亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

最近,深度半監督學習(SSL)表現得非常有效。但是,當類分布不匹配時,其性能嚴重下降,其中常見的情況是未標記數據中包含了一些標記數據中沒有看到的類。在這個問題上的努力仍然有限。本文提出了一種簡單、有效、安全的深層SSL方法來減輕其危害。從理論上講,新方法學習的結果不會比單純的標記數據學習差,并且在理論上保證了其在O(pdln (n)/n)階上的泛化接近最優,甚至比具有大量參數的監督學習的收斂速度更快。在基準測試數據實驗中,與現有的深度SSL方法相比,在40%的未見類未標記數據中,深度SSL方法不如監督學習,新方法仍然可以在60%以上的未見類未標記數據中實現性能提升。此外,該方法適用于許多深度SSL算法,并且可以很容易地擴展以處理類分布不匹配的其他情況。

付費5元查看完整內容

相關內容

經典的隨機優化結果通常假設數據的各種屬性的已知值(例如Lipschitz常數、到最優點的距離、平滑性或強凸性常數)。不幸的是,在實踐中,這些值是未知的,因此必須經過長時間的反復試驗才能找到最佳參數。

為了解決這一問題,近年來許多無參數算法已經被開發用于在線優化和在線學習。無參數算法對數據的性質不作任何假設,但收斂速度與最優優化算法一樣快。

這是一項令人興奮的工作,現在已經足夠成熟,可以教授給普通觀眾了。實際上,這些算法還沒有得到機器學習社區的適當介紹,只有少數人完全理解它們。本教程旨在彌補這一差距,介紹使用和設計無參數算法的實踐和理論。我們將介紹該領域的最新進展,包括優化、深度學習和使用內核學習的應用。

//parameterfree.com/icml-tutorial/

付費5元查看完整內容

題目:

Con?dence-Aware Learning for Deep Neural Networks

簡介:

盡管深度神經網絡可以執行多種任務,但過分一致的預測問題限制了它們在許多安全關鍵型應用中的實際應用。已經提出了許多新的工作來減輕這個問題,但是大多數工作需要在訓練和/或推理階段增加計算成本,或者需要定制的體系結構來分別輸出置信估計。在本文中,我們提出了一種使用新的損失函數訓練深度神經網絡的方法,稱為正確排名損失,該方法將類別概率顯式規范化,以便根據依據的有序等級更好地進行置信估計。所提出的方法易于實現,并且無需進行任何修改即可應用于現有體系結構。而且,它的訓練計算成本幾乎與傳統的深度分類器相同,并且通過一次推斷就可以輸出可靠的預測。在分類基準數據集上的大量實驗結果表明,所提出的方法有助于網絡產生排列良好的置信度估計。我們還證明,它對于與置信估計,分布外檢測和主動學習密切相關的任務十分有效。

付費5元查看完整內容

由于硬件資源有限,深度學習模型的訓練目標通常是在訓練和推理的時間和內存限制下最大化準確性。在這種情況下,我們研究了模型大小的影響,關注于計算受限的NLP任務的Transformer模型:自監督的預訓練和高資源機器翻譯。我們首先展示了,盡管較小的Transformer模型在每次迭代中執行得更快,但更廣、更深入的模型在顯著更少的步驟中收斂。此外,這種收斂速度通常超過了使用更大模型的額外計算開銷。因此,計算效率最高的訓練策略是反直覺地訓練非常大的模型,但在少量迭代后停止。

這導致了大型Transformer 模型的訓練效率和小型Transformer 模型的推理效率之間的明顯權衡。然而,我們表明大模型比小模型在壓縮技術(如量化和剪枝)方面更健壯。因此,一個人可以得到最好的兩個好處: 重壓縮,大模型比輕壓縮,小模型獲得更高的準確度

//www.zhuanzhi.ai/paper/4d7bcea8653fcc448137766511ec7d8a

概述:

在當前的深度學習范式中,使用更多的計算(例如,增加模型大小、數據集大小或訓練步驟)通常會導致更高的模型準確度(brock2018large;raffel2019exploring)。最近自監督預訓練的成功進一步論證了這種趨勢經模型。因此,計算資源日益成為提高模型準確度的關鍵制約因素。這個約束導致模型訓練的(通常是隱含的)目標是最大化計算效率:如何在固定的硬件和訓練時間下達到最高的模型準確度。

最大化計算效率需要重新考慮關于模型訓練的常見假設。特別是,有一個典型的隱式假設,即模型必須經過訓練直到收斂,這使得較大的模型在有限的計算預算下顯得不太可行。我們通過展示以收斂為代價來增加模型大小的機會來挑戰這一假設。具體地說,我們表明,訓練Transformer 模型的最快方法(vaswani2017attention)是大幅度增加模型大小,但很早停止訓練。

在我們的實驗中,我們改變了Transformer模型的寬度和深度,并在自監督的預訓練(RoBERTa (liu2019roberta)在Wikipedia和BookCorpus上訓練)和機器翻譯(WMT14英語→法語)上評估了它們的訓練時間和準確性。對于這些任務,我們首先展示了更大的模型比更小的模型在更少的梯度更新中收斂到更低的驗證錯誤(第3節)。此外,這種收斂速度的增加超過了使用更大模型所帶來的額外計算開銷——計算效率最高的模型是非常大的,并且遠遠不能收斂(例如,圖2,左)。我們還表明,收斂的加速主要是參數計數的函數,只有模型寬度、深度和批大小的微弱影響。

雖然較大的模型訓練速度更快,但它們也增加了推理的計算和內存需求。這種增加的成本在現實應用中尤其成問題,推理成本占訓練成本的主要比例(jouppi2017datacenter;crankshaw2017clipper;metz2017tpu)。然而,對于RoBERTa來說,這種明顯的權衡可以與壓縮相協調:與小型模型相比,大型模型在壓縮方面更加健壯(第4節)。因此,使用可比較的推理成本,大型重壓縮的模型優于小型輕壓縮的模型(例如,圖2,右)。

付費5元查看完整內容

當對大量的標記數據集合(如ImageNet)進行訓練時,深度神經網絡展示了它們在特殊監督學習任務(如圖像分類)上的卓越表現。然而,創建這樣的大型數據集需要大量的資源、時間和精力。這些資源在很多實際案例中可能無法獲得,限制了許多深度學習方法的采用和應用。為了尋找數據效率更高的深度學習方法,以克服對大型標注數據集的需求,近年來,我們對半監督學習應用于深度神經網絡的研究興趣日益濃厚,通過開發新的方法和采用現有的半監督學習框架進行深度學習設置。在本文中,我們從介紹半監督學習開始,對深度半監督學習進行了全面的概述。然后總結了在深度學習中占主導地位的半監督方法。

付費5元查看完整內容

從少數樣本中發現稀有物體是一個新出現的問題。先前的研究表明元學習工是一個很有前途的方法。但是,微調技術還沒有引起足夠的重視。我們發現,在小樣本目標檢測任務中,僅對稀有類上現有檢測器的最后一層進行微調是至關重要的。這種簡單的方法比元學習方法在當前基準上的表現高出約2 ~ 20點,有時甚至比以前的方法的準確度還要高出一倍。然而,少數樣本的高方差常常導致現有基準的不可靠性。我們通過對多組訓練樣本進行抽樣,以獲得穩定的比較,并在PASCAL VOC、COCO和LVIS三個數據集的基礎上建立新的基準。同樣,我們的微調方法在修訂基準上建立了一種新的技術狀態。代碼和預訓練的模型可以在//github.com/ucbdrive/few-shot-object-detection找到。

付費5元查看完整內容

節點分類是圖數據管理中的一個重要問題。它通常由不同的標簽傳播方法來解決,這些方法從幾個有標簽的種子節點開始迭代地工作。對于具有類之間任意兼容性的圖,這些方法主要依賴于了解必須由領域專家或啟發式提供的兼容性矩陣。我們能否以一種有原則和可伸縮的方式,從一個稀疏標記的圖中直接估計正確的兼容性?我們肯定地回答了這個問題,并提出了一種稱為遠程兼容性評估的方法,這種方法甚至可以在標記極為稀疏的圖(例如,標記了10,000個節點中的1個)上工作,而這只是標記其余節點所需時間的一小部分。我們的方法首先創建多個因式圖表示(大小與圖無關),然后對這些更小的圖草圖進行估計。我們將代數放大定義為利用算法更新方程的代數性質來放大稀疏信號的更一般的思想。我們證明了我們的估計器要比其他方法快幾個數量級,并且端到端的分類精度與使用真實標準兼容性相當。這使得它對于任何現有的標簽傳播方法都是一個廉價的預處理步驟,并且消除了當前對啟發式的依賴。

付費5元查看完整內容

?【導讀】圖像分類是計算機視覺中的基本任務之一,深度學習的出現是的圖像分類技術趨于完善。最近,自監督學習與預訓練技術的發展使得圖像分類技術出現新的變化,這篇論文概述了最新在實際情況中少標簽小樣本等情況下,關于自監督學習、半監督、無監督方法的綜述,值得看!

