亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

題目: A Survey of Document Grounded Dialogue Systems (DGDS)

摘要:

對話系統因其廣泛的應用前景而受到工業界和學術界的廣泛關注。研究人員通常根據功能來劃分DS。然而,許多對話需要DS在不同的功能之間切換。例如,電影討論可以從聊天轉換為QA,會話推薦可以從聊天轉換為推薦等。因此,根據功能進行分類可能不足以幫助我們理解當前的發展趨勢。我們根據背景知識對DS進行分類。具體地說,學習最新的基于非結構化文檔的DS。我們將基于文件的對話系統(DGDS)定義為對話圍繞給定文件展開的系統。DGDS可用于根據產品手冊討論商品、評論新聞報道等場景。我們認為,提取非結構化的文檔信息是DS的未來發展趨勢,因為大量的人類知識都存在于這些文檔中。DGDS的研究不僅具有廣闊的應用前景,而且有助于人工智能更好地理解人類知識和自然語言。我們分析了DGDS的分類、體系結構、數據集、模型以及未來的發展趨勢,希望能對這一領域的研究者有所幫助。

付費5元查看完整內容

相關內容

 是研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。 人工智能是計算機科學的一個分支。

【導讀】對話系統(Dialogue system,DS)由于其廣泛的應用前景,已經吸引了工業界和學術界極大的關注。研究人員通常根據對話系統的功能對其進行分類.然而許多對話需要DS在不同的功能之間來回切換。例如,電影評論就需要在對話和問答之間切換,交流式推薦就需要系統在對話與推薦之間轉換。因此,根據功能進行分類并不足以適應當前的發展趨勢。我們基于背景知識對DS進行分類。特別地,我們基于非結構化的文本來研究目前最新的對話系統。我們把基于文檔對話系統(Document Grounded Dialogue System,DGDS)定義為圍繞給定的文本進行對話交流的對話系統。DGDS可以被應用在諸多場景之中,如根據產品手冊談論商品,評論新聞報道等。我們相信抽取非結構化的信息是對話系統未來的發展趨勢,因為在這些非結構化的文本之中蘊藏著大量的人類知識。研究DGDS一方面是因為其廣泛的應用前景,另一方面是因為其能夠促進AI更好的理解人類知識和自然語言。我們從DGDS的類別,架構,數據集,模型和未來的發展方向進行了論述。

付費5元查看完整內容

題目: Natural Language Processing and Query Expansion

簡介:

大量知識資源的可用性刺激了開發和增強信息檢索技術的大量工作。用戶的信息需求以自然語言表達,成功的檢索很大程度上取決于預期目的的有效溝通。自然語言查詢包含多種語言功能,這些語言功能代表了預期的搜索目標。導致語義歧義和對查詢的誤解以及其他因素(例如,對搜索環境缺乏了解)的語言特征會影響用戶準確表示其信息需求的能力,這是由概念意圖差距造成的。后者直接影響返回的搜索結果的相關性,而這可能不會使用戶滿意,因此是影響信息檢索系統有效性的主要問題。我們討論的核心是通過手動或自動捕獲有意義的術語,短語甚至潛在的表示形式來識別表征查詢意圖及其豐富特征的重要組成部分,以手動或自動捕獲它們的預期含義。具體而言,我們討論了實現豐富化的技術,尤其是那些利用從文檔語料庫中的術語相關性的統計處理或從諸如本體之類的外部知識源中收集的信息的技術。我們提出了基于通用語言的查詢擴展框架的結構,并提出了基于模塊的分解,涵蓋了來自查詢處理,信息檢索,計算語言學和本體工程的主題問題。對于每個模塊,我們都會根據所使用的技術回顧分類和分析的文獻中的最新解決方案。

付費5元查看完整內容

摘要

推薦系統是一種軟件應用程序,它可以幫助用戶在信息過載的情況下找到感興趣的主題。當前的研究通常假設一個一次性的交互范式,其中用戶偏好是根據過去歷史觀察到的行為來估計的,并且按照等級排序的推薦列表是用戶交互的主要的且是單向的形式。對話推薦系統(CRS)采用了一種不同的方法,支持更豐富的交互。例如,這些交互可以幫助改進偏好激發過程,或者允許用戶詢問關于推薦的問題并給出反饋。對CRS的興趣在過去幾年里顯著增加。這種發展主要是由于自然語言處理領域的重大進展,新的語音控制家庭助手的出現,以及聊天機器人技術的增加使用。在本文中,我們詳細介紹了現有的對話推薦方法。我們將這些方法按不同的維度進行分類,例如,根據支持的用戶意圖或用戶在后臺使用的知識。此外,我們還討論了技術方法,回顧了CRS的評估方法,并最終確定了一些在未來值得更多研究的差距。

介紹

推薦系統是人工智能在實踐中最明顯的成功案例之一。通常,這些系統的主要任務是為用戶指出感興趣的潛在主題,例如電子商務網站。因此,它們不僅可以在信息超載的情況下幫助用戶,還可以對服務提供商的業務做出重大貢獻。 在這些實際應用中,推薦是一個一次性的交互過程。通常,底層系統會隨著時間的推移監視其用戶的行為,然后在預定義的導航情況下(例如,當用戶登錄到服務時)提供一組定制的建議。盡管這種方法在各個領域都很常見,也很有用,但是它可能有一些潛在的限制。例如,在許多應用程序場景中,用戶首選項無法從其過去的交互中可靠地估計出來。對于高介入的產品(例如,當推薦一款智能手機時),我們甚至可能完全沒有過去的觀察結果。此外,在一組建議中包含哪些內容可能與上下文高度相關,而且可能很難自動確定用戶的當前情況或需求。最后,另一個假設通常是,當用戶登錄網站時,他們已經知道自己的偏好。然而,這未必是真的。例如,用戶可能只在決策過程中確定他們的首選項,例如,當他們意識到選項的空間時。在某些情況下,他們也可能只在與推薦者的交互過程中了解這塊內容和可用的選項。 對話推薦系統(CRS)是可以幫助解決這些的挑戰中的許多這樣的問題。一般來說,這種系統的總體思想是支持與用戶進行面向任務的多回合對話。例如,在這樣的對話中,系統可以引出用戶當前的詳細偏好,為主題推薦提供解釋,或者處理用戶對所提建議的反饋。 鑒于這類系統的巨大潛力,對CRS的研究已經有了一定的傳統。早在20世紀70年代末,Rich就設想了一個電腦化的圖書管理員,通過用自然語言互動地向用戶提問有關他們的個性和偏好的問題,向他們提出閱讀建議。除了基于自然語言處理(NLP)的接口外,近年來還提出了多種基于表單的用戶接口。CRS中較早的基于這些接口的交互方法之一稱為critiquing,它在1982年就被提出作為數據庫領域的查詢重新制定的一種方法。在critiquing方法中,用戶很快會在對話中看到一個建議,然后可以對這些建議應用預先定義的評論。 基于表單的方法通常很有吸引力,因為用戶可以使用的操作是預先定義的、明確的。然而,這樣的對話也可能出現非自然的,用戶可能在表達他們的偏好的方式上感到約束。另一方面,基于NLP的方法在很長一段時間內受到了現有的限制,例如在處理語音命令的上下文中。然而,近年來,語言技術取得了重大進展。因此,我們現在習慣于向智能手機和數字家庭助手發出語音命令,這些設備的識別精度已經達到了令人印象深刻的水平。與語音助手領域的這些發展相對應,我們注意到聊天機器人技術在最近幾年的快速發展。聊天機器人,無論是簡單的還是復雜的,通常也能處理自然語言,現在廣泛應用于各種應用領域,例如,處理客戶服務請求。 這些技術的進步導致在過去幾年中對CRS的興趣增加。然而,與以前的許多方法相比,我們注意到今天的技術建議更多地是基于機器學習技術,而不是遵循預先定義的對話路徑,用于確定要向用戶詢問的下一個問題。然而,通常在語音助手和聊天機器人的功能與支持真正的對話推薦場景(如系統是語音控制的)所需的功能之間仍然存在差距。 本文從不同的角度對對話推薦系統的文獻進行了綜述。具體地說,我們將討論(i)CRS的交互模式(第3節),(ii)CRS基于的知識和數據(第4節), 和(iii)CRS中典型的計算任務(第5節)。然后,我們討論CRS的評估方法(第6節),最后展望未來的發展方向。

對話系統的特征描述

關于什么是CRS,文獻中沒有一個公認的定義。在這項工作中,我們使用以下定義。 CRS是一個軟件系統,它支持用戶通過多回合的對話來實現推薦相關的目標。

CRS的概念架構:在過去的二十年中,人們提出了各種CRS模型的技術途徑。這些解決方案的技術體系結構的細節取決于系統的功能,例如,是否支持語音輸入。盡管如此,仍然可以確定此類體系結構的許多典型概念組件,如圖1所示。

CRS交互模式

最近對CRS的興趣是由NLP的發展和技術進步(如寬帶移動互聯網接入和智能手機和家庭助手等新設備)推動的。然而,我們對文獻的回顧表明,用戶和CRS之間的交互既不局限于自然語言輸入和輸出,也不局限于特定的設備。

知識和背景數據

根據所選擇的技術方法,CRS必須結合各種類型的知識和背景數據才能發揮作用。顯然,像任何推薦人一樣,必須有關于推薦項目的知識。同樣,推薦的生成要么基于明確的知識,例如推薦規則或約束,要么基于在一些背景數據上訓練的機器學習模型。然而,對話系統通常依賴于其他類型的知識,例如對話中的可能狀態,或者用于訓練機器學習模型的數據,如記錄和轉錄的自然語言推薦對話。

計算任務

在討論了推薦對話中可能的用戶意圖之后,我們現在將回顧CRS的常見的計算任務和技術方法。我們區分(i)主要任務,即那些與推薦過程更直接相關的,例如,計算推薦或確定下一個要問的問題,以及(ii)額外的支持任務。

介紹對話系統的評價

一般情況下,推薦系統可以通過不同的方法從不同的維度進行評價。首先,當系統在其使用上下文中進行評估時,即,當它被部署時,我們通常最感興趣的是通過A/B測試來衡量系統是否達到了設計目標的具體關鍵性能指標(KPI),例如,增加的銷售數字或用戶參與度。其次,用戶研究(實驗室實驗)通常調查與系統感知質量相關的問題。常見的質量維度是建議的適宜性、流程的可感知透明性或易用性。最后,計算性實驗不需要用戶參與評估,而是基于客觀指標來評估質量,例如,通過測量建議的多樣性或計算運行時間來預測測試集中的輔助評級的準確性。同樣的質量維度和研究方法也適用于CRS。然而,在比較面向算法的研究和對話系統的研究時,我們發現評估的主要焦點往往是不同的。由于CRS是高度交互的系統,因此與人機交互有關的問題更常用于這些系統的研究。此外,在測量方法方面,CRS評估不僅關注任務的完成,即,如果建議是合適的或最終被接受的,但也涉及到與談話本身的效率或質量有關的問題。

總結和未來工作

總的來說,我們的研究表明,CRS領域在過去幾年中出現了一定程度的復興,其中最新的方法依賴于機器學習技術,尤其是深度學習和基于自然語言的交互。考慮到語音控制系統(如智能音箱)最近的興起,以及聊天機器人系統的日益普及,我們預計在未來幾年將看到對CRS的更多研究。雖然在某些方面取得了重大進展,但仍有許多領域需要進行更多的研究。在接下來的文章中,我們將概述一些有待解決的問題以及該領域未來可能的發展方向。 第一個問題涉及模式的選擇。盡管近年來,“自然語言”越來越流行,但究竟哪種情況下“自然語言”才是最好的選擇,目前還不完全清楚。需要進行更多的研究來了解哪種模式適合當前給定的任務和情況,或者是否應該向用戶提供替代模式。一個有趣的研究方向還在于解釋用戶的非言語交際行為。此外,完全基于語音的CRS也有一定的局限性,例如,在一個交互周期中提供完整的推薦集合。在這種情況下,用戶可能希望對一組推薦進行總結,因為在大多數情況下,當CRS向用戶推薦過多(例如多于兩三個)選項時,這可能沒有意義。

