的一些限制,如檢測周期,同時仍然非常有效的訓練。我們在ZINC數據集和MoleculeNet基準收集數據集上驗證了它的性能。
【導讀】ICML(International Conference on Machine Learning),即國際機器學習大會, 是機器學習領域全球最具影響力的學術會議之一,因此在該會議上發表論文的研究者也會備受關注。因疫情的影響, 今年第37屆ICML大會將于2020年7月13日至18日在線上舉行。據官方統計,ICML 2020共提交4990篇論文,接收論文1088篇,接收率為21.8%。與往年相比,接收率逐年走低。在會議開始前夕,專知小編為大家整理了ICML 2020圖神經網絡(GNN)的六篇相關論文供參考——核GNN、特征變換、Haar 圖池化、無監督圖表示、譜聚類、自監督GCN。
ICML 2020 Accepted Papers //icml.cc/Conferences/2020/AcceptedPapersInitial
ACL2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN
1. Convolutional Kernel Networks for Graph-Structured Data
作者:Dexiong Chen, Laurent Jacob, Julien Mairal
摘要:我們引入了一系列多層圖核,并在圖卷積神經網絡和核方法之間建立了新的聯系。我們的方法通過將圖表示為核特征映射序列將卷積核網絡推廣到圖結構數據,其中每個節點攜帶關于局部圖子結構的信息。一方面,核的觀點提供了一種無監督的、有表現力的、易于正規化的數據表示,這在樣本有限的情況下很有用。另一方面,我們的模型也可以在大規模數據上進行端到端的訓練,從而產生了新型的圖卷積神經網絡。我們的方法在幾個圖分類基準上取得了與之相當的性能,同時提供了簡單的模型解釋。
網址:
代碼鏈接:
2. GNN-FILM: Graph Neural Networks with Feature-Wise Linear Modulation 作者:Marc Brockschmidt
摘要:本文提出了一種新的基于特征線性調制(feature-wise linear modulation,FiLM)的圖神經網絡(GNN)。許多標準GNN變體僅通過每條邊的源的表示來計算“信息”,從而沿著圖的邊傳播信息。在GNN-FILE中,邊的目標節點的表示被附加地用于計算可以應用于所有傳入信息的變換,從而允許對傳遞的信息進行基于特征的調制。基于基線方法的重新實現,本文給出了在文獻中提到的三個任務上的不同GNN體系結構的實驗結果。所有方法的超參數都是通過廣泛的搜索找到的,產生了一些令人驚訝的結果:基線模型之間的差異比文獻報道的要小。盡管如此,GNN-FILE在分子圖的回歸任務上的表現優于基線方法,在其他任務上的表現也具有競爭性。
網址:
3. Haar Graph Pooling
作者:Yu Guang Wang, Ming Li, Zheng Ma, Guido Montufar, Xiaosheng Zhuang, Yanan Fan
摘要:深度圖神經網絡(GNNs)是用于圖分類和基于圖的回歸任務的有效模型。在這些任務中,圖池化是GNN適應不同大小和結構的輸入圖的關鍵因素。本文提出了一種新的基于壓縮Haar變換的圖池化操作-HaarPooling。HaarPooling實現了一系列池化操作;它是通過跟隨輸入圖的一系列聚類序列來計算的。HaarPooling層將給定的輸入圖變換為節點數較小、特征維數相同的輸出圖;壓縮Haar變換在Haar小波域中過濾出細節信息。通過這種方式,所有HaarPooling層一起將任何給定輸入圖的特征合成為大小一致的特征向量。這種變換提供了數據的稀疏表征,并保留了輸入圖的結構信息。使用標準圖卷積層和HaarPooling層實現的GNN在各種圖分類和回歸問題上實現了最先進的性能。
網址:
4. Interferometric Graph Transform: a Deep Unsupervised Graph Representation 作者:Edouard Oyallon
