亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

這篇論文探討了為已部署的機器學習模型生成局部解釋的方法,旨在確定生成有意義解釋的最優條件,同時考慮數據和用戶需求。主要目標是開發出一種為任何模型生成解釋的方法,同時確保這些解釋對于底層模型保持忠實并且對用戶來說易于理解。論文分為兩個部分。第一部分增強了一個廣泛使用的基于規則的解釋方法,并引入了一個評估線性解釋適用于近似模型的適宜性的新方法。此外,它進行了一個比較實驗,分析了兩大類反事實解釋方法之間的優勢。第二部分專注于用戶實驗,評估三種解釋方法和兩種不同表示的影響。這些實驗測量了用戶在理解和信任方面如何感知他們與模型的互動,這取決于解釋和表示方法。這項研究為更好的解釋生成做出了貢獻,可能對提高部署的AI系統的透明度、可信度和可用性產生影響。 在近幾十年里,人工智能(AI)的迅速進步,特別是機器學習(ML)模型的發展,顯著影響了我們的日常生活。這一顯著的進步可以歸因于數據可用性的指數級增長和這些模型精確度的提高。結果,AI和ML模型已經能夠實現諸如提供醫療診斷、生成連貫文本、高效識別環境問題等顯著成就。這些進步已經轉變了眾多行業,并且有潛力進一步革命化我們的社會。 然而,這一進展也導致了復雜性的增加,這使得ML模型變成了“黑盒子”。它們不透明的本質使得檢查它們的推理、進行審計或從中獲得洞見變得具有挑戰性。那么問題來了:在我們不知道這些模型的局限性和潛在失敗的情況下,我們能依賴這些模型在關鍵情況下作出決策嗎?在預測個人娛樂偏好(如Spotify或Netflix)的場景中,模型不準確的后果可能是微小的。但在預測自然災害或在醫學、工作機會或正義等領域做出關鍵決策的情況下,理解模型的可靠性和推理變得至關重要。實際上,對模型的不信任或誤解可能會導致錯誤的決策。此外,這些模型在對少數群體的偏見和對人類眼睛不可見的對抗性攻擊方面展示了脆弱性。

付費5元查看完整內容

相關內容

博士論文是由攻讀博士學位的研究生所撰寫的學術論文。它要求作者在博士生導師的指導下,選擇自己能夠把握和駕馭的潛在的研究方向,開辟新的研究領域。由此可見,這就對作者提出了較高要求,它要求作者必須在本學科的專業領域具備大量的理論知識,并對所學專業的理論知識有相當深入的理解和思考,同時還要具有相當水平的獨立科學研究能力,能夠為在學科領域提出獨創性的見解和有價值的科研成果。因而,較之學士論文、碩士論文,博士論文具有更高的學術價值,對學科的發展具有重要的推動作用。

生成式人工智能旨在制定特定類型的數據分布,以便能夠生成模仿底層分布的真實樣本的新數據實例。值得一提的是,在計算機視覺中,生成模型和判別模型是兩大主要類別。后者旨在基于特定數據實例準確預測類別、對象位置、分割等,而前者探索和制造復雜的數據流形。有人可能會爭論,由于旨在模擬現實世界中無限制領域的巨大復雜性的數據,計算機視覺中的生成式人工智能需要更加先進。然而,即使是最復雜的網絡設計,也很難準確地制定我們自然世界中的確切數據分布,因此還有很大的改進空間。 隨著最近生成式人工智能技術的突破,現在的研究人員和工程師創建了開始處理現實世界需求的高性能生成解決方案作為商業產品,幸運的是,這篇論文也參與其中。在這篇論文中,作者旨在通過探索最佳可能的視覺表征形式(即神經隱式嵌入、頻域表征、基于變換器的表征),以盡可能捕獲更多的視覺信息,進一步推動生成式人工智能的性能。毫無疑問,數據表征是生成式人工智能的一個關鍵前提,因為它揭示了模型能力的上限。此外,從一個更廣泛但不那么精確的角度來看,生成建模的目標——模擬精確的數據分布,也可以視為一種表征學習。在論文的最后部分,作者還探討了超越視覺表征的主題,向更一般的跨模態表征進發,適應多種類型的數據模態,這是朝著更具挑戰性的目標邁進的啟發式步驟:通用人工智能。