地址:

//www.zhuanzhi.ai/paper/6d160a5f8634d25a2feda7a30e1e5132

摘要

雖然深度學習策略在計算機視覺任務中取得了突出的成績,但仍存在一個問題。目前的策略嚴重依賴于大量的標記數據。在許多實際問題中,創建這么多標記的訓練數據是不可行的。因此,研究人員試圖將未標記的數據納入到培訓過程中,以獲得與較少標記相同的結果。由于有許多同時進行的研究,很難掌握最近的發展情況。在這項調查中,我們提供了一個概述,常用的技術和方法,在圖像分類與較少的標簽。我們比較了21種方法。在我們的分析中,我們確定了三個主要趨勢。1. 基于它們的準確性,現有技術的方法可擴展到實際應用中。2. 為了達到與所有標簽的使用相同的結果所需要的監督程度正在降低。3.所有方法都共享公共技術,只有少數方法結合這些技術以獲得更好的性能。基于這三個趨勢,我們發現了未來的研究機會。

1. 概述

深度學習策略在計算機視覺任務中取得了顯著的成功。它們在圖像分類、目標檢測或語義分割等各種任務中表現最佳。

圖1: 這張圖說明并簡化了在深度學習訓練中使用未標記數據的好處。紅色和深藍色的圓圈表示不同類的標記數據點。淺灰色的圓圈表示未標記的數據點。如果我們只有少量的標記數據可用,我們只能對潛在的真實分布(黑線)做出假設(虛線)。只有同時考慮未標記的數據點并明確決策邊界,才能確定這種真實分布。

深度神經網絡的質量受到標記/監督圖像數量的強烈影響。ImageNet[26]是一個巨大的標記數據集,它允許訓練具有令人印象深刻的性能的網絡。最近的研究表明,即使比ImageNet更大的數據集也可以改善這些結果。但是,在許多實際的應用程序中,不可能創建包含數百萬張圖像的標記數據集。處理這個問題的一個常見策略是遷移學習。這種策略甚至可以在小型和專門的數據集(如醫學成像[40])上改進結果。雖然這對于某些應用程序來說可能是一個實際的解決方案,但基本問題仍然存在: 與人類不同,監督學習需要大量的標記數據。

對于給定的問題,我們通常可以訪問大量未標記的數據集。Xie等人是最早研究無監督深度學習策略來利用這些數據[45]的人之一。從那時起,未標記數據的使用被以多種方式研究,并創造了研究領域,如半監督、自我監督、弱監督或度量學習[23]。統一這些方法的想法是,在訓練過程中使用未標記的數據是有益的(參見圖1中的說明)。它要么使很少有標簽的訓練更加健壯,要么在某些不常見的情況下甚至超過了監督情況下的性能[21]。

由于這一優勢,許多研究人員和公司在半監督、自我監督和非監督學習領域工作。其主要目標是縮小半監督學習和監督學習之間的差距,甚至超越這些結果。考慮到現有的方法如[49,46],我們認為研究處于實現這一目標的轉折點。因此,在這個領域有很多正在進行的研究。這項綜述提供了一個概述,以跟蹤最新的在半監督,自監督和非監督學習的方法。

大多數綜述的研究主題在目標、應用上下文和實現細節方面存在差異,但它們共享各種相同的思想。這項調查對這一廣泛的研究課題進行了概述。這次調查的重點是描述這兩種方法的異同。此外,我們還將研究不同技術的組合。

2. 圖像分類技術

在這一節中,我們總結了關于半監督、自監督和非監督學習的一般概念。我們通過自己對某些術語的定義和解釋來擴展這一總結。重點在于區分可能的學習策略和最常見的實現策略的方法。在整個綜述中,我們使用術語學習策略,技術和方法在一個特定的意義。學習策略是算法的一般類型/方法。我們把論文方法中提出的每個算法都稱為獨立算法。方法可以分為學習策略和技術。技術是組成方法/算法的部分或思想。