摘要:我們提出了Interferometric Graph Transform(IGT),這是一類用于構建圖表示的新型深度無監督圖卷積神經網絡。我們的第一個貢獻是提出了一種從歐幾里德傅立葉變換的推廣得到的通用復數譜圖結構。基于一個新穎的貪婪凹目標,我們的學習表示既包括可區分的特征,也包括不變的特征。通過實驗可以得到,我們的學習過程利用了譜域的拓撲,這通常是譜方法的一個缺陷,特別是我們的方法可以恢復視覺任務的解析算子。我們在各種具有挑戰性的任務上測試了我們的算法,例如圖像分類(MNIST,CIFAR-10)、社區檢測(Authorship,Facebook graph)和3D骨架視頻中的動作識別(SBU,NTU),在譜圖非監督環境下展示了一種新的技術水平。
網址:
5. Spectral Clustering with Graph Neural Networks for Graph Pooling
作者:Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi
摘要:譜聚類(SC)是發現圖上強連通社區的一種流行的聚類技術。SC可以在圖神經網絡(GNN)中使用,以實現聚合屬于同一簇的節點的池化操作。然而,Laplacian的特征分解代價很高,而且由于聚類結果是特定于圖的,因此基于SC的池化方法必須對每個新樣本執行新的優化。在本文中,我們提出了一種圖聚類方法來解決SC的這些局限性。我們建立了歸一化minCUT問題的連續松弛公式,并訓練GNN來計算最小化這一目標的簇分配。我們的基于GNN的實現是可微的,不需要計算譜分解,并且學習了一個聚類函數,可以在樣本外的圖上快速評估。從提出的聚類方法出發,我們設計了一個圖池化算子,它克服了現有圖池化技術的一些重要局限性,并在多個監督和非監督任務中取得了最好的性能。
網址:
6. When Does Self-Supervision Help Graph Convolutional Networks?
作者:Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen
摘要:自監督作為一種新興的技術已被用于訓練卷積神經網絡(CNNs),以提高圖像表示學習的可傳遞性、泛化能力和魯棒性。然而,自監督對操作圖形數據的圖卷積網絡(GCNS)的介紹卻很少被探索。在這項研究中,我們首次將自監督納入GCNS的系統探索和評估。我們首先闡述了將自監督納入GCNS的三種機制,分析了預訓練&精調和自訓練的局限性,并進而將重點放在多任務學習上。此外,我們還提出了三種新的GCNS自監督學習任務,并進行了理論分析和數值比較。最后,我們進一步將多任務自監督融入到圖對抗性訓練中。研究結果表明,通過合理設計任務形式和合并機制,自監督有利于GCNS獲得更強的泛化能力和魯棒性。
網址:
代碼鏈接:
當前的圖神經網絡(GNN)簡單地將節點嵌入到聚合的圖表示中——可能會丟失結構或語義信息。我們在這里介紹了OT-GNN,它通過GNN節點嵌入集合與“原型”點云之間的最佳傳輸距離作為自由參數來計算圖嵌入。這允許不同的原型突出顯示不同圖子部分的關鍵方面。證明了點云上的函數類滿足一個通用的近似定理,這是一個由于和和而失去的基本性質。然而,根據經驗,該模型在訓練過程中有一種崩潰回標準聚合的自然趨勢。我們通過提出一種有效的噪聲對比調節器來解決這一優化問題,從而使模型朝著真正挖掘最優運輸幾何的方向發展。我們的模型在幾個分子性質預測任務上始終表現出更好的泛化性能,也產生更平滑的表示。
題目
圖神經網絡的泛化與表示極限,《Generalization and Representational Limits of Graph Neural Networks》
關鍵字
圖神經網絡,泛化與表示,深度學習,人工智能,圖論
簡介
我們討論了圖神經網絡的兩個基本問題。首先,我們證明了幾個重要的圖屬性不能由完全依賴于局部信息的GNNs來計算。這些gnn包括標準的消息傳遞模型,以及更強大的空間變體,它們利用局部圖結構(例如,通過消息的相對方向或本地端口排序)來區分每個節點的鄰居。我們的研究包括一種新的圖論形式。其次,我們為消息傳遞GNNs提供了第一個數據相關泛化界限。該分析明確地解釋了GNNs的局部排列不變性。我們的界限比現有的基于vc維的GNNs保證要嚴格得多,并且可與遞歸神經網絡的Rademacher界限相媲美。
作者
Vikas K. Garg, Stefanie Jegelka, Tommi Jaakkola
1、Approximation Ratios of Graph Neural Networks for Combinatorial Problems
作者:Ryoma Sato, Makoto Yamada, Hisashi Kashima;
