來源:人工智能計算大會 2023年是人工智能發展的重要轉折年,企業正加速從業務數字化邁向業務智能化。大模型的突破和生成式人工智能的興起為企業實現產品/流程的革新提供先進生產工具,引領企業和產業邁入智能創新的新階段。 大模型和生成式人工智能的發展顯著拉動了人工智能服務器市場的增長。IDC預計,全球人工智能硬件市場(服務器)規模將從2022年的195億美元增長到2026年的347億美元,五年年復合增長率達17.3%。 在中國,預計2023年中國人工智能服務器市場規模將達到91億美元,同比增長82.5%,2027年將達到134億美元,五年年復合增長率達21.8%。算力規模而言,預計到2027年通用算力規模將達到117.3EFLOPS,智能算力規模達1117.4EFLOPS;2022-2027年期間,預計中國智能算力規模年復合增長率達33.9%,同期通用算力規模年復合增長率為16.6%。 近日,在AICC2023中國人工智能算力大會上,國際數據公司(IDC)與浪潮信息聯合發布《2023-2024中國人工智能計算力發展評估報告》(簡稱《報告》)。《報告》指出,人工智能正在加速從感知智能到生成式智能邁進,中國人工智能算力市場規模快速成長擴大。 2023年,中國人工智能服務器市場規模將達91億美元,同比增長82.5%;智能算力規模預計達到414.1EFLOPS(每秒百億億次浮點運算),同比增長59.3%;2022-2027年期間,年復合增長率預計達33.9% 《報告》從算力規模、區域分布和行業滲透度等多維度,對我國人工智能計算力發展進行綜合評估,給出大模型和AIGC的發展將引發AI算力產業之變的核心洞察,并提出針對性的行動建議。作為中國AI算力發展“風向標”,《報告》第六次發布,旨在為推動中國人工智能產業的高質量發展提供參考。 ** 人工智能加速向行業和城市滲透**
《報告》通過多年持續跟蹤中國人工智能計算力發展狀況發現,從行業看,人工智能從單點應用到多元化應用、從通用場景到行業特定場景正在不斷深入,而AIGC在2023年快速發展,也在進一步賦能各行各業;從城市看,越來越多的城市參與到人工智能發展浪潮中,持續加大在相關領域的投資,不斷推進人工智能產業的發展。 在2023年人工智能行業滲透度排名中,Top5的行業依次為互聯網、電信、政府、金融和制造。此外,交通、服務、教育等行業在人工智能領域的投資力度也可圈可點。其中,互聯網依然是AIGC技術應用和研發的主戰場;電信行業排名從2022年的第四躍升至2023年的第二,主要歸因于運營商緊跟國家東數西算戰略,加速云數據中心、智算中心的建設。 在2023年中國人工智能城市排行榜中,北京、杭州、深圳繼續保持前三名。其中,北京在大模型領域表現突出,聚集了大批大模型企業。此外,位居TOP10的城市還有上海,蘇州,廣州,濟南,合肥、重慶和成都。整體來說,排名靠前的城市因具有更好的政策、資金和技術支持,可以穩定吸引更多的人才和企業聚集;智算中心的建設也是拉動地區實現人工智能發展的重要驅動力,既可以提升基礎設施建設水平,也為吸引更多企業共謀發展起到積極的推動作用。 ** AIGC引發算力產業“三變”**
2023年,由ChatGPT引爆的新一輪人工智能熱潮,開啟了由大模型驅動的AIGC時代。IDC調研顯示,67%的中國企業已經開始探索AIGC在企業內的應用機會或已經開始進行資金投入。 中國企業對生成式人工智能的態度 《報告》指出,當前在AIGC的帶動下,人工智能計算力技術及應用趨勢發生了較大的變化,體現為“三變: 一是計算范式之變。大模型和AIGC的發展加速了更高計算性能、更快互聯性能的算力基礎設施建設,推進人工智能在云-邊-端的覆蓋。此外,伴隨應用場景多樣性,底層基礎設施呈現多元化發展。 二是產業動量之變。AIGC可重構現有的工作方式,在內容創作、自動駕駛、零售、醫療等諸多領域改變著人們的生活和生產方式,同時也帶來更大的市場機會。算力、算法、應用、服務等諸多產業變量將成為創新的加速器,在算力生態鏈上的各個環節催生出新的玩家。 三是算力服務格局之變。由于基礎大模型的本地訓練成本不菲,企業將更多地使用已有的人工智能數據中心設施和生成式AI服務器集群,這將為算力服務市場帶來新機會。算力服務供應商要能夠提供定制化的基礎設施服務能力,滿足單個用戶對訓練和推理資源的獨占式、大規模、長時間使用的訴求,同時幫助用戶實現成本控制。 ** “以應用為導向、系統為核心”是算力升級新路徑**
大模型和AIGC的發展提升了智能算力需求,給計算市場帶來了發展機遇,同時也帶來了算力緊缺等挑戰。對此,《報告》認為,面對單芯片算力瓶頸、算力緊缺等問題,中國市場對于智能算力供給能力的衡量標準將發生變化——評估指標將從硬件性能向應用效果轉變,用戶在獲得算力服務的過程中,會更加以應用為導向進行綜合考量,增加對于諸如單位時間可處理Token數量、可靠性、時延、訓練時間和資金成本、數據集質量等指標的關注。 針對這一轉變,《報告》指出,算力供應商需要“以應用為導向、系統為核心”,構建算力基礎設施平臺,提高算力利用率,提升諸如卡間互聯、多節點間互聯等水平,支持靈活穩定擴展和彈性容錯,積極打造通用的人工智能軟件和硬件平臺,以先進的系統性能力滿足市場的應用需求。也就是說,與其過分關注單一芯片的性能強弱,不如根據人工智能業務場景需求,設計更具針對性的算力系統,實現整體性能最優。 具體內容如下:
來源:世界互聯網大會 近日,在烏鎮召開的人工智能賦能產業發展論壇上,來自企業、研究機構、國際組織等各方的代表,共同發布了《發展負責任的生成式人工智能研究報告及共識文件》。 回顧人工智能60余年的發展歷程,技術突破不僅會創造發展機遇,也會帶來相應的挑戰。統籌人工智能發展和治理逐漸成為全球共識,自2016年以來,全球多個國際組織、國家、地區及產業界,積極探索人工智能發展與治理路徑,已經形成了系列共識原則、治理要求、實踐范式等。考慮到人工智能尚處在快速發展的過程中,相關工作仍需要持續推進。 信息技術革命在進入人工智能階段之后,以生成式人工智能為代表的技術,又取得了長足的進步和發展。如《研究報告及共識文件》中所明確指出的那樣: 其一,在“模型、數據、算力”等三大要素持續迭代和高速演進的推動下,人工智能不斷在工程維度的發展和應用中,實現快速突破。就全球范圍的發展情況來看,Transformer為主的基礎模型依托相關研究主體的長期持續投入,通過ChatGPT、Stabel Diffusion、BLIP-2等,在大語言模型、視覺生成模型、多模態模型等細分領域,持續實現模型能力的躍升。這種躍升的主要體現,是參數規模進入1000億量級,處理復雜自然語言能力因此呈現顯著發展;在數據領域,多場景的大模型預訓練數據集不斷涌現,研究機構形成了通過發布微調數據集方式,提升預訓練用數據集的效能;合成數據解決訓練數據資源可持續性的探索也取得了較為顯著的成效;算力芯片和架構的持續迭代,在訓練效能、云邊端算力效能優化等方面,對生成式人工智能的發展提供了有效的支撐。 其二,應用前景催生了開源開放驅動生成式人工智能生態的迅速發展,整體趨向繁榮發展。從應用場景看,開源生態與開放驅動成為當下推動人工智能生態發展的主基調,模型迭代優化、研發門檻降低、縮短初創成本等,成為各方廣泛認知的主要優勢。與此相應的,在ChatGPT的刺激下,生成式人工智能的開發者社區迅速涌現,成為支撐和推動相關技術與應用發展的主渠道。Hugging Face、華為云AI Gallery、阿里巴巴、FlagOpen飛智、百度的飛槳星河等社區憑借各自比較優勢,在其中發揮了至關重要的作用。 其三,生成式人工智能的階段性高速發展再度激發了人們對于發展通用式人工智能的勇敢想象與積極探索。如《研究報告及共識文件》指出的那樣,由于生成式人工智能的這一輪突破,尤其是其中與多模態方向發展相一致的發展,催生了人們新的想象與探索:人們預期,伴隨著多模態生成模型技術的突破,能夠更好地理解和處理復雜的現實場景,或許將帶來更多的想象空間,比如可以探索將多模態生成模型與機器人技術結合等方式,繼而以某種形式盡可能趨近模仿人類感知復雜世界能力的呈現。 很自然的,生成式人工智能帶來的機遇和挑戰,同步存在: 從積極的角度看,生成式人工智能可能帶來的經濟增長前景,日趨明朗。根據麥肯錫2023年6月的樂觀預測,生成式人工智能每年可能為全球經濟增加2.6萬億至4.4萬億美元的價值。根據高盛研究,在滿足增長條件的情況下,生成式人工智能的突破將在10年內推動全球GDP增長7%。對生成式人工智能以及通用式人工智能未來發展前景的合理展望,有助于人們確信人類的生產活動和滿足特定要求的服務行業,未來均可能面臨顯著的增長前景,有理由保持樂觀預期。 從生成式人工智能的可能應用場景來看,現代社會的基礎服務體系可能獲得有效賦能,預期城市運營管理、災害救助與事故分析、實時預警與風險管理、定制化個性化的新型教育體系、新型就業崗位與就業機會、以及迫切需要得到實質性賦能的醫療和養老行業,均可能從人工智能的負責任發展中獲得實質性的收益。此外公益事業中的無障礙數字環境建設、全球文化成果保護和傳播,以及全球環境治理和可持續發展,也有希望從生成式人工智能的噴薄發展中得到全新的賦能與助力。作為高質量的“聰明”助手,生成式人工智能在助力科學研究中所具有的廣闊前景,也同時日趨清晰地呈現。 客觀而謹慎地看,生成式人工智能帶來的風險挑戰也是顯而易見的,預先訓練大模型時投喂的數據不可避免地存在缺陷,價值偏見、隱私泄露、數據污染等,如《研究報告及共識文件》所指出的那樣,是已經被廣泛察覺到的主要風險;算法模型的“幻覺”,虛假信息干擾,指向模型的網絡攻擊等,均揭示了人工智能發展帶來的新型安全隱患和風險;此外,高速技術迭代帶來的科技倫理失范以及人類社會發展失衡等問題,也日趨明顯地成為各方必須共同關注,并探究治理方案的關鍵所在;在更廣義的政治經濟學分析框架中,生成式人工智能對數字勞動和能源損耗等領域的重大影響,也已經到了必須早日提上議事日程的時候,其后帶來的發展,值得我們各方高度關注。 具體內容如下:
近日,中國工程院中國新一代人工智能發展戰略研究院發布了《中國新一代人工智能科技產業發展 2023》(以下簡稱《報告》)。今年的報告的主題為“建設具有全球競爭力的人工智能產業集群”。
我國人工智能產業發展表現出明顯的集群化趨勢
人工智能企業及其創新活動構成了人工智能產業集群發展的微觀基礎。
工業和信息化部統計數據顯示,截至2022年6月,我國人工智能企業數量超過3000家,僅次于美國,排名第二,人工智能核心產業規模超過4000億元。我國人工智能企業在智能芯片、基礎架構、操作系統、工具鏈、基礎網絡、智能終端、深度學習平臺、大模型和產業應用領域的創新創業活動,為自主可控技術體系的構建和產業國際競爭力的提升奠定了基礎。
平臺企業、獨角獸公司、中小企業、新創企業、研究型大學、科研院所和投資者之間相互協作,共同構建富有活力的產業創新生態,人工智能產業發展表現出日益明顯的集群化趨勢。
圖片
人工智能產業集群是基于網絡空間發展的創新集群
《報告》研究表明,區別于傳統產業集群和創新集群概念,人工智能產業集群是基于網絡空間發展的創新集群。基于物理空間技術體系的創新發展,前三次工業革命的產業集群和創新集群對地理空間具有依賴性,創新擴散速度相對緩慢。第四次工業革命源于網絡空間技術體系的創新發展,創新集群更加依賴網絡空間發展,技術、產品和服務的創新速度更快,創新的應用領域和地域范圍更加廣泛。
人工智能產業集群的基本構成要素包括企業簇群、創新資源、創新系統和網絡空間產業生態。其中,網絡空間產業創新生態是第四次工業革命背景下人工智能產業集群的獨特要素。人工智能產業集群包括人工智能產業化創新集群和產業智能化創新集群。人工智能產業化集群通過網絡空間產業生態實現向地理空間分散的產業智能化創新集群賦能。人工智能產業化創新集群和產業智能化創新集群的良性互動,是建設具有全球競爭力的人工智能產業集群的關鍵動力和機制。
我國的人工智能產業集群表現為“新型創新區→城市→區域→全國→全球”的空間結構特征。與傳統工業園區和高科技園區不同,新型創新區一般位于科技創新資源和產業基礎雄厚的大城市的中心區和次中心區,是人工智能產業化集群及其產業創新生態的棲息地,強調依托狹小的物理空間打造無限的網絡空間產業創新生態。
到目前為止,我國人工智能產業集群主要分布在京津冀、長江三角洲、珠江三角洲和川渝地區的重點城市。通過外部創新資源的引入和內部創新資源的激活,西部地區的西安,中部地區的武漢和長沙,東北地區的沈陽、大連和哈爾濱開始出現人工智能產業集群的雛形。
企業簇群及其產業創新生態
《報告》構建了包括2200家人工智能企業、5722個投資者(投資機構和非投資機構)、438所AI大學和307家非大學科研機構、967家產業聯盟、在中國境內召開的總計2318場會議、31個省市自治區出臺的775項相關政策和3507家人工智能產業園區規劃建設情況在內的中國智能經濟樣本庫。通過屬性數據和關系數據分析,考察我國人工智能產業集群的內在結構和發展趨勢。
我國人工智能產業集群的價值網絡結構是“極核”狀的。平臺及其主導的產業創新生態構成了我國人工智能產業集群發展的“極核”。從2014-2022年價值網絡的結構性統計指標看,我國人工智能產業集群的簇群結構特征越來越明顯。以華為、騰訊、百度和阿里巴巴為代表的超級平臺是我國人工智能產業集群形成和發展的核心節點。近年來,超級平臺在智能芯片、基礎架構、操作系統、大模型、機器學習平臺和應用軟件領域的研發和產業化布局,為我國人工智能產業集群國際競爭力的提升奠定了堅實基礎。
研究型大學、科研院所和新型創新組織是平臺主導的產業創新生態的重要組成部分。研究型大學和科研院所在基礎研究、技術開發和人才培養領域的努力,持續提升我國人工智能產業集群的國際競爭力。包括清華大學和北京大學在內的國內18所高校成為全國首批集成電路科學與工程一級學科博士學位授權點。截至2022年3月,全國共有440所高校設置人工智能本科專業、248所高校設置智能科學與技術本科專業、387所普通高等學校高等職業教育(專科)設置“人工智能技術服務”專業。
創建新型創新組織激活政產學研用協同創新活力,形成基礎研究、技術研發、應用創新和產業孵化無縫對接的新體制和新機制,是推動人工智能科技創新和產業發展的重要途徑。截至目前為止,本報告共發現人工智能領域新型創新組織347家,廣泛分布在京津冀、長江三角洲和珠江三角洲等地區。其中,以鵬城實驗室、之江實驗室和上海人工智能實驗室為代表的人工智能實驗室,成為人工智能產業化領域最為活躍的新型創新組織。
創新的“極化”和“擴散”
作為通用目的技術,人工智能的科技創新和產業發展遵循先“極化”后“擴散”的規律。報告基于2200家我國人工智能骨干企業的技術合作關系的區域、應用、技術和產業領域分布,刻畫我國人工智能產業集群的“極化”和“擴散”情況。
(一) 區域
從技術合作關系看,北京市、廣東省和上海市構成了我國人工智能產業集群價值網絡的三個“極點”。同時,北京市、廣東省、上海市、江蘇省、安徽省、四川省、湖北省、湖南省、重慶市、山東省和福建省之間存在密集的人工智能技術合作關系。
從技術合作的流向看,我國人工智能科技產業發展仍然以“極化”為主。排名第一和第二的是北京市和廣東省內部技術合作,占比為10.87%和9.36%。廣東省和北京市、北京市和廣東省的技術合作排名第三和第四,占比6.91%和6.08%。在某種程度說,北京市和廣東省共同構成了中國人工智能產業集群發展的南北“雙極”。
從城市之間的技術合作流動情況看,北京市、深圳市、廣州市和上海市是技術合作關系密度最高的城市。尤其是北京市和深圳市、廣州市的技術合作,成為人工智能技術“極化”和“擴散”的主要方向。
從城市之間的技術合作關系看,排名第一的是北京市內部技術合作,占比10.87%;排名第二、第三和第四的分別是深圳市和北京市、深圳市和深圳市、北京市和深圳市的技術合作。從城市的視角看,北京和深圳構成了人工智能技術合作關系流動的南北“兩極”。
(二) 應用領域
隨著科技創新步伐的加快,人工智能和經濟社會進入全面融合發展新階段。在人工智能技術合作密度高的應用領域和產業領域,開始出現產業智能化創新集群。
基于2200家人工智能骨干企業的關系數據量化分析表明,我國人工智能已經廣泛應用在包括企業智能管理、智能營銷與新零售、智能金融、智慧城市、智能醫療、新媒體和數字內容、智能制造、智能教育、智能交通、網絡安全、智能物流、智慧文旅、智能政務、智能能源、智能硬件、智能網聯汽車、智能家居、智能農業和智能安防在內的19個應用領域。排名第一的是智慧城市,占比12.16%;排名第二的是企業智能管理,占比12.10%;排名第三的是智能制造,占比8.89%;排名第四和第五的分別是智能營銷與新零售和智能網聯汽車,占比8.41%和8.07%。
(三) 產業領域
在三次產業中,人工智能技術合作關系分布密度最高的是第三產業,占比75.49%;其次是第二產業,占比23.82%。在第三產業中,排名第一的是信息傳輸、軟件和信息技術服務業,占比28.46%;排名第二的是科學研究和技術服務業,占比21.17%;排名第三的是租賃和商業服務業,占比10.75%;排名第四和第五的分別是金融業、批發和零售業,占比10.68%和9.62%。
在第二產業中,制造業占比最高,為87.36%。在制造業中,排名第一的是計算機、通信和其他電子設備制造業,占比28.16%;排名第二的是汽車制造業,占比25.41%;排名第三的是電氣機械和器材制造業,占比9.30%。
(四) 技術類別
人工智能和經濟社會的深度融合發展帶動人工智能技術的體系化、復雜化和專用化。到目前為止,人工智能已經發展為包括大數據和云計算、物聯網、智能機器人、智能推薦、5G、區塊鏈、語音識別、虛擬/增強現實、智能芯片、計算機視覺、自然語言處理、生物識別、空間技術、光電技術、自動駕駛、人機交互和知識圖譜17種技術在內的復雜技術體系。同時,隨著人工智能在19個應用領域的創新應用,技術體系的演化日益表現出專用化趨勢。
(五) 集群發展的重點領域
從創新“極化”和“擴散”的區域、應用、技術和產業領域的分布情況看,隨著人工智能科技創新,包括智能制造、智能芯片、智能網聯汽車、科技研發和服務、智慧醫療和智慧教育在內的重點產業領域的創新集群,是人工智能科技產業集群發展的前沿。例如,2019年以來,在智能芯片產業的發展上,涌現出包括阿里平頭哥、百度昆侖芯、華為海思、壁仞科技和一微半導體在內的一批智能芯片研發設計公司。平臺企業通過打造包括智能芯片、操作系統、機器學習平臺和預訓練大模型在內的根技術創新體系和軟硬件協同創新生態,為創新集群構筑技術底座。
在智能網聯汽車產業,形成了以百度和華為為“雙核”的軟硬件協同產業創新生態。傳統汽車企業、造車新勢力、中小企業和新創企業的加入,加速了智能網聯汽車產業集群的發展。同時,中國新一代人工智能發展戰略研究院的社會實驗研究表明,我國在發展智能網聯汽車產業上具有良好的社會氛圍。隨著人工智能和汽車產業的深度融合,智能網聯汽車產業集群將成為人工智能和實體經濟融合發展的代表。