付費5元查看完整內容

由于任務型對話系統在人機交互和自然語言處理中的重要意義和價值,越來越受到學術界和工業界的重視。在這篇論文中,我們以一個具體問題的方式綜述了最近的進展和挑戰。我們討論三個關鍵主題面向任務對話框系統: (1)提高數據效率促進對話系統建模在資源匱乏的設置,(2)建模多輪動態對話框策略學習獲得更好的完成任務的性能,和(3)將領域本體知識集成到模型在管道和端到端模型所示的對話框。本文還綜述了近年來對話評價的研究進展和一些被廣泛使用的語料庫。我們相信這項綜述可以為未來面向任務的對話系統的研究提供一些啟示。

付費5元查看完整內容

論文題目: Core techniques of question answering systems over knowledge bases:a survey

論文摘要: 語義網以知識庫的形式包含了大量的信息。為了提供這些信息,在過去的幾年中,許多基于KBs的問答系統被創建出來。在KBs上構建QA系統是困難的,因為有許多不同的挑戰需要解決。為了應對這些挑戰,QA系統通常結合了自然語言處理、信息檢索、機器學習和語義Web等技術。本次調查的目的是概述當前KBs質量保證系統中使用的技術。我們介紹了QA系統所使用的技術,這些技術是在一系列流行的基準上進行評估的:通過鏈接數據進行問答。解決同一任務的技術首先被組合在一起,然后再描述。討論了每種技術的優缺點。這樣可以直接比較類似的技術。此外,我們還指出了在WebQuestions和SimpleQuestions上使用的技術,這是QA系統的另外兩個流行基準。

付費5元查看完整內容

論文題目:Challenges in Building Intelligent Open-domain Dialog Systems

論文摘要:由于大量的對話數據的可用性和最新的漸進式對話方法AI的興起,人們對開發智能的開放域對話系統產生了濃厚的興趣。與傳統的面向任務的機器人一樣,開放域對話系統旨在通過滿足人類對交流,情感和情感的需求與用戶建立長期聯系。社會歸屬感。本文回顧了有關神經方法的最新工作,該方法致力于解決開發此類系統的三個挑戰:語義,一致性和交互性。語義要求對話系統不僅要了解對話的內容,還要識別對話過程中用戶的情感和社交需求;一致性要求該系統表現出一致的個性以贏得用戶的信任并獲得他們的長期信任。該系統生成人際反應以實現特定社會目標(如娛樂性,順從性和任務完成性)的能力。我們在本次調查中選擇呈現的研究基于我們的獨特觀點,但絕不是完整的。盡管如此,我們希望該討論會激發新的研究,以開發更多的智能到筆域對話系統。

付費5元查看完整內容

人機對話系統能夠讓機器通過人類語言與人進行交互,是人工智能領域的一項重要工作。因其在虛擬助手和社交聊天機器人等領域的商業價值而廣受工業界和學術界的關注。近年來,互聯網社交數據快速增長促進了數據驅動的開放領域對話系統研究,尤其是將深度學習技術應用到其中取得了突破性進展。基于深度學習的開放領域對話系統使用海量社交對話數據,通過檢索或者生成的方法建立對話模型學習對話模式。將深度學習融入檢索式系統中研究提高對話匹配模型的效果,將深度學習融入生成式系統中構建更高質量的生成模型,成為了基于深度學習的開放領域對話系統的主要任務。本文對近幾年基于深度學習的開放領域對話系統研究進展進行綜述,梳理、比較和分析主要方法,整理其中的關鍵問題和已有解決方案,總結評測指標,展望未來研究趨勢。

付費5元查看完整內容
北京阿比特科技有限公司