摘要:本文從理論的角度研究了圖神經網絡(GNNs)在學習組合問題近似算法中的作用。為此,我們首先建立了一個新的GNN類,它可以嚴格地解決比現有GNN更廣泛的問題。然后,我們彌合了GNN理論和分布式局部算法理論之間的差距,從理論上證明了最強大的GNN可以學習最小支配集問題的近似算法和具有一些近似比的最小頂點覆蓋問題比率,并且沒有GNN可以執行比這些比率更好。本文首次闡明了組合問題中GNN的近似比。此外,我們還證明了在每個節點特征上添加著色或弱著色可以提高這些近似比。這表明預處理和特征工程在理論上增強了模型的能力。
網址://www.zhuanzhi.ai/paper/9cad40c81920dfd71fa91e4ddf778616
2、D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
作者:Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, Yixin Chen;
摘要:圖結構數據在現實世界中是豐富的。在不同的圖類型中,有向無環圖(DAG)是機器學習研究人員特別感興趣的,因為許多機器學習模型都是通過DAG上的計算來實現的,包括神經網絡和貝葉斯網絡。本文研究了DAG的深度生成模型,提出了一種新的DAG變分自編碼器(D-VAE)。為了將DAG編碼到潛在空間中,我們利用了圖神經網絡。我們提出了一個異步消息傳遞方案,它允許在DAG上編碼計算,而不是使用現有的同步消息傳遞方案來編碼局部圖結構。通過神經結構搜索和貝葉斯網絡結構學習兩項任務驗證了該方法的有效性。實驗表明,該模型不僅生成了新穎有效的DAG,還可以生成平滑的潛在空間,有助于通過貝葉斯優化搜索具有更好性能的DAG。
網址:
3、End to end learning and optimization on graphs
作者:Bryan Wilder, Eric Ewing, Bistra Dilkina, Milind Tambe;
摘要:在實際應用中,圖的學習和優化問題常常結合在一起。例如,我們的目標可能是對圖進行集群,以便檢測有意義的社區(或者解決其他常見的圖優化問題,如facility location、maxcut等)。然而,圖或相關屬性往往只是部分觀察到,引入了一些學習問題,如鏈接預測,必須在優化之前解決。我們提出了一種方法,將用于常見圖優化問題的可微代理集成到用于鏈接預測等任務的機器學習模型的訓練中。這允許模型特別關注下游任務,它的預測將用于該任務。實驗結果表明,我們的端到端系統在實例優化任務上的性能優于將現有的鏈路預測方法與專家設計的圖優化算法相結合的方法。
網址:
4、Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels
作者:Simon S. Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, Keyulu Xu;
摘要:雖然圖內核(graph kernel,GK)易于訓練并享有可證明的理論保證,但其實際性能受其表達能力的限制,因為內核函數往往依賴于圖的手工組合特性。與圖內核相比,圖神經網絡通常具有更好的實用性能,因為圖神經網絡使用多層結構和非線性激活函數來提取圖的高階信息作為特征。然而,由于訓練過程中存在大量的超參數,且訓練過程具有非凸性,使得GNN的訓練更加困難。GNN的理論保障也沒有得到很好的理解。此外,GNN的表達能力隨參數的數量而變化,在計算資源有限的情況下,很難充分利用GNN的表達能力。本文提出了一類新的圖內核,即圖神經切線核(GNTKs),它對應于通過梯度下降訓練的無限寬的多層GNN。GNTK充分發揮了GNN的表現力,繼承了GK的優勢。從理論上講,我們展示了GNTK可以在圖上學習一類平滑函數。根據經驗,我們在圖分類數據集上測試GNTK并展示它們實現了強大的性能。
網址:
5、HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs
作者:Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, Partha Talukdar;