隨著生成式人工智能的發展,人工智能在科技研發、服務和教育領域的創新應用將引發新一輪產教融合,是人工智能產業集群發展的新前沿。人工智能帶來的創新生產方式的變革,不僅帶來產業的快速發展,而且帶來科技創新范式和教育范式的新變革。
面臨的挑戰和政策建議
人工智能是全球科技和產業競爭的焦點。在深科技創新驅動下,在中國正在形成與美國相抗衡的人工智能創新聯盟。構建自主可控技術體系和軟硬件協同創新生態,是培育和發展具有全球競爭力的人工智能產業集群的戰略目標。
盡管取得了前所未有的成就,但是在建設具有全球競爭力的人工智能產業集群的過程中,我們還面臨著來自美國技術封鎖、技術體系存在短板和頭部平臺企業技術升級相對緩慢帶來的挑戰。加速發展具有產業賦能能力的新型平臺及其主導的產業創新生態、高水平規劃和發展新型創新區、建設高度開放的創新系統推動與世界各國的技術合作、推動通用人工智能和專用人工智能的融合,是應對挑戰和加快人工智能產業集群國際競爭力提升的戰略支撐。
來源:浪潮 近日,IDC與浪潮信息聯合發布《2022-2023 中國人工智能計算力發展評估報告》(以下簡稱《報告》)。《報告》指出,中國人工智能計算力繼續保持快速增長,2022年智能算力規模達到268百億億次/秒(EFLOPS),超過通用算力規模。預計未來5年中國智能算力規模的年復合增長率將達52.3%。 《報告》從人工智能計算力產業發展趨勢、區域算力分布和行業滲透度等維度進行全面評估,旨在科學描繪中國人工智能發展的階段和整體情況,為推動數字經濟與實體經濟的融合提供極具價值的參考依據和行動建議。 01
智能算力規模持續擴大,算力、算法基建化成為共識
智能算力對于提升國家、區域經濟核心競爭力的重要作用已經成為業界共識。 隨著“東數西算”工程的啟動以及智能計算中心的建設,從國家層面實現有效的資源結構整合,助力產業結構調整,構建更為健全的算力、算法基礎設施。 目前,國家在8地啟動建設國家算力樞紐節點,并規劃了10個國家數據中心集群,協調區域平衡化發展,推進集約化、綠色節能、安全穩定的算力基礎設施的建設。
中國智能算力規模及預測,2019-2026
IDC預測,中國智能算力規模將持續高速增長,預計到2026年中國智能算力規模將達到1271.4EFLOPS,未來五年復合增長率達52.3%,同期通用算力規模的復合增長率為18.5%。 02
人工智能城市排行榜
《報告》針對不同城市在人工智能投資規模、相關政策支持力度、政策落地情況和實施進展、人工智能技術成熟度,以及勞動供給等維度的情況,對中國城市人工智能發展進行綜合評估。 在2022年中國人工智能城市排行榜中,北京、杭州、深圳繼續保持前三名,上海和廣州分列第四、五名,其中北京連續四年蟬聯首位,天津首次進入前十,成都、蘇州、南京、濟南保持前十。 綜合TOP10城市發展情況,頭部城市的共性特征是,較早的政策引導和配套政策保障,充分的智算基礎設施規劃、投入,達到上百家AI企業集聚、十萬級人才保障,千億級AI產業集群規模。
近五年人工智能TOP10城市排名變化
城市智能算力的投入已經成為推動區域數字經濟發展,加速人工智能產業創新的重要支撐,除了TOP10城市之外,合肥、武漢、長沙等多個城市在自身產業優勢及各種因素推動下,人工智能應用也取得了較大進展。 此外,一些城市深耕特定的人工智能應用并取得了明顯成果,成為城市智能化新標簽,如安徽宿州淮海智算中心、浙江青田元宇宙智算中心陸續投建。 03
互聯網、金融、政府、電信和制造等行業AI滲透度提升
從行業維度看,2022年中國人工智能行業應用滲透度排名前五的行業依次為互聯網、金融、政府、電信和制造。與21年相比,行業AI滲透度明顯提升。 其中,互聯網行業依然是人工智能應用滲透度和投資最高的行業;金融行業的人工智能滲透度從2021年的55提升到62,智能客服、實體機器人、智慧網點、云上網點等成為人工智能在金融行業的應用典型;電信行業的人工智能滲透度從2021年的45增長到51,人工智能技術融入電信網絡的構建、優化,并為下一代智慧網絡建設提供支撐;制造行業的人工智能滲透度從40增長到45,預計到2023年年底,中國50%的制造業供應鏈環節將采用人工智能。
中國人工智能行業滲透度,2022vs2021
從場景應用維度看,智能化場景在行業的落地隨著時間的推移,正呈現出更加深入、更加廣泛的趨勢。 人工智能持續為提升用戶體驗做出貢獻,當前諸如智能客服、智能推薦、精準營銷等場景深入落地到各行業;人工智能也在精準科學防疫,加強公共衛生安全體系建設中承擔重要角色,在病毒演變預測、疫苗藥物研發、輔助診斷等維度實現廣泛應用;長期來看,企業通過在數字人等數字化營銷內容創作領域布局,創造差異化的營銷體驗,升級品牌形象;另外,科學家們越來越多地利用人工智能技術和方法,從數據中建立模型,重點圍繞新藥創制、基因研究、新材料研發等領域加速對前沿科學問題的探究。
人工智能應用場景發展
04
算力多元化發展提速,大模型加速行業落地
《報告》從算力層面,對人工智能芯片、服務器、 計算架構、算法及應用等方面的發展近況進行了全面分析。 從整體看AI服務器是人工智能市場增長的主力軍。IDC數據顯示,2021年全球人工智能服務器市場的同比增速為39.1%,超過全球整體人工智能市場增速(20.9%),是整體人工智能市場增長的推動力。中國AI服務器市場領跑全球,2021年人工智能服務器市場規模59.2億美元,與2020年相比增長68.2%,預計到2026年,中國人工智能服務器市場將達到123.4億美元。 從人工智能芯片角度,人工智能產業技術不斷提升,產業AI化加速落地,推動全球人工智能芯片市場高速增長。IDC預計,到2025年人工智能芯片市場規模將達726億美元。異構計算成為主流趨勢,未來18個月全球人工智能服務器GPU、ASIC和FPGA的搭載率均會上升,算力多元化發展趨勢明顯。 從計算架構發展來看,基于 DSA( Domain-Specific Architectures)思想設計的人工智能芯片正在成為主導,推動了人工智能芯片多元化發展。多元算力從“能用”到“好用”并且為企業創造業務價值,離不開通用性強、綠色高效、安全可靠的計算系統的支持。業內正在推動多元算力系統架構創新,基于計算節點內和節點間的互聯技術破局現有計算架構的瓶頸,通過充分調動起多芯片、多板卡、多節點的系統級能力,實現各種加速單元以及跨節點系統的高效協同,提升計算性能。 《報告》對于大模型的行業落地和發展情況也進行了分析。IDC調研顯示,未來超過80%的組織會優先考慮購買預先訓練好的人工智能模型。大模型是智算力驅動下典型的重大創新,被認為是“通用智能”的雛形,是業內探索實現普惠人工智能的重要途徑之一。 大模型發展的背后是龐大的算力支撐,例如AI+Science領域的AlphaFold2、自動駕駛系統、GPT-3等模型訓練需要幾百甚至幾千PD(PetaFlops/s-day,PD)的算力當量支持。 2022年,大模型正在成為AIGC領域發展的算法引擎,文生圖、虛擬數字人等AIGC類應用將快速進入到商業化階段,并為元宇宙內容生產帶來巨大的變革。 05
