亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

我們提出并分析了具有條件風險值(CVaR)的凸損失分布魯棒優化算法和有條件風險值的χ2發散不確定性集。我們證明了我們的算法需要大量的梯度評估,獨立于訓練集的大小和參數的數量,使它們適合大規模的應用。對于χ2的不確定性集,這些是文獻中第一個這樣的保證,對于CVaR,我們的保證在不確定性水平上是線性的,而不是像之前的工作中那樣是二次的。我們還提供了下界來證明我們的CVaR算法的最壞情況的最優性和一個懲罰性的版本的χ2問題。我們的主要技術貢獻是基于[Blanchet & Glynn, 2015]的批量魯棒風險估計偏差的新界和多層蒙特卡洛梯度估計器的方差。

//arxiv.org/abs/2010.05893

付費5元查看完整內容

相關內容

圖神經網絡(GNNs)的快速發展帶來了越來越多的新架構和新應用。目前的研究側重于提出和評估GNNs的具體架構設計,而不是研究GNNs的更一般的設計空間,后者由不同設計維度的笛卡爾積(如層數或聚合函數的類型)組成。此外,GNN設計通常專門針對單個任務,但很少有人努力了解如何快速為新任務或新數據集找到最佳GNN設計。這里我們定義并系統地研究了GNNs的架構設計空間,它包含了超過32種不同的預測任務的315000種不同的設計。我們的方法有三個主要創新:(1)一個通用的GNN設計空間;(2)具有相似度度量的GNN任務空間,這樣對于給定的新任務/數據集,我們可以快速識別/傳輸性能最好的架構;(3)一種高效的設計空間評價方法,可以從大量的模型-任務組合中提取洞察力。我們的主要結果包括:(1)一套設計性能良好的GNN的全面指南;(2)雖然針對不同任務的最佳GNN設計存在顯著差異,但GNN任務空間允許在不同任務之間傳輸最佳設計;(3)利用我們的設計空間發現的模型實現了最先進的性能。總的來說,我們的工作提供了一個原則性和可擴展性的方法,實現了從研究針對特定任務的個體GNN設計到系統地研究GNN設計空間和任務空間的過渡。最后,我們發布了GraphGym,這是一個用于探索不同GNN設計和任務的強大平臺。GraphGym具有模塊化的GNN實現、標準化的GNN評估和可重復和可擴展的實驗管理。

//arxiv.org/abs/2011.08843

付費5元查看完整內容

由于距離度量學習與深度神經網絡的無縫結合,近年來深度度量學習受到了廣泛的關注。許多人致力于設計不同的基于成對的角損失函數,將嵌入向量的大小和方向信息解耦,保證訓練和測試測度的一致性。但是,這些傳統的角度損失并不能保證在訓練階段所有的樣本嵌入都在同一個超球面上,這會導致批量優化時梯度不穩定,影響嵌入學習的快速收斂。本文首先研究了嵌入范數對角距離深度度量學習的影響,然后提出了一個球面嵌入約束(SEC)來規范范數的分布。SEC自適應地調整嵌入,以落在同一個超球體上,并執行更平衡的方向更新。在深度度量學習、人臉識別和對比自監督學習方面的大量實驗表明,基于SEC的角空間學習策略顯著提高了最先進的性能。

//arxiv.org/abs/2011.02785

付費5元查看完整內容

我們提出了VILLA,這是已知的第一個針對視覺和語言(V+L)表征學習的大規模對抗訓練。VILLA由兩個訓練階段組成: (一)任務不可知的對抗性預訓練; 其次(二)針對具體任務進行對抗性微調。為了避免在圖像像素和文本標記上增加對抗性擾動,我們建議在每個模態的嵌入空間中進行對抗性訓練。為了實現大規模訓練,我們采用了“free”對抗式訓練策略,并與基于KL發散的正則化相結合,提高了嵌入空間的高不變性。我們將VILLA應用到目前表現最好的V+L模型中,并在廣泛的任務中達到了新的水平,包括視覺問題回答、視覺常識推理、圖像-文本檢索、參考表達理解、視覺隱含和NLVR2。

