亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A Theory of Abstraction in Reinforcement Learning.

論文鏈接://david-abel.github.io/thesis.pdf

強化學習定義了學習僅通過行動和觀察做出好的決策的智能體所面臨的問題。要成為有效的問題解決者,這些智能體必須有效地探索廣闊的世界,從延遲的反饋中獲得 credit,并歸納出新的經驗,同時利用有限的數據、計算資源和感知帶寬。抽象(abstraction)對于所有這些努力都是必不可少的。通過抽象,智能體可以搭建起關于其環境的簡潔模型,這些模型支持一個合理的、適應性強的決策者所需的許多實踐。

在這篇論文中,作者提出了一個強化學習中的抽象理論。具體來說,他首先提供了實現抽象過程的函數的三個要求。它們應該:1)保持接近最佳行為的表示;2 該被有效地學習和構造;3)減少規劃或學習時間。

接下來,他提出了一套新的算法和分析結果,闡明了智能體如何能夠根據這些需求學習抽象。

總的來說,這些結果提供了發現和使用抽象的部分路徑,最小化了有效強化學習的復雜性。

付費5元查看完整內容

相關內容

強化學習(RL)是機器學習的一個領域,與軟件代理應如何在環境中采取行動以最大化累積獎勵的概念有關。除了監督學習和非監督學習外,強化學習是三種基本的機器學習范式之一。 強化學習與監督學習的不同之處在于,不需要呈現帶標簽的輸入/輸出對,也不需要顯式糾正次優動作。相反,重點是在探索(未知領域)和利用(當前知識)之間找到平衡。 該環境通常以馬爾可夫決策過程(MDP)的形式陳述,因為針對這種情況的許多強化學習算法都使用動態編程技術。經典動態規劃方法和強化學習算法之間的主要區別在于,后者不假設MDP的確切數學模型,并且針對無法采用精確方法的大型MDP。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

要實現人工智能的夢想,就需要學會做出正確決策的自主系統。強化學習是這樣做的一個強大范式,它與大量的任務相關,包括機器人、游戲、消費者建模和醫療保健。本課程將提供強化學習領域的充實介紹,學生將學習強化學習的核心挑戰和方法,包括推廣和探索。通過講課、書面作業和編碼作業的結合,學生將學習RL的關鍵思想和技術。作業將包括強化學習的基礎知識以及深度強化學習——一個結合了深度學習技術和強化學習的極具前景的新領域。

學生能夠學習到:

  • 定義強化學習與人工智能和非交互式機器學習的區別的關鍵特征。
  • 給定一個應用問題(例如,計算機視覺,機器人等),決定它是否應該被表述為RL問題;如果是,可以正式定義它(根據狀態空間,行動空間,動態和獎勵模型),說明什么算法(從類)是最適合解決它,并證明你的答案。
  • 在代碼中實現通用的RL算法。
  • 描述(列出和定義)分析RL算法的多種標準,并根據這些指標評估算法:例如遺憾度、樣本復雜度、計算復雜度、經驗性能、收斂性等。
  • 描述探索與開發的挑戰,并對至少兩種解決這一挑戰的方法進行比較和對比(從性能、可伸縮性、實現的復雜性和理論保證方面)。

內容目錄:
1 Introduction to Reinforcement Learning

2 Tabular MDP planning

3 Tabular RL policy evaluation

4 Q-learning

5 RL with function approximation

6 Policy search

7 Fast Learning

8 Batch Reinforcement Learning

付費5元查看完整內容

這是一門關于在不確定情況下強化學習(RL)和順序決策的入門課程,重點在于理解理論基礎。我們研究如何使用動態規劃方法,如價值和策略迭代,來解決具有已知模型的順序決策問題,以及如何擴展這些方法,以解決模型未知的強化學習問題。其他主題包括(但不限于)RL中的函數近似、策略梯度方法、基于模型的RL以及平衡探索-利用權衡。本課程將以講座和閱讀古典及近期論文的方式傳授給學生。因為重點是理解基礎,你應該期望通過數學細節和證明。本課程的要求背景包括熟悉概率論和統計、微積分、線性代數、最優化和(有監督的)機器學習。

//amfarahmand.github.io/IntroRL/

目錄內容:

  • Introduction to Reinforcement Learning
  • Structural Properties of Markov Decision Processes (Part I)
  • Structural Properties of Markov Decision Processes (Part II)
  • Planning with a Known Model
  • Learning from a Stream of Data (Part I)
  • Learning from a Stream of Data (Part II)
  • Value Function Approximation (Part I)
  • Value Function Approximation (Part II)
  • Value Function Approximation (Part III)
  • Value Function Approximation (Part IV)
  • Policy Gradient Methods
  • Model-based RL
  • Presentations

強化學習入門筆記

這是多倫多大學計算機科學系于2021年春季教授的強化學習(RL)研究生課程介紹的講義。本課程是入門性的,因為它不需要預先接觸強化學習。然而,它不僅僅是算法的集合。相反,它試圖在RL中經常遇到的許多重要思想和概念背后建立數學直覺。在這些講義的過程中,我證明了很多基礎的,或者有時不那么基礎的,RL的結果。如果某個結果的證明過于復雜,我就證明一個簡化的版本。

強化學習(RL)既指一類問題,也指解決這類問題的一組計算方法。RL問題是指如何采取行動,使某些長期績效的概念得到最大化。RL問題,從它的定義來看,是關于一個實體的行為和交互,我們稱之為代理,與其周圍的環境,我們稱之為環境。這是一個非常普遍的目標。有人可能會說,解決AI問題等同于解決RL問題。強化學習也指解決RL問題的一套計算方法。一個代理需要做什么樣的計算才能確保它的行為能夠帶來良好的(甚至是最佳的)長期性能?實現這些的方法稱為RL方法。歷史上,在所有試圖解決RL問題的計算方法中,只有一個子集被稱為RL方法。例如Q-Learning這樣的方法(我們將在本課程中學習)是一種很好的RL方法,但是進化計算的方法,如遺傳算法,則不是。人們可以爭辯說,進化計算方法沒有太多的“學習”成分,或者它們不以個體生命的時間尺度行事,而是以世代的時間尺度行事。雖然這些是真正的區別,但這種劃分方式有些武斷。在本課堂講稿中,我們將重點放在“RL社區”中經常學習的方法上。

付費5元查看完整內容

強化學習算法被廣泛的認為可以分為兩大類:無模型(Model-Free)的算法和基于模型(Model-Based)的算法。無模型的算法在過去一段時間在許多任務中已經取得了巨大的進步,這包括了機器人,視頻游戲等。盡管這類算法取得了巨大的成功,但是由于其較高的采樣復雜度,即需要與測試任務和環境進行大量的交互,生成樣本,從而學習得到效果較好的策略,這使得無模型的強化學習算法難以應用到大量的實際場景問題中,而僅僅應用在具有仿真環境的問題當中。

而通過學習一個近似環境的參數化的模型(Model),進而進一步幫助策略的學習的這類算法,被稱為基于模型的算法,使得其相比無模型算法可以大大降低采樣復雜度。本教程對基于模型的強化學習(MBRL)領域進行了廣泛的概述,特別強調了深度方法。MBRL方法利用環境模型來做決策——而不是將環境看作一個黑箱——并且提供了超越無模型RL的獨特機會和挑戰。我們將討論學習過渡和獎勵模式的方法,如何有效地使用這些模式來做出更好的決策,以及計劃和學習之間的關系。我們還強調了在典型的RL設置之外。

付費5元查看完整內容

//deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

這個經典的10部分課程,由強化學習(RL)的驅David Silver教授,雖然錄制于2015年,但仍然是任何想要學習RL基礎的同學所必需的資源。

強化學習已經成為現代機器學習中一項強大的技術,它允許系統通過反復試驗進行學習。它已成功應用于許多領域,包括AlphaZero等系統,學會了掌握國際象棋、圍棋和Shogi游戲。

這門課程由DeepMind首席科學家、倫敦大學學院教授、AlphaZero的共同創始人David Silver教授共同向學生們介紹RL中使用的主要方法和技術。學生們還會發現薩頓和巴托的經典著作《強化學習:入門》(Reinforcement Learning: an Introduction)是一個很有幫助的書籍。

經典書《強化學習導論》

強化學習教父 Richard Sutton 的經典教材《Reinforcement Learning:An Introduction》第二版公布啦。本書分為三大部分,共十七章,機器之心對其簡介和框架做了扼要介紹,并附上了全書目錄、課程代碼與資料。下載《強化學習》PDF 請點擊文末「閱讀原文」。