智能算力成為數字化創新的源動力
人工智能算力的增長為人工智能的持續創新發展提供支撐。宏觀層面,人工智能算力為國家創新力的發展帶來實質性推進,不僅在應用科學的突破上發揮了重要作用,也開始滲透到基礎科學領域,極大提高了科學研究的效率和科學發展的進程。 《報告》指出,人工智能應用正在從單點技術到多種技術能力融合方向發展、從事后分析向事前預判和主動執行方向發展、從計算智能和感知智能向認知智能和決策智能方向發展,創新應用場景逐步增多。 未來五年,隨著人機交互、機器學習、計算機視覺、語音識別技術的成熟,人工智能將在企業市場中加快應用與落地,智能算力將成為未來創新的核心推動力。 具體內容如下
自2017年國務院印發實施《新一代人工智能發展規劃》以來,人工智能產業被上升為國家戰略的高度,人工智能技術的基礎研究、產業轉化和傳統行業應用都取得了長足的進展。人工智能技術既有獨特的自身產業屬性,又具有明顯的對其它產業賦能、促進實體經濟發展的特征,因而應用范圍和影響力極為廣泛。它所涉及的知識產權問題也具有很強的時代性,尤其在近年實體經濟融合和產業數字化轉型的過程中,也產生了許多新的挑戰。
自2018年起,由AIIA學術與知識產權工作組組織,在上海交通大學蘇州人工智能研究院的牽頭下,聯合各會員單位、法學界、人工智能產業界、知識產權服務機構等在內的專業團隊,分年度組建了人工智能產業知識產權研究課題組,對不斷產生的新問題和挑戰進行研究,并將研究成果以白皮書的形式發表出來。
2018年課題組由11家單位組成,發布《2018人工智能產業知識產權與數據白皮書》(以下簡稱“2018白皮書”),從基本法律概況(保護端)、專利分析(創新端)和專利價值評估(運營端)三個具體角度,呈現了AI領域的知識產權現狀,并通過既有爭議和案例的展示,對數據相關權利的幾個主要問題進行了梳理。2018白皮書一經發布,就在社會各界引起了強烈反響。
在此基礎上,2019年更多單位主動參與,21家單位協同工作,擴大研究范圍,提供了更多詳實的數據,完成《人工智能產業知識產權白皮書2019》(以下簡稱“2019白皮書”),形成了更為規范和完整的框架,即:以人工智能的定義和分類標準為開篇引領,在共識的定義和標準下進行專利檢索以及基于檢索事實的專利分析,之后結合知識產權布局現狀對人工智能企事業單位面臨的知識產權實務問題進行了一定的分析和探討。
在2019年白皮書初步形成的“內涵定義-專利檢索和分析-知識產權實務”的結構框架下,2020年課題組進一步擴大規模,50余家單位參與進來,進行全面而細致的討論和事實補充,形成了《中國人工智能產業知識產權白皮書2020》(以下簡稱“2020白皮書”)。2020白皮書第一章和第二章從基礎層、感知認知層、行業應用層、綜合運用層4個層面22個子主題,展現當下人工智能全產業鏈的產業發展狀況和專利布局趨勢;第三章至第六章內容覆蓋人工智能知識產權管理工作的主要環節——知識產權創造、運用、保護、風險防控,成為人工智能領域知識產權相關實務工作的實操指南。
2021年,仍有50家左右單位參與白皮書的制作。針對白皮書篇幅龐大的問題,課題組對知識產權白皮書形式進行了革新:根據主題的不同,將白皮書總體劃分成三個分冊和一個案例選編,形成《中國人工智能產業知識產權白皮書2021》的《分冊一:產業專利分析白皮書》(簡稱“專利分析白皮書”)、《分冊二:數據治理白皮書》(簡稱“數據治理白皮書”)、《分冊三:知識產權管理白皮書》(簡稱“知識產權管理白皮書”)和《附錄:知識產權優秀案例選編》(簡稱“案例選編”),其中:
專利分析白皮書重點在于人工智能基礎層、感知認知層和行業應用層上的技術和專利分析,展現人工智能在產業鏈上的發展狀況和專利布局趨勢,除了提供權威統計數據和分析結論外,還延續了2019年、2020年白皮書的傳統,即專利檢索式、檢索策略、數據來源等信息全部公開,充分體現了編纂作者的奉獻精神與白皮書的公開透明。相較于往年,白皮書緊跟AI熱點技術,在行業應用層中新增了智能媒體、智慧城建兩個新型領域的專利分析;
數據治理白皮書聚焦于當前熱點的人工智能數據治理話題,介紹了全球人工智能數據相關政策、數據合規和安全風險及其應對措施,并提供了豐富的案例和解析,來力爭讓人工智能從業者從中獲得啟發,指導實踐工作,盡量避免觸犯法律紅線,這也是課題組在歷屆白皮書中首次對人工智能數據治理這一主題進行系統地研究和介紹;
知識產權管理白皮書側重于人工智能企事業單位對知識產權的高質量創造、保護、許可運營、開源、技術秘密等方面的管理,包括高價值專利培育、應對海外審查規則、標準必要專利及其許可、風險防控、專利商標技術秘密的保護、管理體系的高質量建設等方面的研究等,并提出相關的實務工作建議;
另外,本白皮書還附有工作組征集的來自小米、眼控科技、中國移動、商湯、快手、追一、同方威視等多個企業的、各具特色的知識產權優秀案例,涉及人工智能企業知識產權制度體系建設、專利布局、專利侵權風險管理、企業知識產權管理服務、技術和專利的協同融合、專利資本化等多個領域,供聯盟單位及社會各界同行進行學習和參考。
2021年將以年度白皮書合集的方式發布各個白皮書分冊和案例選編。我們希望2021年度白皮書合集有助于從業者和決策者清晰并精準了解人工智能領域的知識產權發展現狀和未來趨勢,以及其中的風險和應對措施,并以此制定專業合理的知識產權工作策略、管理體系與框架,共同推動人工智能領域技術的發展與運用。