這篇論文始于UltraSR,探索適合圖像超分辨率的隱式神經視覺表征,通過任意上采樣比例合成圖像細節。UltraSR的核心思想將隱式神經表征與可學習的周期性編碼相結合,以連續函數的形式在高頻流形中制定視覺細節。當UltraSR探索神經視覺表征時,Spectral Hint GAN(SH-GAN)采取了不同的路線,深入涉及頻域中的視覺特征進行圖像完成。SH-GAN提出了一個新穎的頻譜網絡模塊:Spectral Hint Unit(SHU),以及兩種新策略:異構過濾和高斯分割。SH-GAN因以下原因超越了以往的圖像完成方法:通過基于StyleGAN的共調制框架有效地填充低頻圖像結構,以及通過SHU有效地填充高頻圖像紋理。最近在文本到圖像(T2I)擴散模型的進展激發我們探索新的工作Prompt-Free Diffusion,在這項工作中,我們用SeeCoder代替CLIP文本編碼器來捕獲視覺線索,從T2I系統中移除了提示的需要。SeeCoder自動提取各種視覺線索,包括但不限于語義、紋理、背景等,并將它們傳遞給擴散模型。我們的合成結果既高質量又緊密跟隨SeeCoder編碼的參考視覺線索。與Prompt-Free Diffusion并行,我們提出了Versatile Diffusion,這是第一個提出統一的多模態多流擴散管道的工作,均勻處理多種跨模態任務,生成圖像、文本和變體。Versatile Diffusion具有更廣泛的范圍,我們的目標是將不同模態的表征合并到一個生成網絡中,向通用生成式人工智能的大膽一步邁進。

總之,所有工作都提供了有關數據表征的寶貴見解,其中UltraSR、SH-GAN和Prompt-Free Diffusion積極探索了三種方案下的最佳視覺表征:隱式神經表征、頻域表征和基于變換器的表征。在最后一部分,Versatile Diffusion探索了圖像、文本和圖文跨模態的統一表征和生成。UltraSR在所有比例上的DIV2K數據集上比基線模型高出0.05 dB。SH-GAN在FFHQ數據集上達到FID 3.41,在Places2數據集上達到7.10,獲得了大規模自由形式圖像完成任務中的新最佳水平。Prompt-Free Diffusion和SeeCoder完成了以驚人質量完成流行的示例-based圖像生成任務。Versatile Diffusion在Coco2014數據集上的CLIP相似度為0.269和0.858;FID為11.20和4.57,測量文本到圖像和圖像變化,超越了所有方面的基線Stable Diffusion。

付費5元查看完整內容

這篇論文的目標是通過交互學習來提高AI代理的知識表示能力,使其能夠有效地規劃并適應環境中的變化。論文的貢獻橫跨三個主題:學習和利用選擇性注意力、時間抽象和可供性;目標是獲得促進規劃、超出分布泛化和快速適應的知識表示。 本工作的一個中心假設是,橋接狀態和行動對于強化學習(RL)代理發展廣泛智能行為是關鍵。我們首先關注利用計算模型來模擬人類視覺注意力,然后引入興趣函數來學習專業化的、可復用的技能,以便快速適應和泛化到新的獎勵動態中。接著,我們為RL代理發展了一個可供性的理論,并形式化了時間抽象的部分選項模型,旨在加快規劃和更好的泛化。 展望持續性RL的目標,我們回顧了這個問題的現有定義,提出了一種方法的分類,并提供了文獻中使用的基準和理解代理性能的重要指標的概述。最后,我們研究了在線元強化學習設置下模型不確定性下的規劃問題,并展示了規劃視界依賴于任務數量、每個任務的樣本數量和底層任務相似性的概念。

這篇論文的目標是為發展能夠處理所觀察數據(“看”)、學習表示知識(“思”)并利用獲得的信息進行規劃(“行”)的人工智能(AI)系統貢獻力量,這些系統具有隨時間適應變化的能力。這類代理的應用包括:通過表示為時間上抽象的行為(跨多個時間步發生,例如“螺絲緊固件-一起”)的自動化倉庫裝配、在日常任務中為人類提供個人助理,這些任務需要抽象行動(例如“開門”)、通過跨多個時間步的推理來促進各種面向用戶服務的自動化控制,如網頁導航(例如“預訂票”)、輔助技術,能夠在不同情況下確定行動的可能性(即可供性),以在變化的環境中實現高級目標,如用于醫院中的機器人導航等。 在這篇論文中,我們在強化學習(RL)(Sutton和Barto,1998b)的背景下追求這一目標,RL是一個框架,它使得一個交互式的決策代理能夠學習如何在處理不確定性和有限的環境數據時實現目標。RL范式源自于實驗心理學中的動物學習,并從神經科學中汲取了想法。例如,研究人員提供了關于人類能夠選擇性地關注視覺輸入的某些部分(Borji等,2012;Judd等,2009)、收集相關信息,并順序地結合觀察結果以在不同的時間尺度上構建表示(Hayhoe和Ballard,2005;Zhang等,2019b),這可以指導感知和行動(Dayan等,2000;Kahneman,1973)。值得注意的是,在所有這些案例中,對狀態和行動的良好理解都是至關重要的。為了提高RL代理在現實世界問題中的適用性和可擴展性,關鍵是要在狀態和行動之間架起橋梁,以促進快速適應、健壯的泛化以及更高效地學習模型的更快規劃。 雖然在推進RL的最新技術方面取得了巨大進展(Silver等,2016;Vinyals等,2019),但大多數當前方法缺乏對世界的基本理解以及與人類相比,持續學習和適應的能力(Mitchell,2021)。在這篇論文中,我們認為,選擇性注意、時間抽象和可供性都是使代理不僅能夠獲得技能,而且能夠在非平穩性面前繼續適應和學習的必要組成部分。

為了激發選擇性注意的需求,我們首先探索知道在圖像中何處尋找(“看”)是否允許RL代理在執行任務時對干擾因素保持魯棒性,尤其是面對非平穩性時。此外,大量證據表明,使人類能夠適應變化并隨時間改進的核心要素包括跨多個時間尺度使用抽象表示(Collins, 2018; Eckstein和Collins, 2018)、選擇性時間注意(Zhang等,2019b)和層次化組織的行為(Botvinick等,2009)。我們通過定義具有興趣函數的時間抽象行動為RL代理實現這一直覺;我們的實驗顯示,專業化是學習可重用、可解釋技能的關鍵,這些技能使RL代理能夠快速適應獎勵中的非平穩性。 用于形式化注意力概念以建立抽象的自然框架是可供性理論(Gibson, 1977)。在心理學文獻中(Chemero, 2003; Heft, 1989),可供性被視為代理-環境互動的屬性。在這篇論文中,我們為RL代理定義了可供性,并展示了知道可供性的模型可以導致更快的規劃和更好的泛化。此外,具身認知和感知的理論表明,人類能夠以不同時間尺度的內部模型的形式表示知識(Pezzulo和Cisek, 2016)。我們以時間抽象的部分模型的形式闡述了這一洞見,這些模型利用了時間抽象和可供性,并且從理論上和實證上展示了它們可以提高學習和規劃的效率。 最后,為了更接近現實世界的設置,我們研究了在線學習問題的表述,沒有關于任務之間相似性或代理可能遇到的任務數量的先驗知識。隨著代理對其環境的基本結構獲得更多知識,它應該能夠以更長的規劃視界和更高的確定性提前規劃。我們將規劃與在線學習之間的鴻溝橋接起來,以顯示跨任務的元學習模型可以直接導致有效規劃視界的適應。 總之,這篇論文的重點是通過超越狀態抽象的知識表示來橋接狀態和行動,并共同考慮行為(動作),朝著使持續RL代理能力成為目標。這篇論文提出了學習專業化時間抽象表示的新方法,將學習植根于直觀的可供性理論,并學習具有不斷增長的視界的規劃以實現持續適應。

為了發展廣泛的智能行為,這項工作的中心假設是,橋接狀態和行動對于表示知識、利用它進行規劃并能夠隨時間適應環境變化至關重要。在這篇論文中,我們展示了如何通過選擇性注意在原始行為和時間上抽象的行為的表示中橋接狀態和行動,以快速適應非平穩性,并引入了表示世界動態的新方法,以促進更快的規劃和更好的泛化。最后,我們探索在線學習設置中的規劃,以顯示元學習一個世界模型可以進一步改進理論和實證結果,導致能夠規劃越來越長視界的代理。圖1.1提供了本論文的概述。

付費5元查看完整內容

動態穩定移動操縱器的使用正從受控研究實驗室擴展到真實世界。然而,自主操縱技能仍然專門用于單一任務,并且只能處理對象物理屬性的有限變化,這阻礙了機器人在非結構化人類環境中的部署。本論文關注于動態穩定移動操縱器的整體運動規劃和控制,以及為控制器提供實時適應由于與物體交互而引起的機器人動力學變化。

動態穩定移動操縱器,即配備機器人手臂的積極平衡移動機器人,在為人類設計的環境中工作潛力非常大。然而,它們的靈活性和順應性需要高控制復雜性。傳統的控制策略將移動和操縱問題分別處理,需要額外的啟發式方法來實現整體協調。此外,基于逆動力學的控制器不考慮系統未來的演變,這對平衡控制至關重要。另一方面,在本論文中,我們提出了一種基于模型預測控制(MPC)的整體運動規劃和控制公式。我們的方法利用了完整的機器人動力學,并共同優化平衡、基座追蹤、末端執行器追蹤和環境交互。我們在一個球平衡操縱器的廣泛實驗中驗證了所提出的整體MPC控制器。

當機器人動力學不準確或操縱新物體時,模型不確定性可能嚴重影響MPC的性能和通用性。為了解決這個問題,我們提出了兩種在線適應方案,用于MPC系統動力學中的物體參數,我們在一個球平衡操縱器的開門和舉起物體任務中展示了這一點。盡管我們最初將外部環境建模為線性系統,但對于更復雜的操縱任務或機器人動力學中的不確定性,需要更具描述性的表示。因此,我們提出將模型誤差近似為三角函數基函數的線性組合。假設當機器人執行類似操縱任務時,動力學的基本結構不會發生顯著變化,我們從相關實驗中收集的數據學習基函數的超參數,例如,讓機器人打開具有不同剛度系數的門。執行新任務時,基函數的超參數保持不變,而線性參數在線適應。我們在仿真和硬件實驗中測試了得到的多任務學習MPC控制器,并與其他自適應MPC控制器進行了廣泛比較。

最后,為了在參數不確定性下獲得更好的跟蹤性能,我們將機器人操縱器自適應控制中導出的控制Lyapunov函數(CLF)約束納入最優控制問題的不等式集合中。因此,我們獲得了一種結合了CLFs和MPC優勢的自適應控制器,在機器人與未知物體交互時提供了改進的性能,并減少了對MPC預測范圍調整的依賴。我們通過與幾個基線的比較展示了所提方法的優勢,并在一個四足機器人搬運磚塊和拖拽重箱的硬件測試中驗證了它。

付費5元查看完整內容

從人本主義的角度建立人工智能系統的迫切性日益增加,因為從個性化推薦系統到語言和圖像生成模型的大規模機器學習系統每天都在與人互動。在這篇論文中,我們提出了一條從人本主義的角度建立這些系統的指導方針。我們的指南包含三個步驟:(i)識別學習任務中所關注的人的角色和他們的核心特性;(ii)以一種有用且可靠的方式對這些特性進行建模;和(iii)以原則性的方式將這些模型納入學習算法的設計中。我們將這一指南應用于兩個應用:個性化推薦系統和決策支持系統。對于推薦系統,我們按照指南(i)關注用戶不斷變化的偏好,(ii)將它們模型化為動態系統,和(iii)開發具有可證明保證的高效在線學習算法,與具有不同偏好動態的用戶互動。對于決策支持系統,我們(i)選擇決策者的風險偏好作為關注的核心特性,(ii)將它們模型化到系統的目標函數中,和(iii)為在多樣風險偏好下學習模型提供具有統計保證的一般程序。我們最后討論了以人為中心的機器學習的未來,以及這一領域中跨學科研究的角色。