原書籍地址:

當我們思考學習的本質時,首先映入腦海的想法很可能是通過與環境的交互進行學習。當一個嬰兒玩耍時,揮舞手臂,左顧右盼,旁邊沒有老師指導他,他與環境卻有著一種直接的感知連接。通過這種連接,他懂得了因果關系,行動帶來的結果,以及為了達成目標所需做的一切。人的一生中,這樣的交互成了我們關于環境和自身知識的主要來源。不管學習駕駛汽車,還是進行一場交談,實際上我們自始至終觀察著環境如何回應我們的所為,并通過自身行為影響當下情景。交互式學習幾乎是所有學習與智能理論的基石。

本書中我們提出了一種通過計算實現交互式學習的方法。我們沒有直接理論化人類或動物的學習方式,而是探索理想的學習環境,評估不同學習方法的有效性。即,我們站在人工智能研究者或工程師的角度來解決問題。我們探討了在解決科學或經濟問題方面表現突出的機器的設計,通過數學分析或計算實驗評估其設計。我們提出的這一方法稱之為強化學習。相較于其他機器學習方法,它更專注于交互之中的目標導向性學習。

付費5元查看完整內容

強化學習定義了僅通過行動和觀察來學習做出好的決策的代理所面臨的問題。為了成為有效的問題解決器,這些代理必須能有效地探索廣闊的世界,從延遲的反饋中分配信用,并歸納出新的經驗,同時要利用有限的數據、計算資源和感知帶寬。抽象對所有這些努力都是必要的。通過抽象,代理可以形成其環境的簡潔模型,以支持一個理性的、自適應的決策者所需要的許多實踐。在這篇論文中,我提出了強化學習中的抽象理論。首先,我提出了執行抽象過程的函數的三個要求:它們應該1)保持近似最優行為的表示,2) 有效地被學習和構造,3) 更低的規劃或學習時間。然后,我提出了一套新的算法和分析,闡明了代理如何根據這些需求學習抽象。總的來說,這些結果提供了一條通向發現和使用抽象的部分路徑,將有效強化學習的復雜性降到最低。

強化學習問題如下。RL代理通過以下兩個離散步驟的無限重復與環境進行交互:

  1. 代理收到觀察和獎勵。
  2. 代理從這種交互中學習并執行一個動作。 這個過程如圖1.2所示。在這種互動過程中,agent的目標是做出決策,使其獲得的長期報酬最大化。

論文余下組織如下: 第1部分。在第2章中,我提供了關于RL(2.1節)以及狀態抽象(2.2節)和動作抽象(2.3節)的必要背景知識。

第2部分。下一部分將專注于狀態抽象。我提出了新的算法和三個緊密相連的分析集,每一個目標是發現滿足引入的需求的狀態抽象。在第3章中,我開發了一個形式化的框架來推理狀態抽象,以保持近似最優的行為。這個框架由定理3.1總結,它強調了值保持狀態抽象的四個充分條件。然后,在第4章中,我將這一分析擴展到終身RL設置,在終身RL設置中,代理必須不斷地與不同的任務交互并解決不同的任務。本章的主要觀點是介紹了用于終身學習設置的PAC狀態抽象,以及澄清如何有效計算它們的結果。定理4.4說明了保證這些抽象保持良好行為的意義,定理4.5說明了有多少以前已解決的任務足以計算PAC狀態抽象。我著重介紹了模擬實驗的結果,這些結果說明了所介紹的狀態抽象類型在加速學習和計劃方面的效用。最后,第五章介紹了信息論工具對狀態抽象的作用。我提出了狀態抽象和率失真理論[283,43]和信息瓶頸方法[318]之間的緊密聯系,并利用這種聯系設計新的算法,以高效地構建狀態抽象,優雅地在壓縮和良好行為表示之間進行權衡。我以各種方式擴展了這個算法框架,說明了它發現狀態抽象的能力,這些狀態抽象提供了良好行為的樣本高效學習。