人工智能作為新一輪科技革命和產業變革的戰略性技術,正在對經濟發展、社會進步、全球治理等方面產生重大而深遠影響,加快人工智能基礎設施布局已成全球主要國家戰略重點。
人工智能基礎設施作為“新基建”的重要部分,我國重視并積極支持人工智能基礎設施建設發展,在公共數據集、行業資源庫、計算平臺、AI 芯片、算法學習框架、開放 AI 平臺、網絡基礎設施等人工智能基礎設施方面重點布局。報告認為人工智能基礎設施是以算力要素能力、數據要素能力、算法要素能力構成的基礎能力平臺為底座,以應用開放平臺等為主要載體,以賦能制造、醫療、交通等重點行業和領域智能化轉型為目標,為實現壯大智能經濟、構建智能社會的專有服務設施能力體系。當前,我國人工智能基礎設施尚處于初期,發展迅猛,其發揮的效力及釋放的價值還有很大的想象空間。
來源:DeepTech深科技
2022 年《“十四五”數字經濟發展規劃》指出,打造繁榮發展的數字經濟,關鍵之一即有序推進基礎設施智能升級,高效布局人工智能基礎設施;到 2025 年,數字經濟核心產業增加值占國內生產總值比重將達 10%。
數字經濟作為繼農業經濟、工業經濟之后的主要經濟形態,已進化到以“人工智能”為核心驅動力的智能經濟新階段。
為洞徹 AI 產業與生態現狀,《麻省理工科技評論》(MIT Technology Review)中國發布《2021 中國數字經濟時代人工智能生態白皮書》。
白皮書圍繞一個主題“ AI 生態”,三個關鍵詞“技術、產業、開放平臺”,統觀 AI 技術在多行業落地情況,剖析開放平臺對于 AI 產業生態繁榮的效能與價值,解析典型公司在 AI 產業生態建設方面的創新實踐,并結合技術、產業和平臺發展現狀,研判 AI 生態發展趨勢。
AI 生態繁榮的表征:技術深入千行百業,共建千億美元市場
在全球范圍內,各行各業都在擁抱人工智能,被其高度賦能、深度滲透。根據 CB Insights、德勤等機構預測數據,2021 年全球人工智能市場規模達千億美元級別,主要應用場景為醫療、金融、城市、教育、制造等。
圖 | 2021 年人工智能賦能多領域市場規模(來源:公開數據統計)
教育領域:
從在線教育到因材施教,AI 改變教育體系的運作方式,并賦予教師和學習者智能化學習權力。隨著 AI 與教育深度融合,將進一步促進教育變革創新,實現“平等面向每個人的教育、適合每個人的教育、更加開放靈活的教育”美好愿景。
醫療領域:
從輔助診斷到發現藥物, AI 深度改變醫療行業底層工具能力,賦能醫療領域的各個主要角色,實現各場景商業模式創新。
交通出行領域:
從自動駕駛到交通大腦, AI 讓城市交通環境及交通工具具備感知、互聯、分析、預測、控制等能力,這已然成為未來交通出行重要發展方向。
金融領域:
從智能支付到智能風控, AI 集中提升金融主體的內外部效率、提升用戶的全流程體驗、提升金融服務的數智化程度。未來,AI 將引領金融領域發生三大趨勢變革:后端金融系統性業務數字化和自動化、前端金融產品在線個性化、金融全流程服務智能化和彈性化。
智慧城市領域:
從城市安全到智能決策,AI 正規模化地在城市各類應用場景中落地,不僅延展城市各模塊資源的融合利用廣度,還幫助城市管理者管理決策科學化、城市公共服務智能化,城市生活正變得愈加智慧。
工業領域:
從智能制造到智慧電力,AI 正深度構建行業應用場景,實現產品設計、制造執行、供應鏈、產品全生命周期等全產業鏈智能化管理應用,賦能制造、電力等多個領域,加速推進工業智能化轉型發展。
企業內部生產管理環節,從經營到生產, AI 結合 RPA 、數據可視化等融合應用,為企業管理鏈條中的各項職能,如生產制造、經營管理、營銷服務等提供全周期智能化解決方案。
AI 與實體經濟融合在多行業已初見成效。未來十年,AI 生態系統將推動 AI 技術加速“下沉”到千行百業,保持在第三產業的持續發展和滲透趨勢,加大對第一、第二產業的全面賦能。
AI 生態繁榮的載體:AI 平臺化趨勢彰顯,開放平臺是實現普惠人工智能的方式之一
從技術落地的角度來看,人工智能技術逐漸成為數字時代的基礎能力,不斷滿足中小型企業輕量級、個性化的 AI 應用需求。但不可否認,部分企業在部署 AI 工具時仍存在一些限制門檻,如技術人才儲備不足、 AI 應用部署困難、投入產出比不達預期等,企業無法實現輕松構建 AI。
就企業端而言,其普遍需求是可輕松部署 AI 的定制委托開發方案。推進 AI 普惠化的一個關鍵便是要降低 AI 應用的門檻。AI 開放平臺內含數據智能標注、智能模型開發以及云原生應用部署等基礎功能模塊,通過訂閱 API 、AI SaaS 化等形態輸出,大大降低了客戶獲取 AI 能力、開發 AI 應用的門檻,推進普惠化 AI 進程。
以 AI 開放平臺為載體,釋放通用型數據模型,已成為人工智能企業主要的發展方式之一。
不少企業積極布局 AI 開放平臺,以開放平臺支撐 AI 產業生態發展。如百度、騰訊、阿里和科大訊飛等,均通過開放平臺聚合技術、人才、產業資源,實現產業生態繁榮。
騰訊 AI 開放平臺連接騰訊 AI 能力與產業,依托騰訊云 AI 新基建布局,推動 AI 技術和應用進步;阿里云與達摩院強聯動,提供的 AI 開放服務涉及百余種場景的視覺 AI 開放能力,以及語音、機器翻譯、決策、業務增長引擎等能力。
科大訊飛作為領先的智能語音技術提供商,依托其在語音合成、語音識別、常識推理、知識圖譜等技術上的領先優勢,推出全球首個開放的智能交互技術服務平臺——訊飛開放平臺,致力于為開發者、企業打造一站式智能人機交互解決方案。
受下游應用需求及宏觀政策紅利推動,近幾年中國開放平臺市場規模穩步增長。2021 年中國 AI 開放平臺市場規模達百億元,預計未來五年,中國 AI 開放平臺市場年復合增長率有望達到 60% 。
圖 | 數說 AI 開放平臺市場繁榮發展(數據來源:專家訪談、《麻省理工科技評論》中國)
AI 生態再度進階:開發者、AI 企業龍頭和行業龍頭共筑三維 AI 生態
未來,AI 生態發展模式將再度進階。由 AI 技術領域龍頭企業,聯合資源豐富、平臺能力強的行業領軍者,共同搭建行業技術基座。面向廣大開發者開放眾多場景,構成新一代 AI 開放平臺,三方共筑產業 AI 化時代到臨。
新一代 AI 開放平臺將匯集開發者、AI 技術頭部企業及各行業龍頭企業。開放平臺逐步釋放核心資源、聯動多方實現共創,技術商業化落地不再是企業單打獨斗,而是由關系密切的價值聯盟聯手合建。
圖 | AI 開放平臺參與者由二維向三維進階(來源:《麻省理工科技評論》 中國)
開發平臺內三方參與者能相互驗證,為產業落地提供必要的技術和資源支持。面對一些特殊的數字化轉型需求,三方可在生態中交流、互動、打通,集合生態伙伴的技術優勢提供系統化解決方案。
當下,AI 產業已經步入深化場景攻堅期,人工智能正依托場景的智能化應用,持續深挖數據的隱藏價值。企業通過構建強大的 AI 能力,實現業務效率提升及創新商業模式的變革。
展望未來,源頭技術不斷革新、技術應用深入場景、開放平臺建設愈加完善......數字經濟時代下的 AI 企業和行業公司,可汲取 AI 開放平臺養分,聚合資源、高效協作、充分技術優勢,實現生態共生、共創、共榮、共贏。
中國人工智能在零售領域的應用前景如何
人工智能(AI)在零售領域應用是指人工智能計算機視覺、智能語音等人工智能技術在零售場景中的落地應用,其通過為零售行業的參與主體、不同業務環節賦能,進而實現對零售行業的整體升級和改造。人工智能技術應用于零售領域,促使“人-貨-場”的結構發生變化,其信息流轉速度加快,數字化程度持續提高。在政策利好、零售行業增長乏力、人工智能技術持續進步等因素驅動下,中國人工智能在零售領域應用行業市場規模將持續擴大,預計于2025年達到67.7億元。
1. 智能客服、精準營銷等是人工智能在零售領域的主要應用場景 人工智能應用于零售領域的關鍵技術包括計算機視覺、智能語音、自然語言處理、機器學習、知識圖譜等。現階段這些技術在智能客服、精準營銷等場景下應用較為成熟。隨著人工智能技術持續進步,其將可在零售領域實現大規模的應用。
2.零售行業增速乏力,急需AI等新技術助力轉型 2015-2020年期間,中國社會消費品零售總額和網上零售總額的增速逐步下降,2020年其增速分別為-3.9%、10.9%,零售行業增速乏力。同時零售行業是典型的勞動力密集型行業,在供應鏈、客服、營銷、運營、銷售等不同環節均需大量人力資源,但中國勞動力市場逐年緊縮,零售行業面臨用工短缺問題,當前中國連鎖零售行業人才缺口約達500萬人。因此,零售企業需利用AI等新技術對收銀、客服、營銷、門店管理等環節進行智能化改造,在提升人員效率、節省人力成本的同時,以獲取新的業務增長點。
3.云服務巨頭在AI+零售行業更具優勢
中國人工智能在零售領域應用行業參與者眾多,參與者入局基礎差異性顯著,主要包括云服務企業(阿里云、騰訊云等)、AI技術企業(第四范式、商湯科技等)以及傳統零售企業(蘇寧等),其中,阿里云、騰訊云等在零售業進行布局的云服務企業在行業中更占優勢。
人工智能技術是使人造機器具備類人類智能、模擬人類學習、認知、感知能力的信息技術,感知層人工智能技術發展成熟,多項應用方案實現規模落地,認知層人工智能技術將是實現下一代人工智能技術突破的關鍵。
中國工業領域人工智能技術滲透率較低,人工智能技術的應用主要集中于產品生產環節。工業領域各應用場景可用樣本數量的缺乏,是工業領域人工智能技術實現落地的主要制約因素之。
機器視覺技術在工業領域中應用廣泛,核心功能包括產品識別、測量、定位及檢測,是實現產品分揀、裝配、搬運、質檢等多個生產環節智能化轉型的核心技術,相較于人工生產具備降本增效等顯著優勢。
中國工業領域人工智能行業產業鏈上游以傳感器及AI芯片制造商與AI算法提供商為主體,產業鏈中游以輔助研發系統及智能生產系統提供商與工業機器人制造商為主體,產業鏈下游涵蓋工業領域各細分市場。
但是中國工業傳感器行業發展進入成熟期,主要增長動力來自于工業制造規模的增長與智能制造的應用,受制于人工智能技術在工業領域的滲透率增長速度較低,短期內中國工業傳感器市場需求增長速度預計將持續下行。
CMOS圖像傳感器成為圖像傳感器應用市場主流應用選擇;全球CMOS圖像傳感器市場集中度較高,壟斷效應明顯,龍頭企業占據高端CMOS圖像傳感器市場主導地位,對下游客戶具備較強主動議價能力。
應用于AI算法運行的處理器芯片以GPU、FPGA及ASIC三類芯片為主;發展起步較早的GPU芯片已實現規模化應用,具備更強的性能及更低的功耗的高度定制化ASIC芯片市場發展空間較大。
第四屆世界智能大會在津召開期間,中國新一代人工智能發展戰略研究院發布了《中國新一代人工智能科技產業發展報告?2020》和《中國新一代人工智能科技產業區域競爭力指數?2020》。報告指出,中國人工智能科技產業發展已經步入融合產業部門主導的新階段。人工智能和實體經濟的深度融合正在成為驅動中國經濟轉型升級和可持續發展的動力源泉。
據中國新一代人工智能發展戰略研究院首席經濟學家、南開大學經濟研究所所長劉剛介紹,作為第四次工業革命的引擎,人工智能技術屬于典型的通用技術(General Purpose Technologies)。從前三次工業革命發生發展的歷程看,通用技術只有與經濟社會全球融合的條件下,才能成為帶動經濟長期發展的驅動力量。通用技術創新和產業化創造出前所未有的“關鍵生產要素”,例如,第一次工業革命的蒸汽機和第二次工業革命的電力。“關鍵生產要素”具有廣泛的應用領域、低成本和無限供給的特征。當“關鍵生產要素”被廣泛投入到現有產業,不斷提高企業和產業的生產力水平,才能帶來經濟和社會的長期發展。例如,作為第二次工業革命通用技術的電力,從照明到生產流程的改造再到以電力為能源的生活用品的普及,在與經濟社會融合的過程中,不僅帶來了社會生產力的大幅躍升,而且改變了人類的生產和生活方式。
第四工業革命的核心技術是包括互聯網、物聯網、大數據、云計算、區塊鏈、5G和人工智能在內的新一代信息技術。新一代信息技術的產業化使“數據和計算”成為第四次工業革命的“關鍵生產要素”。數據是網絡空間的所有存在物,是網絡空間對物理和社會空間映射的產物。網絡空間及其與物理和社會空間的互動和融合產生海量數據,大數據、云計算和區塊鏈技術解決了數據的采集、整理、存儲和分析。人工智能則實現了數據的精準匹配、仿真模擬和優化控制。作為新型基礎設施建設的重要內容,5G保證了網絡空間的發展和數據的瞬時傳輸。新一代信息技術的發展使“數據和計算”成為類似蒸汽機和電力一樣的廉價投入品,為賦能和改造現有產業創造條件。