付費5元查看完整內容

這本全面的教材的主要目標是涵蓋工程師需要了解的一些基本且最受歡迎的模型學習算法的核心技術,然后直接展示其在平穩時間序列中的適用性。這本書引入了一種與文獻中的主流方法不同的多步驟時間序列建模方法。更詳細地討論了單變量時間序列的奇異譜分析、使用最小二乘法進行的趨勢和季節性建模與殘差分析,以及ARMA模型的建模。

隨著數據驅動模型學習的應用在社會中變得普及,工程師需要了解其背后的原理,然后獲得開發和使用由此產生的數據驅動模型學習解決方案的技能。讀完這本書后,用戶將獲得足夠的背景知識和信心來:(i)更容易地閱讀其他模型學習教材,(ii)使用線性代數和統計學進行數據分析和建模,(iii)探索其他模型學習在其中發揮核心作用的應用領域。得益于眾多的插圖和模擬,這本教材將吸引需要在數據驅動模型學習中接受第一門課程的本科生和研究生。由于本書引入了易于實施的專門用于平穩時間序列模型學習的方法,因此對實踐者也很有用。只需具備高級微積分、線性代數和統計學的基本知識,使該材料對高級本科生來說容易理解。

付費5元查看完整內容

這篇論文研究了通過試錯學習教導自主智能體完成任務的算法。通常,這個問題被描述為一個強化學習(RL)問題,其中智能體試圖最大化用戶提供的獎勵函數。這里研究的算法采取了不同的方法,大部分避免使用獎勵函數,而是直接從數據中學習實現期望的結果。這種方法允許用戶使用來自監督學習和非監督學習的算法工具,同時也為非專家用戶提供了一個教導智能體新任務的界面。這些方法的設計中的主要挑戰是預測期望結果的概率,尤其是當這些結果在未來的數百步中才發生,特別是在使用離策略數據時。為此,這篇論文的第一部分基于遞歸分類開發了一種算法,該算法通過時間差分更新估計未來狀態的概率(第2章)。這種方法直接適用于具有連續狀態和動作的環境,不需要任何手工制作的距離度量,并導致了一個比之前的方法更高效的面向目標的RL算法。然后,我們將這個想法推廣到可以通過多種方式解決的任務,允許更靈活的任務規范,并提供更廣泛的泛化能力。

將控制問題以期望的結果來描述提供了一個簡單的機制來指定任務是什么,但它沒有為如何解決任務留下任何余地,這引發了一個問題:這些方法是否僅限于簡單任務。為了解決這個限制,我們考慮推斷復雜任務解決方案的結構。由于第一部分介紹的算法在本質上是概率性的,所以很容易將這種結構作為一個未觀察到的潛在變量納入其中。這些新算法推斷這種任務結構;在這樣做的過程中,它們將控制問題分解為一系列更容易的問題,從而加速學習。

我們首先討論以目標為條件的設置,這種推斷觀點導致了一個簡單且理論上有正當理由的方法,將面向目標的RL集成到傳統的規劃流程中(第4章)。RL被用來估計距離并學習一個局部策略,而觀察(如,圖像)上的圖搜索確定了通往目標的高級路徑。這種方法顯著優于標準的目標條件RL算法。接著,我們考慮一種不同的方式來構造任務解決方案:作為一個學習過的動態模型和策略的組合(第5章)。結果是一個基于模型的RL算法,其中模型和策略使用相同的目標聯合優化,這是預期回報的下界。