2.1 分類方法

監督、半監督和自我監督等術語在文獻中經常使用。很少有人給出明確的定義來區分這兩個術語。在大多數情況下,一個粗略的普遍共識的意義是充分的,但我們注意到,在邊界情況下的定義是多種多樣的。為了比較不同的方法,我們需要一個精確的定義來區分它們。我們將總結關于學習策略的共識,并定義我們如何看待某些邊緣案例。一般來說,我們根據使用的標記數據的數量和訓練過程監督的哪個階段來區分方法。綜上所述,我們把半監督策略、自我學習策略和無監督學習策略稱為reduced減約監督學習策略。圖2展示了四種深度學習策略。

圖2: 插圖的四個深學習策略——紅色和深藍色的圓圈表示標記數據點不同的類。淺灰色的圓圈表示未標記的數據點。黑線定義了類之間的基本決策邊界。帶條紋的圓圈表示在訓練過程的不同階段忽略和使用標簽信息的數據點。

監督學習 Supervised Learning

監督學習是深度神經網絡圖像分類中最常用的方法。我們有一組圖像X和對應的標簽或類z。設C為類別數,f(X)為X∈X的某個神經網絡的輸出,目標是使輸出與標簽之間的損失函數最小化。測量f(x)和相應的z之間的差的一個常用的損失函數是交叉熵。

遷移學習

監督學習的一個限制因素是標簽的可用性。創建這些標簽可能很昂貴,因此限制了它們的數量。克服這一局限的一個方法是使用遷移學習。

遷移學習描述了訓練神經網絡的兩個階段的過程。第一個階段是在大型通用數據集(如ImageNet[26])上進行有無監督的訓練。第二步是使用經過訓練的權重并對目標數據集進行微調。大量的文獻表明,即使在小的領域特定數據集[40]上,遷移學習也能改善和穩定訓練。

半監督學習

半監督學習是無監督學習和監督學習的混合.

Self-supervised 自監督學習

自監督使用一個借托pretext任務來學習未標記數據的表示。借托pretext任務是無監督的,但學習表征往往不能直接用于圖像分類,必須進行微調。因此,自監督學習可以被解釋為一種無監督的、半監督的或其自身的一種策略。我們將自我監督學習視為一種特殊的學習策略。在下面,我們將解釋我們是如何得出這個結論的。如果在微調期間需要使用任何標簽,則不能將該策略稱為無監督的。這與半監督方法也有明顯的區別。標簽不能與未標記的數據同時使用,因為借托pretext任務是無監督的,只有微調才使用標簽。對我們來說,將標記數據的使用分離成兩個不同的子任務本身就是一種策略的特征。

2.2 分類技術集合

在減少監督的情況下,可以使用不同的技術來訓練模型。在本節中,我們將介紹一些在文獻中多種方法中使用的技術。

一致性正則化 Consistency regularization

一個主要的研究方向是一致性正則化。在半監督學習過程中,這些正則化被用作數據非監督部分的監督損失的附加損失。這種約束導致了改進的結果,因為在定義決策邊界時可以考慮未標記的數據[42,28,49]。一些自監督或無監督的方法甚至更進一步,在訓練中只使用這種一致性正則化[21,2]。

虛擬對抗性訓練(VAT)

VAT[34]試圖通過最小化圖像與轉換后的圖像之間的距離,使預測不受小轉換的影響。

互信息(MI)

MI定義為聯合分布和邊緣分布[8]之間的Kullback Leiber (KL)散度。

熵最小化(EntMin)

Grandvalet和Bengio提出通過最小化熵[15]來提高半監督學習的輸出預測。

Overclustering

過度聚類在減少監督的情況下是有益的,因為神經網絡可以自行決定如何分割數據。這種分離在有噪聲的數據中或在中間類被隨機分為相鄰類的情況下是有用的。

Pseudo-Labels

一種估計未知數據標簽的簡單方法是偽標簽

3. 圖像分類模型

3.1 半監督學習

 四種選擇的半監督方法的圖解——使用的方法在每張圖像下面給出。輸入在左邊的藍色方框中給出。在右側提供了該方法的說明。一般來說,這個過程是自上而下組織的。首先,輸入圖像經過無或兩個不同的隨機變換預處理。自動增廣[9]是一種特殊的增廣技術。下面的神經網絡使用這些預處理圖像(x, y)作為輸入。損失的計算(虛線)對于每種方法都是不同的,但是共享公共部分。所有的方法都使用了標記和預測分布之間的交叉熵(CE)。所有的方法還使用了不同預測輸出分布(Pf(x), Pf(y))之間的一致性正則化。