//www.zhuanzhi.ai/paper/9ac766aec437a266e108f8dd71d3ab25

付費5元查看完整內容

大部分的深度學習模型主要包含如下的兩大模塊:輸入模塊以及表示學習模塊。自從NAS[1]的出現以來,神經網絡架構的設計上正在往數據驅動的自動機器學習方向演進。不過之前更多的研究都是聚焦在如何自動設計表示學習模塊而不是輸入模塊,主要原因是在計算機視覺等成熟領域原始輸入(圖像像素)已經是浮點數了。

輸入模塊:負責將原始輸入轉換為浮點數; 表示學習模塊:根據輸入模塊的浮點值,計算得到模型的最終輸出;

而在推薦、搜索以及廣告工業界的大規模深度模型上,情況卻完全不同。因為包含大量高維稀疏的離散特征(譬如商品id,視頻id或者文章id)需要將這些類別特征通過embedding嵌入技術將離散的id轉換為連續的向量。而這些向量的維度大小往往被當做一個超參手動進行設定。

一個簡單的數據分析就能告訴我們嵌入向量維度設定的合理與否非常影響模型的效果。以YoutubeDNN[2]為例,其中使用到的VideoId的特征詞典大小是100萬,每一個特征值嵌入向量大小是256。僅僅一個VideoId的特征就包含了2.56億的超參,考慮到其他更多的離散類特征輸入模塊的需要學習的超參數量可想而知。相應地,表示學習模塊主要包含三層全連接層。也就是說大部分的超參其實聚集在了輸入模塊,那自然就會對模型的效果有著舉足輕重的影響。

Google的研究者們在最新的一篇論文[3]中提出了NIS技術(Neural Input Search),可以自動學習大規模深度推薦模型中每個類別特征最優化的詞典大小以及嵌入向量維度大小。目的就是為了在節省性能的同時盡可能地最大化深度模型的效果。

并且,他們發現傳統的Single-size Embedding方式(所有特征值共享同樣的嵌入向量維度)其實并不能夠讓模型充分學習訓練數據。因此與之對應地,提出了Multi-size Embedding方式讓不同的特征值可以擁有不同的嵌入向量維度。

在實際訓練中,他們使用強化學習來尋找每個特征值最優化的詞典大小和嵌入向量維度。通過在兩大大規模推薦問題(檢索、排序)上的實驗驗證,NIS技術能夠自動學習到更優化的特征詞典大小和嵌入維度并且帶來在Recall@1以及AUC等指標上的顯著提升。

//dl.acm.org/doi/10.1145/3394486.3403288

付費5元查看完整內容

最近,深度半監督學習(SSL)表現得非常有效。但是,當類分布不匹配時,其性能嚴重下降,其中常見的情況是未標記數據中包含了一些標記數據中沒有看到的類。在這個問題上的努力仍然有限。本文提出了一種簡單、有效、安全的深層SSL方法來減輕其危害。從理論上講,新方法學習的結果不會比單純的標記數據學習差,并且在理論上保證了其在O(pdln (n)/n)階上的泛化接近最優,甚至比具有大量參數的監督學習的收斂速度更快。在基準測試數據實驗中,與現有的深度SSL方法相比,在40%的未見類未標記數據中,深度SSL方法不如監督學習,新方法仍然可以在60%以上的未見類未標記數據中實現性能提升。此外,該方法適用于許多深度SSL算法,并且可以很容易地擴展以處理類分布不匹配的其他情況。

付費5元查看完整內容

1、Approximation Ratios of Graph Neural Networks for Combinatorial Problems

作者:Ryoma Sato, Makoto Yamada, Hisashi Kashima;