第3部分。然后我轉向行動抽象。在第6章中,我展示了Jinnai等人的分析[144],研究了尋找盡可能快地做出計劃的抽象動作的問題——主要結果表明,這個問題通常是NP困難的(在適當簡化的假設下),甚至在多項式時間內很難近似。然后,在第7章中,我解決了在規劃中伴隨高層次行為構建預測模型的問題。這樣的模型使代理能夠估計在給定狀態下執行行為的結果。在本章中,我將介紹并分析一個用于這些高級行為的新模型,并證明在溫和的假設下,這個簡單的替代仍然是有用的。我提供的經驗證據表明,新的預測模型可以作為其更復雜的對等物的適當替代者。最后,在第8章中,我探討了抽象行動改善探索過程的潛力。我描述了Jinnai等人開發的一種算法[145],該算法基于構建可以輕松到達環境所有部分的抽象行動的概念,并證明該算法可以加速對基準任務的探索。

第4部分。最后,我轉向狀態動作抽象的聯合過程。在第9章中,我介紹了一個將狀態和動作抽象結合在一起的簡單機制。使用這個方案,然后我證明了哪些狀態和動作抽象的組合可以在任何有限的MDP中保持良好的行為策略的表示,定理9.1總結了這一點。接下來,我將研究這些聯合抽象的反復應用,作為構建分層抽象的機制。在對層次結構和底層狀態動作抽象的溫和假設下,我證明了這些層次結構也可以保持全局近最優行為策略的表示,如定理9.3所述。然后,我將在第十章中總結我的思考和今后的方向。

總的來說,這些結果闡明了強化學習的抽象理論。圖1.4展示了本文的可視化概述。

付費5元查看完整內容

導航是移動機器人所需要的最基本的功能之一,允許它們從一個源穿越到一個目的地。傳統的辦法嚴重依賴于預先確定的地圖的存在,這種地圖的取得時間和勞力都很昂貴。另外,地圖在獲取時是準確的,而且由于環境的變化會隨著時間的推移而退化。我們認為,獲取高質量地圖的嚴格要求從根本上限制了機器人系統在動態世界中的可實現性。本論文以無地圖導航的范例為動力,以深度強化學習(DRL)的最新發展為靈感,探討如何開發實用的機器人導航。

DRL的主要問題之一是需要具有數百萬次重復試驗的不同實驗設置。這顯然是不可行的,從一個真實的機器人通過試驗和錯誤,所以我們反而從一個模擬的環境學習。這就引出了第一個基本問題,即彌合從模擬環境到真實環境的現實差距,該問題將在第3章討論。我們把重點放在單眼視覺避障的特殊挑戰上,把它作為一個低級的導航原語。我們開發了一種DRL方法,它在模擬世界中訓練,但可以很好地推廣到現實世界。

在現實世界中限制移動機器人采用DRL技術的另一個問題是訓練策略的高度差異。這導致了較差的收斂性和較低的整體回報,由于復雜和高維搜索空間。在第4章中,我們利用簡單的經典控制器為DRL的局部導航任務提供指導,避免了純隨機的初始探索。我們證明,這種新的加速方法大大減少了樣本方差,并顯著增加了可實現的平均回報。

我們考慮的最后一個挑戰是無上限導航的稀疏視覺制導。在第五章,我們提出了一種創新的方法來導航基于幾個路點圖像,而不是傳統的基于視頻的教學和重復。我們證明,在模擬中學習的策略可以直接轉移到現實世界,并有能力很好地概括到不可見的場景與環境的最小描述。

我們開發和測試新的方法,以解決障礙規避、局部引導和全球導航等關鍵問題,實現我們的愿景,實現實際的機器人導航。我們將展示如何將DRL作為一種強大的無模型方法來處理這些問題

付費5元查看完整內容

主題: Model-Based Reinforcement Learning:Theory and Practice

摘要: 強化學習系統可以通過兩種方式之一做出決策。在基于模型的方法中,系統使用世界的預測模型來提問“如果我做x會發生什么?”?“選擇最好的x1。在另一種無模型方法中,建模步驟被完全忽略,有利于直接學習控制策略。盡管在實踐中,這兩種技術之間的界限可能變得模糊,但作為一種粗略的指導,它對于劃分算法可能性的空間是有用的。

嘉賓簡介: Michael Janner,伯克利人工智能研究實驗室的一名博士生。

付費5元查看完整內容
北京阿比特科技有限公司