3.2 自監督學習

四種選擇的自我監督方法的圖解——使用的方法在每張圖像下面給出。輸入在左邊的紅色方框中給出。在右側提供了該方法的說明。微調部分不包括在內。一般來說,這個過程是自上而下組織的。首先,對輸入圖像進行一兩次隨機變換預處理或分割。下面的神經網絡使用這些預處理圖像(x, y)作為輸入。損失的計算(虛線)對于每種方法都是不同的。AMDIM和CPC使用網絡的內部元素來計算損失。DeepCluster和IIC使用預測的輸出分布(Pf(x)、Pf(y))來計算損耗

3.3 21種圖像分類方法比較

21種圖像分類方法及其使用技術的概述——在左側,第3節中回顧的方法按學習策略排序。第一行列出了在2.2小節中討論過的可能的技術。根據是否可以使用帶標簽的數據,將這些技術分為無監督技術和有監督技術。技術的縮寫也在第2.2小節中給出。交叉熵(Cross-entropy, CE)將CE的使用描述為訓練損失的一部分。微調(FT)描述了交叉熵在初始訓練后(例如在一個借口任務中)對新標簽的使用。(X)指該技術不是直接使用,而是間接使用。個別的解釋由所指示的數字給出。1 - MixMatch通過銳化預測[3],隱式地實現了熵最小化。2 - UDA預測用于過濾無監督數據的偽標簽。3 -盡量減少相互信息的目的作為借口任務,例如視圖之間的[2]或層之間的[17]。4 -信息的丟失使相互信息間接[43]最大化。5 - Deep Cluster使用K-Means計算偽標簽,以優化分配為借口任務。6 - DAC使用元素之間的余弦距離來估計相似和不相似的項。可以說DAC為相似性問題創建了偽標簽。

4. 實驗比較結果

報告準確度的概述——第一列說明使用的方法。對于監督基線,我們使用了最好的報告結果,作為其他方法的基線。原始論文在準確度后的括號內。第二列給出了體系結構及其參考。第三列是預印本的出版年份或發行年份。最后四列報告了各自數據集的最高準確度分數%。

5 結論

在本文中,我們概述了半監督、自監督和非監督技術。我們用21種不同的方法分析了它們的異同和組合。這項分析確定了幾個趨勢和可能的研究領域。

我們分析了不同學習策略(半監督學習策略、自監督學習策略和無監督學習策略)的定義,以及這些學習策略中的常用技術。我們展示了這些方法一般是如何工作的,它們使用哪些技術,以及它們可以被歸類為哪種策略。盡管由于不同的體系結構和實現而難以比較這些方法的性能,但我們確定了三個主要趨勢。

ILSVRC-2012的前5名正確率超過90%,只有10%的標簽表明半監督方法適用于現實問題。然而,像類別不平衡這樣的問題并沒有被考慮。未來的研究必須解決這些問題。

監督和半監督或自監督方法之間的性能差距正在縮小。有一個數據集甚至超過了30%。獲得可與全監督學習相比的結果的標簽數量正在減少。未來的研究可以進一步減少所需標簽的數量。我們注意到,隨著時間的推移,非監督方法的使用越來越少。這兩個結論使我們認為,無監督方法在未來的現實世界中對圖像分類將失去意義。

我們的結論是,半監督和自監督學習策略主要使用一套不同的技術。通常,這兩種策略都使用不同技術的組合,但是這些技術中很少有重疊。S4L是目前提出的唯一一種消除這種分離的方法。我們確定了不同技術的組合有利于整體性能的趨勢。結合技術之間的微小重疊,我們確定了未來可能的研究機會。

參考文獻:

[1] B. Athiwaratkun, M. Finzi, P. Izmailov, and A. G. Wilson. There are many consistent explanations of unlabeled data: Why you should average. In International Conference on Learning Representations, 2019.

[2] P. Bachman, R. D. Hjelm, and W. Buchwalter. Learning representations by maximizing mutual information across views. In Advances in Neural Information Processing Systems, pages 15509–15519, 2019.

[3] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raffel. Mixmatch: A holistic approach to semi-supervised learning. In Advances in Neural Information Processing Systems, pages 5050–5060, 2019.

[4] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), pages 132–149, 2018.

[5] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan. Deep adaptive image clustering. 2017 IEEE International Conference on Computer Vision (ICCV), pages 5880–5888, 2017.

付費5元查看完整內容
北京阿比特科技有限公司