摘要:本文從理論的角度研究了圖神經網絡(GNNs)在學習組合問題近似算法中的作用。為此,我們首先建立了一個新的GNN類,它可以嚴格地解決比現有GNN更廣泛的問題。然后,我們彌合了GNN理論和分布式局部算法理論之間的差距,從理論上證明了最強大的GNN可以學習最小支配集問題的近似算法和具有一些近似比的最小頂點覆蓋問題比率,并且沒有GNN可以執行比這些比率更好。本文首次闡明了組合問題中GNN的近似比。此外,我們還證明了在每個節點特征上添加著色或弱著色可以提高這些近似比。這表明預處理和特征工程在理論上增強了模型的能力。

網址://www.zhuanzhi.ai/paper/9cad40c81920dfd71fa91e4ddf778616

2、D-VAE: A Variational Autoencoder for Directed Acyclic Graphs

作者:Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, Yixin Chen;

摘要:圖結構數據在現實世界中是豐富的。在不同的圖類型中,有向無環圖(DAG)是機器學習研究人員特別感興趣的,因為許多機器學習模型都是通過DAG上的計算來實現的,包括神經網絡和貝葉斯網絡。本文研究了DAG的深度生成模型,提出了一種新的DAG變分自編碼器(D-VAE)。為了將DAG編碼到潛在空間中,我們利用了圖神經網絡。我們提出了一個異步消息傳遞方案,它允許在DAG上編碼計算,而不是使用現有的同步消息傳遞方案來編碼局部圖結構。通過神經結構搜索和貝葉斯網絡結構學習兩項任務驗證了該方法的有效性。實驗表明,該模型不僅生成了新穎有效的DAG,還可以生成平滑的潛在空間,有助于通過貝葉斯優化搜索具有更好性能的DAG。

網址:

3、End to end learning and optimization on graphs

作者:Bryan Wilder, Eric Ewing, Bistra Dilkina, Milind Tambe;

摘要:在實際應用中,圖的學習和優化問題常常結合在一起。例如,我們的目標可能是對圖進行集群,以便檢測有意義的社區(或者解決其他常見的圖優化問題,如facility location、maxcut等)。然而,圖或相關屬性往往只是部分觀察到,引入了一些學習問題,如鏈接預測,必須在優化之前解決。我們提出了一種方法,將用于常見圖優化問題的可微代理集成到用于鏈接預測等任務的機器學習模型的訓練中。這允許模型特別關注下游任務,它的預測將用于該任務。實驗結果表明,我們的端到端系統在實例優化任務上的性能優于將現有的鏈路預測方法與專家設計的圖優化算法相結合的方法。

網址:

4、Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels

作者:Simon S. Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, Keyulu Xu;

摘要:雖然圖內核(graph kernel,GK)易于訓練并享有可證明的理論保證,但其實際性能受其表達能力的限制,因為內核函數往往依賴于圖的手工組合特性。與圖內核相比,圖神經網絡通常具有更好的實用性能,因為圖神經網絡使用多層結構和非線性激活函數來提取圖的高階信息作為特征。然而,由于訓練過程中存在大量的超參數,且訓練過程具有非凸性,使得GNN的訓練更加困難。GNN的理論保障也沒有得到很好的理解。此外,GNN的表達能力隨參數的數量而變化,在計算資源有限的情況下,很難充分利用GNN的表達能力。本文提出了一類新的圖內核,即圖神經切線核(GNTKs),它對應于通過梯度下降訓練的無限寬的多層GNN。GNTK充分發揮了GNN的表現力,繼承了GK的優勢。從理論上講,我們展示了GNTK可以在圖上學習一類平滑函數。根據經驗,我們在圖分類數據集上測試GNTK并展示它們實現了強大的性能。

網址:

5、HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs

作者:Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, Partha Talukdar;

摘要:在許多真實世界的網絡數據集中,如co-authorship、co-citation、email communication等,關系是復雜的,并且超越了成對關聯。超圖(Hypergraph)提供了一個靈活而自然的建模工具來建模這種復雜的關系。在許多現實世界網絡中,這種復雜關系的明顯存在,自然會激發使用Hypergraph學習的問題。一種流行的學習范式是基于超圖的半監督學習(SSL),其目標是將標簽分配給超圖中最初未標記的頂點。由于圖卷積網絡(GCN)對基于圖的SSL是有效的,我們提出了HyperGCN,這是一種在超圖上訓練用于SSL的GCN的新方法。我們通過對真實世界超圖的詳細實驗證明HyperGCN的有效性,并分析它何時比最先進的baseline更有效。

網址:

6、Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks

作者:Vineet Kosaraju, Amir Sadeghian, Roberto Martín-Martín, Ian Reid, S. Hamid Rezatofighi, Silvio Savarese;

摘要:從自動駕駛汽車和社交機器人的控制到安全監控,預測場景中多個交互主體的未來軌跡已成為許多不同應用領域中一個日益重要的問題。這個問題由于人類之間的社會互動以及他們與場景的身體互動而變得更加復雜。雖然現有的文獻探索了其中的一些線索,但它們主要忽略了每個人未來軌跡的多模態性質。在本文中,我們提出了一個基于圖的生成式對抗網絡Social-BiGAT,它通過更好地建模場景中行人的社交互來生成真實的多模態軌跡預測。我們的方法是基于一個圖注意力網絡(GAT)學習可靠的特征表示(編碼場景中人類之間的社會交互),以及一個反方向訓練的循環編解碼器體系結構(根據特征預測人類的路徑)。我們明確地解釋了預測問題的多模態性質,通過在每個場景與其潛在噪聲向量之間形成一個可逆的變換,就像在Bicycle-GAN中一樣。我們表明了,與現有軌跡預測基準的幾個baseline的比較中,我們的框架達到了最先進的性能。

網址:

7、Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching

作者:Hongteng Xu, Dixin Luo, Lawrence Carin;

摘要:我們提出了一種可擴展的Gromov-Wasserstein learning (S-GWL) 方法,并建立了一種新的、理論支持的大規模圖分析范式。該方法基于Gromov-Wasserstein discrepancy,是圖上的偽度量。給定兩個圖,與它們的Gromov-Wasserstein discrepancy相關聯的最優傳輸提供了節點之間的對應關系,從而實現了圖的匹配。當其中一個圖具有獨立但自連接的節點時(即,一個斷開連接的圖),最優傳輸表明了其他圖的聚類結構,實現了圖的劃分。利用這一概念,通過學習多觀測圖的Gromov-Wasserstein barycenter圖,將該方法推廣到多圖的劃分與匹配; barycenter圖起到斷開圖的作用,因為它是學習的,所以聚類也是如此。該方法將遞歸K分割機制與正則化近似梯度算法相結合,對于具有V個節點和E條邊的圖,其時間復雜度為O(K(E+V) logk V)。據我們所知,我們的方法是第一次嘗試使Gromov-Wasserstein discrepancy適用于大規模的圖分析,并將圖的劃分和匹配統一到同一個框架中。它優于最先進的圖劃分和匹配方法,實現了精度和效率之間的平衡。

網址:

8、Universal Invariant and Equivariant Graph Neural Networks

作者:Nicolas Keriven, Gabriel Peyré;

摘要:圖神經網絡(GNN)有多種形式,但應該始終是不變的(輸入圖節點的排列不會影響輸出)或等變的(輸入的排列置換輸出)。本文考慮一類特殊的不變和等變網絡,證明了它的一些新的普適性定理。更確切地說,我們考慮具有單個隱藏層的網絡,它是通過應用等變線性算子、點態非線性算子和不變或等變線性算子形成的信道求和而得到的。最近,Maron et al. (2019b)指出,通過允許網絡內部的高階張量化,可以獲得通用不變的GNN。作為第一個貢獻,我們提出了這個結果的另一種證明,它依賴于實值函數代數的Stone-Weierstrass定理。我們的主要貢獻是將這一結果推廣到等變情況,這種情況出現在許多實際應用中,但從理論角度進行的研究較少。證明依賴于一個新的具有獨立意義的廣義等變函數代數Stone-Weierstrass定理。最后,與以往許多考慮固定節點數的設置不同,我們的結果表明,由一組參數定義的GNN可以很好地近似于在不同大小的圖上定義的函數。

網址:

付費5元查看完整內容
北京阿比特科技有限公司