這篇論文基于初步論文提案中提出的工作在兩個主要方向上進行了深入。首先,我們探討了遞歸分類的幾何解釋(第2章),在表示學習和強化學習之間建立了緊密的聯系(第3章)。這種聯系使我們能夠將遞歸分類擴展到通過有限數量的獎勵標記狀態后設定的任務,并使我們能夠將這些方法應用到基于真實世界圖像的機器人操作任務上。其次,我們擴展了RL的潛在變量觀點(第4章和第5章)以在學習的表示上執行推斷(第5.6節)。這種擴展使我們的方法能夠擴展到更高維度的任務,并提供了大量的計算加速。

付費5元查看完整內容

安全強化學習(RL)專注于訓練策略以最大化獎勵,同時確保安全性。這是將 RL 應用于關乎安全的實際應用的重要步驟。然而,由于需要在最大化獎勵和滿足安全約束之間取得平衡,安全 RL 存在挑戰,這可能導致訓練不穩定和過于保守的行為。在這篇論文中,我們提出了兩種解決上述安全 RL 問題的方法: (1)我們提出了自我節奏的安全強化學習,它將自我節奏的課程與基礎的安全 RL 算法 PPO-Lagrangian 結合在一起。在訓練過程中,策略從簡單的安全約束開始,逐漸增加約束的難度,直到滿足所需的約束。我們在 Safety Gym 基準上評估了我們的算法,并證明了課程有助于底層安全 RL 算法避免局部最優,提高了獎勵和安全目標的性能。 (2)我們提出在一個修改過的 MDP 中學習策略,在這個"嵌入了安全性約束的 MDP"中,RL 代理的輸出被轉換成一系列的動作,這些動作通過一個軌跡優化器進行轉換,確保在機器人當前處于安全和準靜態配置的情況下是安全的。我們在 Safety Gym 基準上評估了我們的方法,并展示了我們在訓練期間獲得的獎勵顯著高于以前的工作,同時也少有安全性違規;而且,我們在推理期間沒有任何安全性違規。我們還在真實的機器人推箱子任務上評估了我們的方法,并證明了我們的方法可以在現實世界中安全地部署。

付費5元查看完整內容

大型語言模型代表了人工智能領域的重大進步。基礎技術是進一步創新的關鍵,盡管有批評意見,甚至在社區和地區內禁止,大型語言模型仍然存在。這篇立場論文從學生和教師的角度介紹了大型語言模型的教育應用的潛在好處和挑戰。簡要討論了大型語言模型及其應用的現狀。強調了如何使用這些模型來創建教育內容,提高學生參與度和互動,以及個性化學習體驗。關于挑戰,本文認為,教育中的大型語言模型需要教師和學習者開發一套必要的能力和素養,以理解技術以及這些系統的局限性和意想不到的脆弱性。此外,為了在學習環境和教學課程中整合和充分利用大型語言模型,需要在教育系統中有一個明確的策略和一個明確的教學方法,重點關注批判性思維和事實檢查策略。其他挑戰,如輸出中的潛在偏見,需要持續的人工監督,以及濫用的可能性,并不是人工智能在教育中的應用所特有的。但我們相信,如果合理處理,這些挑戰可以在教育場景中提供見解和機會,讓學生盡早了解人工智能應用的潛在社會偏見、關鍵和風險。最后,我們提出了如何應對這些挑戰的建議,并確保在教育中以負責任和道德的方式使用這些模式。

//www.edu.sot.tum.de/fileadmin/w00bed/hctl/my_direct_uploads/ChatGPT_for_Good.pdf

付費5元查看完整內容

盡管在深度學習方面已經取得了巨大的實踐進展,但我們對是什么使深度學習工作得很好以及為什么這樣做缺乏清晰的理論理解。在本文中,我們采用“自然科學”的方法來構建深度學習的理論。我們首先確定在跨越各種不同背景的實際深度網絡中出現的各種經驗屬性。然后,我們討論了這些實證發現可以如何用來通知理論。具體而言,我們證明:(1)與監督學習相比,經過自監督學習訓練的先進深度網絡盡管過度參數化,但在特定條件下仍能實現有限的泛化差距。(2)具有相似性能和架構的模型通常會收斂到相似的內部表示,即使它們的訓練方法有很大的不同(例如:監督學習和自監督學習)(3)插值分類器服從一種分布泛化形式——它們從訓練分布中收斂到一種條件采樣器類型。(4)深度網絡的數據擴展特性對訓練數據集的結構和噪聲水平的變化具有魯棒性。

