亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

題目

圖神經網絡的泛化與表示極限,《Generalization and Representational Limits of Graph Neural Networks》

關鍵字

圖神經網絡,泛化與表示,深度學習,人工智能,圖論

簡介

我們討論了圖神經網絡的兩個基本問題。首先,我們證明了幾個重要的圖屬性不能由完全依賴于局部信息的GNNs來計算。這些gnn包括標準的消息傳遞模型,以及更強大的空間變體,它們利用局部圖結構(例如,通過消息的相對方向或本地端口排序)來區分每個節點的鄰居。我們的研究包括一種新的圖論形式。其次,我們為消息傳遞GNNs提供了第一個數據相關泛化界限。該分析明確地解釋了GNNs的局部排列不變性。我們的界限比現有的基于vc維的GNNs保證要嚴格得多,并且可與遞歸神經網絡的Rademacher界限相媲美。

作者

Vikas K. Garg, Stefanie Jegelka, Tommi Jaakkola

付費5元查看完整內容

相關內容

圖神經網絡 (GNN) 是一種連接模型,它通過圖的節點之間的消息傳遞來捕捉圖的依賴關系。與標準神經網絡不同的是,圖神經網絡保留了一種狀態,可以表示來自其鄰域的具有任意深度的信息。近年來,圖神經網絡(GNN)在社交網絡、知識圖、推薦系統、問答系統甚至生命科學等各個領域得到了越來越廣泛的應用。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

摘要

圖神經網絡(GNNs)已被證明在建模圖結構的數據方面是強大的。然而,訓練GNN通常需要大量指定任務的標記數據,獲取這些數據的成本往往非常高。減少標記工作的一種有效方法是在未標記數據上預訓練一個具有表達能力的GNN模型,并進行自我監督,然后將學習到的模型遷移到只有少量標記的下游任務中。在本文中,我們提出了GPT-GNN框架,通過生成式預訓練來初始化GNN。GPT-GNN引入了一個自監督屬性圖生成任務來預訓練一個GNN,使其能夠捕獲圖的結構和語義屬性信息。我們將圖生成的概率分解為兩部分:1)屬性生成和2)邊生成。通過對兩個組件進行建模,GPT-GNN捕捉到生成過程中節點屬性與圖結構之間的內在依賴關系。在10億規模的開放學術圖和亞馬遜推薦數據上進行的綜合實驗表明,GPT-GNN在不經過預訓練的情況下,在各種下游任務中的表現顯著優于最先進的GNN模型,最高可達9.1%。

**關鍵詞:**生成式預訓練,圖神經網絡,圖表示學習,神經嵌入,GNN預訓練

付費5元查看完整內容

題目: Continuous Graph Neural Networks

摘要:

本文建立了圖神經網絡與傳統動力系統之間的聯系。我們提出了持續圖神經網絡(CGNN),它將現有的圖神經網絡與離散動力學進行了一般化,因為它們可以被視為一種特定的離散化方案。關鍵思想是如何表征節點表示的連續動力學,即關于時間的節點表示的導數。受現有的基于擴散的圖方法(如社交網絡上的PageRank和流行模型)的啟發,我們將導數定義為當前節點表示、鄰節點表示和節點初始值的組合。我們提出并分析了兩種可能的動態圖,包括節點表示的每個維度(又名特征通道)各自改變或相互作用的理論證明。所提出的連續圖神經網絡在過度平滑方面具有很強的魯棒性,因此允許我們構建更深層次的網絡,進而能夠捕獲節點之間的長期依賴關系。在節點分類任務上的實驗結果證明了我們提出的方法在和基線對比的有效性。

介紹

圖神經網絡(GNNs)由于其在節點分類等多種應用中的簡單性和有效性而受到越來越多的關注;、鏈接預測、化學性質預測、自然語言理解。GNN的基本思想是設計多個圖傳播層,通過聚合鄰近節點的節點表示和節點本身的表示,迭代地更新每個節點表示。在實踐中,對于大多數任務,幾層(兩層或三層)通常就足夠了,更多的層可能導致較差的性能。

改進GNNs的一個關鍵途徑是能夠建立更深層次的網絡,以了解數據和輸出標簽之間更復雜的關系。GCN傳播層平滑了節點表示,即圖中相鄰的節點變得更加相似。當我們堆疊越來越多的層時,這會導致過度平滑,這意味著節點表示收斂到相同的值,從而導致性能下降。因此,重要的是緩解節點過平滑效應,即節點表示收斂到相同的值。

此外,對于提高我們對GNN的理論理解,使我們能夠從圖結構中描述我們可以學到的信號,這是至關重要的。最近關于理解GCN的工作(Oono和Suzuki, 2020)認為GCN是由離散層定義的離散動力系統。此外,Chen等人(2018)證明了使用離散層并不是構建神經網絡的唯一視角。他們指出,帶有剩余連接的離散層可以看作是連續ODE的離散化。他們表明,這種方法具有更高的記憶效率,并且能夠更平滑地建模隱藏層的動態。

我們利用基于擴散方法的連續視角提出了一種新的傳播方案,我們使用來自常微分方程(即連續動力系統)的工具進行分析。事實上,我們能夠解釋我們的模型學習了什么表示,以及為什么它不會遭受在GNNs中常見的過度平滑問題。允許我們建立更深層次的網絡,也就是說我們的模型在時間價值上運行良好。恢復過平滑的關鍵因素是在連續設置中使用了最初在PageRank中提出的原始分布。直觀上,重新開始分布有助于不忘記鄰接矩陣的低冪次信息,從而使模型收斂到有意義的平穩分布。

本文的主要貢獻是:

  • 基于PageRank和擴散方法,提出了兩個連續遞增模型容量的ODEs;
  • 我們從理論上分析了我們的層學習的表示,并表明當t → ∞我們的方法接近一個穩定的不動點,它捕獲圖結構和原始的節點特征。因為我們在t→∞時是穩定的,我們的網絡可以有無限多個“層”,并且能夠學習遠程依賴關系;
  • 我們證明了我們的模型的記憶是高效的,并且對t的選擇是具有魯棒性的。除此之外,我們進一步證明了在節點分類任務上,我們的模型能夠比許多現有的最先進的方法表現更好。
付費5元查看完整內容

我們討論關于圖神經網絡(GNNs)的兩個基本問題。首先,我們證明了幾個重要的圖屬性是不能由完全依賴于局部信息的GNN計算的。這樣的GNN包括標準的消息傳遞模型,以及更強大的空間變體,利用本地圖結構(例如,通過消息的相對方向,或本地端口排序)來區分每個節點的鄰居。我們的處理包括一種新的圖論形式主義。其次,我們為消息傳遞GNN提供了第一個依賴數據的泛化邊界。該分析明確地說明了GNN的局部置換不變性。我們的邊界比現有的基于VC維的GNN保證更緊,并且可與遞歸神經網絡的Rademacher邊界相媲美。

付費5元查看完整內容

當前的圖神經網絡(GNN)簡單地將節點嵌入到聚合的圖表示中——可能會丟失結構或語義信息。我們在這里介紹了OT-GNN,它通過GNN節點嵌入集合與“原型”點云之間的最佳傳輸距離作為自由參數來計算圖嵌入。這允許不同的原型突出顯示不同圖子部分的關鍵方面。證明了點云上的函數類滿足一個通用的近似定理,這是一個由于和和而失去的基本性質。然而,根據經驗,該模型在訓練過程中有一種崩潰回標準聚合的自然趨勢。我們通過提出一種有效的噪聲對比調節器來解決這一優化問題,從而使模型朝著真正挖掘最優運輸幾何的方向發展。我們的模型在幾個分子性質預測任務上始終表現出更好的泛化性能,也產生更平滑的表示。

付費5元查看完整內容

題目

圖神經網絡概覽:《Graph Neural Networks - An overview | AI Summer》

關鍵字

圖神經網絡,深度學習,圖計算,綜述,人工智能,圖論

簡介

在過去的十年中,我們看到了神經網絡在圖像和文本等結構化數據方面的出色表現。卷積網絡,遞歸自動編碼器等大多數流行模型在具有表格格式(如矩陣或向量)的數據上都能很好地工作。但是非結構化數據呢?圖數據呢?有沒有可以向他們有效學習的模型?可能是您從標題中猜到的。答案是圖神經網絡。

Graph Neural Networks早在2005年就被引入(就像其他所有好主意一樣),但是在過去的5年中它們開始流行起來。 GNN能夠對圖中節點之間的關系進行建模,并為其生成數字表示。 GNN的重要性非常重要,因為可以用圖形表示的現實世界數據太多。社交網絡,化合物,地圖,運輸系統等。因此,讓我們找出GNN背后的基本原理以及它們起作用的原因。

作者

付費5元查看完整內容

1、Approximation Ratios of Graph Neural Networks for Combinatorial Problems

作者:Ryoma Sato, Makoto Yamada, Hisashi Kashima;

摘要:本文從理論的角度研究了圖神經網絡(GNNs)在學習組合問題近似算法中的作用。為此,我們首先建立了一個新的GNN類,它可以嚴格地解決比現有GNN更廣泛的問題。然后,我們彌合了GNN理論和分布式局部算法理論之間的差距,從理論上證明了最強大的GNN可以學習最小支配集問題的近似算法和具有一些近似比的最小頂點覆蓋問題比率,并且沒有GNN可以執行比這些比率更好。本文首次闡明了組合問題中GNN的近似比。此外,我們還證明了在每個節點特征上添加著色或弱著色可以提高這些近似比。這表明預處理和特征工程在理論上增強了模型的能力。

網址://www.zhuanzhi.ai/paper/9cad40c81920dfd71fa91e4ddf778616

2、D-VAE: A Variational Autoencoder for Directed Acyclic Graphs

作者:Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, Yixin Chen;

摘要:圖結構數據在現實世界中是豐富的。在不同的圖類型中,有向無環圖(DAG)是機器學習研究人員特別感興趣的,因為許多機器學習模型都是通過DAG上的計算來實現的,包括神經網絡和貝葉斯網絡。本文研究了DAG的深度生成模型,提出了一種新的DAG變分自編碼器(D-VAE)。為了將DAG編碼到潛在空間中,我們利用了圖神經網絡。我們提出了一個異步消息傳遞方案,它允許在DAG上編碼計算,而不是使用現有的同步消息傳遞方案來編碼局部圖結構。通過神經結構搜索和貝葉斯網絡結構學習兩項任務驗證了該方法的有效性。實驗表明,該模型不僅生成了新穎有效的DAG,還可以生成平滑的潛在空間,有助于通過貝葉斯優化搜索具有更好性能的DAG。

網址:

3、End to end learning and optimization on graphs

作者:Bryan Wilder, Eric Ewing, Bistra Dilkina, Milind Tambe;

摘要:在實際應用中,圖的學習和優化問題常常結合在一起。例如,我們的目標可能是對圖進行集群,以便檢測有意義的社區(或者解決其他常見的圖優化問題,如facility location、maxcut等)。然而,圖或相關屬性往往只是部分觀察到,引入了一些學習問題,如鏈接預測,必須在優化之前解決。我們提出了一種方法,將用于常見圖優化問題的可微代理集成到用于鏈接預測等任務的機器學習模型的訓練中。這允許模型特別關注下游任務,它的預測將用于該任務。實驗結果表明,我們的端到端系統在實例優化任務上的性能優于將現有的鏈路預測方法與專家設計的圖優化算法相結合的方法。

網址:

4、Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels

作者:Simon S. Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, Keyulu Xu;

摘要:雖然圖內核(graph kernel,GK)易于訓練并享有可證明的理論保證,但其實際性能受其表達能力的限制,因為內核函數往往依賴于圖的手工組合特性。與圖內核相比,圖神經網絡通常具有更好的實用性能,因為圖神經網絡使用多層結構和非線性激活函數來提取圖的高階信息作為特征。然而,由于訓練過程中存在大量的超參數,且訓練過程具有非凸性,使得GNN的訓練更加困難。GNN的理論保障也沒有得到很好的理解。此外,GNN的表達能力隨參數的數量而變化,在計算資源有限的情況下,很難充分利用GNN的表達能力。本文提出了一類新的圖內核,即圖神經切線核(GNTKs),它對應于通過梯度下降訓練的無限寬的多層GNN。GNTK充分發揮了GNN的表現力,繼承了GK的優勢。從理論上講,我們展示了GNTK可以在圖上學習一類平滑函數。根據經驗,我們在圖分類數據集上測試GNTK并展示它們實現了強大的性能。

網址:

5、HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs

作者:Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, Partha Talukdar;

摘要:在許多真實世界的網絡數據集中,如co-authorship、co-citation、email communication等,關系是復雜的,并且超越了成對關聯。超圖(Hypergraph)提供了一個靈活而自然的建模工具來建模這種復雜的關系。在許多現實世界網絡中,這種復雜關系的明顯存在,自然會激發使用Hypergraph學習的問題。一種流行的學習范式是基于超圖的半監督學習(SSL),其目標是將標簽分配給超圖中最初未標記的頂點。由于圖卷積網絡(GCN)對基于圖的SSL是有效的,我們提出了HyperGCN,這是一種在超圖上訓練用于SSL的GCN的新方法。我們通過對真實世界超圖的詳細實驗證明HyperGCN的有效性,并分析它何時比最先進的baseline更有效。

網址:

6、Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks

作者:Vineet Kosaraju, Amir Sadeghian, Roberto Martín-Martín, Ian Reid, S. Hamid Rezatofighi, Silvio Savarese;

摘要:從自動駕駛汽車和社交機器人的控制到安全監控,預測場景中多個交互主體的未來軌跡已成為許多不同應用領域中一個日益重要的問題。這個問題由于人類之間的社會互動以及他們與場景的身體互動而變得更加復雜。雖然現有的文獻探索了其中的一些線索,但它們主要忽略了每個人未來軌跡的多模態性質。在本文中,我們提出了一個基于圖的生成式對抗網絡Social-BiGAT,它通過更好地建模場景中行人的社交互來生成真實的多模態軌跡預測。我們的方法是基于一個圖注意力網絡(GAT)學習可靠的特征表示(編碼場景中人類之間的社會交互),以及一個反方向訓練的循環編解碼器體系結構(根據特征預測人類的路徑)。我們明確地解釋了預測問題的多模態性質,通過在每個場景與其潛在噪聲向量之間形成一個可逆的變換,就像在Bicycle-GAN中一樣。我們表明了,與現有軌跡預測基準的幾個baseline的比較中,我們的框架達到了最先進的性能。

網址:

7、Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching

作者:Hongteng Xu, Dixin Luo, Lawrence Carin;

摘要:我們提出了一種可擴展的Gromov-Wasserstein learning (S-GWL) 方法,并建立了一種新的、理論支持的大規模圖分析范式。該方法基于Gromov-Wasserstein discrepancy,是圖上的偽度量。給定兩個圖,與它們的Gromov-Wasserstein discrepancy相關聯的最優傳輸提供了節點之間的對應關系,從而實現了圖的匹配。當其中一個圖具有獨立但自連接的節點時(即,一個斷開連接的圖),最優傳輸表明了其他圖的聚類結構,實現了圖的劃分。利用這一概念,通過學習多觀測圖的Gromov-Wasserstein barycenter圖,將該方法推廣到多圖的劃分與匹配; barycenter圖起到斷開圖的作用,因為它是學習的,所以聚類也是如此。該方法將遞歸K分割機制與正則化近似梯度算法相結合,對于具有V個節點和E條邊的圖,其時間復雜度為O(K(E+V) logk V)。據我們所知,我們的方法是第一次嘗試使Gromov-Wasserstein discrepancy適用于大規模的圖分析,并將圖的劃分和匹配統一到同一個框架中。它優于最先進的圖劃分和匹配方法,實現了精度和效率之間的平衡。

網址:

8、Universal Invariant and Equivariant Graph Neural Networks

作者:Nicolas Keriven, Gabriel Peyré;

摘要:圖神經網絡(GNN)有多種形式,但應該始終是不變的(輸入圖節點的排列不會影響輸出)或等變的(輸入的排列置換輸出)。本文考慮一類特殊的不變和等變網絡,證明了它的一些新的普適性定理。更確切地說,我們考慮具有單個隱藏層的網絡,它是通過應用等變線性算子、點態非線性算子和不變或等變線性算子形成的信道求和而得到的。最近,Maron et al. (2019b)指出,通過允許網絡內部的高階張量化,可以獲得通用不變的GNN。作為第一個貢獻,我們提出了這個結果的另一種證明,它依賴于實值函數代數的Stone-Weierstrass定理。我們的主要貢獻是將這一結果推廣到等變情況,這種情況出現在許多實際應用中,但從理論角度進行的研究較少。證明依賴于一個新的具有獨立意義的廣義等變函數代數Stone-Weierstrass定理。最后,與以往許多考慮固定節點數的設置不同,我們的結果表明,由一組參數定義的GNN可以很好地近似于在不同大小的圖上定義的函數。

網址:

付費5元查看完整內容

題目: Hyperbolic Graph Convolutional Neural Networks

摘要: 圖卷積神經網絡(GCNs)將圖中的節點嵌入到歐幾里德空間中,在嵌入具有無標度或層次結構的真實圖時,歐幾里德空間會產生很大的失真。雙曲幾何提供了一個令人興奮的選擇,因為它使嵌入具有更小的失真。然而,將廣義神經網絡擴展到雙曲幾何中,由于目前尚不清楚如何定義雙曲空間中的特征變換和聚集等神經網絡操作,因此提出了一些獨特的挑戰。此外,由于輸入特征通常是歐幾里德的,因此如何將特征轉換為具有適當曲率的雙曲型嵌入尚不清楚。本文提出了雙曲圖卷積神經網絡(HGCN),它是第一個同時利用GCN和雙曲幾何的表達能力來學習層次圖和無標度圖的歸納節點表示的雙曲型GCN。推導了雙曲空間雙曲面模型的GCN運算,并將歐氏輸入特征映射到每層可訓練曲率不同的雙曲空間中的嵌入。

作者簡介: Ines Chami,斯坦福大學ICME數據科學項目的碩士,她的研究方向包括計算機視覺,自然語言處理,更具體地說,多模態分析。個人主頁://profiles.stanford.edu/ines-chami

Rex Ying,斯坦福大學計算機科學博士,他的研究主要集中在開發應用于圖結構數據的機器學習算法上。個人主頁:

付費5元查看完整內容

題目: Graph Neural Networks: A Review of Methods and Applications

摘要: 許多學習任務都需要處理包含元素間豐富關系信息的圖形數據。建模物理系統、學習分子指紋、預測蛋白質界面和疾病分類需要一個模型從圖形輸入中學習。在文本、圖像等非結構化數據的學習等領域,對句子的依存樹、圖像的場景圖等提取的結構進行推理是一個重要的研究課題,同時也需要建立圖形推理模型。圖神經網絡(GNNs)是通過圖節點之間的信息傳遞來獲取圖的依賴性的連接模型。與標準神經網絡不同,圖神經網絡保留了一種狀態,這種狀態可以以任意深度表示來自其鄰域的信息。雖然原始GNNs已經被發現很難訓練到固定的點,但是最近在網絡結構、優化技術和并行計算方面的進展已經使它能夠成功地學習。近年來,基于圖形卷積網絡(GCN)、圖形注意網絡(GAT)、門控圖形神經網絡(GGNN)等圖形神經網絡變體的系統在上述許多任務上都表現出了突破性的性能。在這項調查中,我們提供了一個詳細的檢討現有的圖形神經網絡模型,系統分類的應用,并提出了四個開放的問題,為今后的研究。

作者簡介: Jie Zhou,CS的研究生,從事系統研究,主要研究計算機安全。他畢業于廈門大學,在羅切斯特大學獲得碩士學位及博士學位。

Zhiyuan Liu,清華大學計算機系NLP實驗室副教授。

付費5元查看完整內容

題目: How Powerful are Graph Neural Networks?

摘要: 圖神經網絡(GNNs)是一種有效的圖表示學習框架。GNNs遵循鄰域聚合方案,通過遞歸地聚合和轉換鄰域節點的表示向量來計算節點的表示向量。許多GNN變體已經被提出,并且在節點和圖分類任務上都取得了最新的結果。然而,盡管GNNs給圖形表示學習帶來了革命性的變化,但是對于它們的表示性質和局限性的理解還是有限的。在這里,我們提出了一個理論框架來分析GNNs捕捉不同圖形結構的表現力。我們的結果描述了流行的GNN變體,如圖卷積網絡和圖年齡的辨別能力,并且表明它們不能學習辨別某些簡單的圖結構。然后,我們開發了一個簡單的體系結構,它可以證明是GNNs類中最具表現力的,并且與Weisfeiler-Lehman圖同構測試一樣強大。我們在一些圖形分類基準上實證驗證了我們的理論發現,并證明我們的模型達到了最先進的性能。

作者簡介: Keyulu Xu,麻省理工學院EECS系的研究生,也是CSAIL和機器學習小組的成員。他的興趣是智力和推理理論。

WeiHua Hu,哈爾濱工業大學(深圳)助理教授。

付費5元查看完整內容

Graph Neural Networks (GNNs) for representation learning of graphs broadly follow a neighborhood aggregation framework, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs in capturing different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.

北京阿比特科技有限公司