作為通用技術,在人工智能科技產業的發展過程中,形成了兩個主要產業部門:核心產業部門和融合產業部門。核心產業部門是指包括人工智能在內的新一代信息技術產業化過程中創造的新興產業部門。核心產業部門產出“數據和計算”。而融合產業部門則是人工智能與實體經濟融合發展過程中創造的產業部門,例如,智能制造、智能交通、新零售、新媒體和數字內容產業。融合產業部門把“數據和計算”作為投入品,產出則是我們日常生產和生活中的智能化產品。
中國新一代人工智能發展戰略研究院對人工智能科技產業的動態追蹤研究表明,隨著核心產業部門的發展和核心技術的成熟,面對新冠疫情的沖擊和包括5G在內的新型基礎設施建設步伐的加快,中國的人工智能科技產業開始步入融合產業部門主導的新發展階段。
首先,從797家中國人工智能骨干企業中的581家應用層企業的應用領域分布看,人工智能技術已經廣泛分布在十八個應用領域。其中,企業技術集成與方案提供、智能機器人兩個應用領域的企業數占比最高,分別為15.43%和9.66%。關鍵技術研發和應用平臺、新媒體和數字內容、智能醫療、智能硬件、金融科技、智能商業和零售和智能制造領域企業數占比相對較高,分別為8.91%、8.91%、7.65%、7.03%、6.65%、6.52%、6.15%。智能農業的占比最低,僅為0.75%。企業技術集成與方案提供和關鍵技術研發及應用平臺占比排名第一和第三位,說明在人工智能與實體經濟的融合發展過程中,技術集成和應用方案提供發揮著至關重要的作用。而智能機器人企業數排名第二則說明制造業的智能化是人工智能發展的迫切需求。
在581家人工智能樣本企業中,可獲得577家企業截至2019年底的融資數據。通過577家企業所屬產業領域的融資額占比,可以看出哪些應用領域更受資本的青睞。從人工智能應用領域企業融資額的分布看,智慧零售、新媒體和數字內容、智慧金融類應用領域的融資額最高,占比分別為18.37%、15.96%和15.94%。除此以外,關鍵技術研發和應用平臺、智慧交通、智能硬件融資額占比在5%以上,屬于占比較高的應用領域。
其次,人工智能基礎和技術層企業通過與實體經濟企業的協同,共同構建產業智能化創新生態,推動人工智能與實體經濟的融合發展。其中,最為典型的是智能安防產業的發展。在傳統安防產業智能化的過程中,圍繞著視頻數據結構化、智能終端和邊緣計算在內的關鍵技術突破,形成了富有活力的產業創新生態系統。在智能制造、智能醫療、智能交通、金融科技和智能教育等領域,都出現了產業智能化創新生態系統。適合于特定產業領域智能化的創新生態系統建設,成為人工智能與實體經濟深度融合發展的標志。
第三,處于“極化”中的人工智能核心產業部門企業,通過與其他地區優勢產業企業的合作,通過技術“擴散”,推動人工智能與實體經濟的融合發展。該報告基于15家人工智能開放創新平臺和4家計算機視覺獨角獸公司的技術“擴散”數據分析表明,通過與其他地區優勢產業的合作,共同推動人工智能與實體經濟的融合發展。其中,電子信息制造業和汽車制造成為智能化發展的前沿產業。
最后,傳統產業的龍頭企業,通過自主創新、技術引進和與核心技術企業合作的方式,轉型升級為人工智能企業,成為推動人工智能與傳統產業融合發展的主導者。報告基于50家非初始人工智能上市公司的分析表明,傳統產業的龍頭企業通過智能化轉型,與掌握人工智能核心技術的企業共同構建產業創新生態系統,推動產業的智能化。從技術來源看,50家非初始人工智能上市公司主導的融合產業部門的技術來源,主要是核心產業部門的人工智能初創企業,占比為16%。其次是人工智能上市公司,例如,阿里巴巴和科大訊飛,占比為16%,排名第三和第四的分別是非初創人工智能技術公司和獨角獸公司,占比為10%和7%。除了平臺公司,人工智能初創企業和中小企業是產業智能化的重要技術來源方。
在系統調查研究的基礎上,報告發現,人工智能與實體經濟的融合發展,不是簡單的技術引進和集成,而是一系列互補性創新和專用技術體系的形成過程。因而,推動人工智能與實體經濟融合發展需要創新思維。尤其是對后發地區而言,不能僅僅把工作的重心放在招商引資上,而應當重視通過培育和構建適宜當地產業智能化需求的產業創新生態系統和創新創業環境,通過互補性創新和專用性技術積累,才能通過人工智能與當地優勢產業的融合發展過程中,不斷提升區域企業和產業競爭力。
主題: 2019年人工智能的發展
摘要:
人工智能是一個很寬泛的概念,概括而言是對人的意識和思維過程的模擬,利用機器學習和數據分析方法賦予機器類人的能力。人工智能將提升社會勞動生產率,特別是在有效降低勞動成本、優化產品和服務、創造新市場和就業等方面為人類的生產和生活帶來革命性的轉變。據Sage預測,到2030年人工智能的出現將為全球GDP帶來額外14%的提升,相當于15.7萬億美元的增長。全球范圍內越來越多的政府和企業組織逐漸認識到人工智能在經濟和戰略上的重要性,并從國家戰略和商業活動上涉足人工智能。全球人工智能市場將在未來幾年經歷現象級的增長。據中國產業信息網和中國信息通信研究院數據,世界人工智能市場將在2020年達到6800億元人民幣,復合增長率達26.2%,而中國人工智能市場也將在2020年達到710億元人民幣,復合增長率達44.5%。
我國發展人工智能具有多個方面的優勢,比如開放的市場環境、海量的數據資源、強有力的戰略引領和政策支持、豐富的應用場景等,但仍存在基礎研究和原創算法薄弱、高端元器件缺乏、沒有具備國際影響力的人工智能開放平臺等短板。此份報告不但對人工智能關鍵技術(計算機視覺技術、自然語言處理技術、跨媒體分析推理技術、智適應學習技術、群體智能技術、自主無人系統技術、智能芯片技術、腦機接口技術等)、人工智能典型應用產業與場景(安防、金融、零售、交通、教育、醫療、制造、健康等)做出了梳理,而且同時強調人工智能開放平臺的重要性,并列舉百度Apollo開放平臺、阿里云城市大腦、騰訊覓影AI輔診開放平臺、科大訊飛智能語音開放創新平臺、商湯智能視覺開放創新平臺、松鼠AI智適應教育開放平臺、京東人工智能開放平臺NeuHub、搜狗人工智能開放平臺等典型案例呈現給讀者。最后,列舉國內外優秀的人工智能公司與讀者共勉。隨著技術的進步、應用場景的豐富、開放平臺的涌現和人工智能公司的創新活動,我國整個人工智能行業的生態圈也會逐步完善,從而為智慧社會的建設貢獻巨大力量。