//dash.harvard.edu/handle/1/37372168

我們的發現強調,盡管缺乏最壞情況的保證,深度網絡隱含地以可預測的、結構化的方式運行,從而為未來的理論分析奠定了基礎。

付費5元查看完整內容

隨著互聯網的興起,每天都有不同形式的大量的文本數據產生:新聞、研究文獻、 博客、論壇文字以及社交媒體評論等。很多重要有用的信息隱藏在其中,如何從這些自 由文本中自動抽取所需要的信息是一個關鍵并且重要的一步。信息抽取任務就是為此目 標而誕生。本文主要研究信息抽取子任務之一的實體關系抽取任務。該任務旨在識別文 本中出現的實體,并判斷出實體之間存在的關系。

傳統的有監督實體關系抽取通常采用基于流水線的方法,即實體模型和關系模型 分開訓練。在測試階段,先用實體模型識別出實體,然后關系模型找出這些實體之間的 關系。這種流水線的方法存在著錯誤傳播的缺點,前一個任務的錯誤會累積到后一個任 務。為了緩解這一問題,研究人員提出了聯合模型。聯合模型將兩個子模型統一建模, 可以進一步利用兩個任務之間的潛在信息,以緩解錯誤傳播的缺點。聯合模型的難點是 如何加強實體模型和關系模型之間的交互,比如實體模型和關系模型的輸出之間存在著 一定的約束,在建模的時候考慮到此類約束將有助于聯合模型的性能。

另一方面,為了解決實體關系抽取數據集難以獲得的問題,遠程監督的方法也被提 出來。其主要思想是利用知識庫和大規模文本數據對齊,自動構建大規模的訓練集。然 而,遠程監督方法的缺點是自動構建的訓練集中存在著很多的噪音數據,這些噪音數據 的存在對遠程監督實體關系抽取有著很大的負面影響。此外,在有些應用場景中可能沒 有現成的知識庫可以用來進行遠程監督,如何解決類似的數據噪音和數據缺失問題也是 一大挑戰。

根據實體關系抽取方法的研究現狀,本文從數據和聯合模型兩個角度探索了幾種實 體關系抽取聯合模型,并且探究了所提出模型的優勢和不足。具體來說,本文的主要貢 獻有

    1. 為了緩解遠程監督中的噪音樣本問題,本文提出利用少量高質量異構的人工標注 數據集幫助遠程監督實體關系抽取任務。本文設計了一個基于多任務學習的融合 框架,并且在融合過程中考慮到子模型之間的一致性約束,從而實現知識的遷移。本文提出的系統在標準遠程監督數據集能夠顯著的提高聯合抽取的性能(數據角 度)。
    1. 為了解決某些領域沒有現成知識庫無法進行遠程監督的問題,本文提出利用語言 學規則進行遠程監督。首先應用領域無關的語言學規則自動構建訓練集,然后使用 分類器在得到的訓練集上進行訓練,最后利用分類器進一步抽取語言學規則無法 覆蓋的新的實體關系。本文提出的算法很快并且適用于大規模數據。在 Amazon 在 i 線評論數據集上的實驗表明了本文提出的算法明顯優于多個基準模型(數據角度)。
    1. 為了加強實體模型和關系模型之間的交互,本文提出基于風險最小化訓練方法的 聯合實體關系抽取模型,通過優化全局的損失函數以達到加強實體模型和關系模 型之間聯系的目的。在 ACE05 數據集上的實驗證明了提出模型的有效性(聯合模 型角度)。
    1. 為了同時考慮到實體類型和關系類型的信息,本文提出一個基于圖卷積網絡的聯 合模型用于實體關系抽取。我們構造了實體-關系二分圖,并在圖上運行圖卷積網 絡,從而捕獲多個實體和多個關系之間的信息。在 ACE05 數據集上的實驗證明了 提出模型的有效性(聯合模型角度)。

//www.czsun.site/

付費5元查看完整內容
北京阿比特科技有限公司