摘要:在許多真實世界的網絡數據集中,如co-authorship、co-citation、email communication等,關系是復雜的,并且超越了成對關聯。超圖(Hypergraph)提供了一個靈活而自然的建模工具來建模這種復雜的關系。在許多現實世界網絡中,這種復雜關系的明顯存在,自然會激發使用Hypergraph學習的問題。一種流行的學習范式是基于超圖的半監督學習(SSL),其目標是將標簽分配給超圖中最初未標記的頂點。由于圖卷積網絡(GCN)對基于圖的SSL是有效的,我們提出了HyperGCN,這是一種在超圖上訓練用于SSL的GCN的新方法。我們通過對真實世界超圖的詳細實驗證明HyperGCN的有效性,并分析它何時比最先進的baseline更有效。
網址:
6、Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks
作者:Vineet Kosaraju, Amir Sadeghian, Roberto Martín-Martín, Ian Reid, S. Hamid Rezatofighi, Silvio Savarese;
摘要:從自動駕駛汽車和社交機器人的控制到安全監控,預測場景中多個交互主體的未來軌跡已成為許多不同應用領域中一個日益重要的問題。這個問題由于人類之間的社會互動以及他們與場景的身體互動而變得更加復雜。雖然現有的文獻探索了其中的一些線索,但它們主要忽略了每個人未來軌跡的多模態性質。在本文中,我們提出了一個基于圖的生成式對抗網絡Social-BiGAT,它通過更好地建模場景中行人的社交互來生成真實的多模態軌跡預測。我們的方法是基于一個圖注意力網絡(GAT)學習可靠的特征表示(編碼場景中人類之間的社會交互),以及一個反方向訓練的循環編解碼器體系結構(根據特征預測人類的路徑)。我們明確地解釋了預測問題的多模態性質,通過在每個場景與其潛在噪聲向量之間形成一個可逆的變換,就像在Bicycle-GAN中一樣。我們表明了,與現有軌跡預測基準的幾個baseline的比較中,我們的框架達到了最先進的性能。
網址:
7、Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching
作者:Hongteng Xu, Dixin Luo, Lawrence Carin;
摘要:我們提出了一種可擴展的Gromov-Wasserstein learning (S-GWL) 方法,并建立了一種新的、理論支持的大規模圖分析范式。該方法基于Gromov-Wasserstein discrepancy,是圖上的偽度量。給定兩個圖,與它們的Gromov-Wasserstein discrepancy相關聯的最優傳輸提供了節點之間的對應關系,從而實現了圖的匹配。當其中一個圖具有獨立但自連接的節點時(即,一個斷開連接的圖),最優傳輸表明了其他圖的聚類結構,實現了圖的劃分。利用這一概念,通過學習多觀測圖的Gromov-Wasserstein barycenter圖,將該方法推廣到多圖的劃分與匹配; barycenter圖起到斷開圖的作用,因為它是學習的,所以聚類也是如此。該方法將遞歸K分割機制與正則化近似梯度算法相結合,對于具有V個節點和E條邊的圖,其時間復雜度為O(K(E+V) logk V)。據我們所知,我們的方法是第一次嘗試使Gromov-Wasserstein discrepancy適用于大規模的圖分析,并將圖的劃分和匹配統一到同一個框架中。它優于最先進的圖劃分和匹配方法,實現了精度和效率之間的平衡。
網址:
8、Universal Invariant and Equivariant Graph Neural Networks
作者:Nicolas Keriven, Gabriel Peyré;
摘要:圖神經網絡(GNN)有多種形式,但應該始終是不變的(輸入圖節點的排列不會影響輸出)或等變的(輸入的排列置換輸出)。本文考慮一類特殊的不變和等變網絡,證明了它的一些新的普適性定理。更確切地說,我們考慮具有單個隱藏層的網絡,它是通過應用等變線性算子、點態非線性算子和不變或等變線性算子形成的信道求和而得到的。最近,Maron et al. (2019b)指出,通過允許網絡內部的高階張量化,可以獲得通用不變的GNN。作為第一個貢獻,我們提出了這個結果的另一種證明,它依賴于實值函數代數的Stone-Weierstrass定理。我們的主要貢獻是將這一結果推廣到等變情況,這種情況出現在許多實際應用中,但從理論角度進行的研究較少。證明依賴于一個新的具有獨立意義的廣義等變函數代數Stone-Weierstrass定理。最后,與以往許多考慮固定節點數的設置不同,我們的結果表明,由一組參數定義的GNN可以很好地近似于在不同大小的圖上定義的函數。
網址: