在過去的幾年中,深度學習和醫學的交叉領域取得了快速的進展,特別是在醫學圖像的解釋方面。在這篇論文中,我描述了為醫學圖像解釋的深度學習技術的發展帶來挑戰和機遇的三個主要方向。首先,我討論了專家級醫學圖像解譯算法的發展,重點是轉移學習和自監督學習算法,設計用于低標簽醫療數據設置。其次,我將討論高質量數據集的設計和管理及其在推進算法開發中的作用,重點是使用有限的手工注釋進行高質量標記。第三,通過系統分析臨床相關分布位移下的性能的研究,我討論了醫學圖像算法的真實評估。總之,這篇論文總結了這些方向的關鍵貢獻和見解,以及在醫學專業的關鍵應用。
迭代方法,尤其是凸優化方法,構成了許多現代算法的基礎。這類方法的成功依賴于它們的通用性:像梯度下降法和牛頓法這樣的方法通常只需要對目標進行最小的假設就能收斂到高質量的最小化。然而,在許多現實環境中,這些算法所獲得的理論保證在實踐中往往是不夠的。本文通過開發凸優化方法和利用問題特定結構的圖算法來解決這個問題。
//searchworks.stanford.edu/view/14239649
第一部分給出了求解拉普拉斯線性系統的最先進算法,以及求解最小成本流的更快算法。我們的結果是通過新穎的組合經典迭代方法,從凸優化與基于圖的數據結構和預調節器。第二部分給出了若干類結構凸優化問題的新算法。給出了凸函數極小化的近似最優方法,包括球優化oracle和N個凸函數的最大值極小化,以及投影極小化和復合凸極小化的新算法。我們的結果是通過對經典加速梯度方法的更精細的理解實現的,并為各種重要的機器學習任務,如邏輯回歸和硬邊界支持向量機提供了新的算法。第三部分討論了離散最優傳輸問題算法的進展,這是一個近年來由于深度學習的新應用而引起極大興趣的任務。我們給出了簡單的并行算法來逼近離散最優傳輸,并進一步證明了這些算法可以在空間界和流設置中實現。通過進一步利用我們的機制,我們還對半流模型中的圖優化問題(如二部匹配和轉運)給出了改進的復雜度邊界。
在過去的幾年里,深度學習和醫學的交叉點取得了快速的進展,特別是在醫學圖像的理解方面。在這篇論文中,我描述了三個關鍵方向,它們為醫學圖像理解的深度學習技術的發展帶來了挑戰和機遇。首先,討論了專家級醫學圖像理解算法的開發,重點是遷移學習和自我監督學習算法,旨在在低標記醫學數據設置中工作。其次,討論了高質量數據集的設計和管理及其在推進算法開發中的作用,重點是使用有限手動注釋的高質量標簽。第三,討論了醫學圖像算法的真實世界評估,以及系統分析臨床相關分布變化下的性能的研究。總之,本論文總結了每個方向的關鍵貢獻和見解,以及跨醫學專業的關鍵應用。
圖:CheXpert 任務是預測來自多視圖胸片的不同觀察結果的概率。
圖:對比學習最大化同一胸部 X 射線圖像的不同增強所生成嵌入的一致性。
未來幾年,人工智能 (AI) 有望重塑醫學。人工智能系統將常規用于早期檢測疾病、改善預后并提供更成功的個性化治療計劃,同時節省時間和降低成本。在不久的將來,可以讀取胸部 X 光片或組織病理學切片的算法將為醫生管理工作清單,為無需亞專業培訓的臨床醫生提供決策支持,并為人工智能驅動的遠程醫療服務提供支持。在醫院之外,人工智能技術將用于持續監測數百萬患者的健康狀況,并以前所未有的規模將患者安排就診和跟進。
近年來,深度學習是一種人工智能形式,其中神經網絡直接從原始數據中學習模式,在圖像分類方面取得了顯著成功[128]。因此,醫學 AI 研究在嚴重依賴圖像理解的專業領域蓬勃發展,例如放射學、病理學和眼科 [137]。過去幾年,算法的進步和數據集的創建推動了這一進步。在算法方面,卷積神經網絡架構和訓練程序的改進使醫學成像應用取得了進展。此外,這些算法的成功得益于對用于醫學成像的大型標簽數據集的管理。一些 AI 工具已經從測試轉向部署,清除了監管障礙并贏得了行政支持 [20]。批準公共保險報銷費用的醫療保險和醫療補助服務中心通過允許一些用于醫學圖像診斷的人工智能工具的首批報銷,促進了人工智能在臨床環境中的采用 [69]。然而,在回顧性數據集上成功理解醫學圖像的深度學習算法的數量與轉化為臨床實踐的數量之間仍然存在很大差距 [116]。
本論文提出,廣泛部署用于醫學圖像理解的深度學習算法存在三個關鍵技術挑戰。該領域面臨的第一個挑戰是,當前算法的開發側重于解決需要大量干凈數據的狹窄任務,而不是解決醫學中常見的具有噪聲或有限標簽數據的更廣泛任務。該領域面臨的第二個挑戰是用于訓練和驗證模型的數據集是小型、嘈雜和同質的,而不是大型、高質量和異構的。該領域面臨的第三個挑戰是,當前的研究在訓練算法的數據集分布的背景下驗證算法,而臨床部署需要在臨床相關的分布變化下評估算法性能。
本論文涵蓋了算法、數據集和研究方向的進步、挑戰和機遇。
在過去的幾年里,深度學習算法的一些初步成果可以達到醫學專家水平,做出臨床上重要的診斷,包括放射學、心臟病學、皮膚病學、眼科和病理學[139]。在第 2 章中,我描述了一種用于檢測胸部 X 射線疾病的算法開發,我們證明該算法的性能可以與專業放射科醫生相媲美。在第 3 章中,我描述了一種算法開發,該算法在專業心臟病專家的水平上通過心電圖檢測異常心律。在這兩種情況下,我還描述了使訓練端到端深度學習算法成為可能的大型數據集的集合。這些章節一起描述了胸部 X 射線判讀和心律失常檢測任務的專家級表現的首次展示。
算法開發的主要實際挑戰之一是它們依賴于手動、耗時的數據注釋。特別是對于需要大量注釋專業知識的生物醫學任務,開發監督深度學習算法所需的大規模數據標記尤其具有挑戰性。對于醫學成像,使用預訓練 ImageNet [55] 模型的遷移學習一直是在有限的標記數據設置中開發算法的標準方法 [180]。在第 4 章中,我描述了對 ImageNet 架構的性能和效率以及胸部 X 光解讀權重的首次系統研究。在第 5 章和第 6 章中,我還描述了自我監督對比學習如何實現醫學訓練模型的范式轉變,其中相對少量的注釋可以訓練高度準確的模型。這些章節描述了遷移學習和自我監督學習如何解決醫療環境中有限標記數據的算法挑戰。
大型、高質量的數據集在推動深度學習算法的應用和進步方面發揮著關鍵作用。在醫學領域,數據集管理需要與醫院管理員建立合作伙伴關系,建立安全處理和去識別數據的框架,以及數據組織和注釋的策略。在第 7 章中,我描述了胸部 X 射線照片數據集的管理和合成轉換,旨在評估 X 射線照片的算法性能,以在真實臨床環境中進行基準穩健性測試。在第 8 章中,我描述了包含組織微陣列載玻片的數據集的管理和注釋,以及來自癌癥病例的臨床和細胞遺傳學數據,以發現預后生物標志物。
對于醫學影像數據集,標注通常需要人工標注,成本高且難以獲得,而通過自動化方法獲取的標簽可能會產生噪音。在監督計算機視覺模型解讀醫學圖像的背景下,從自由文本放射學報告中高質量地自動提取醫學狀況至關重要。在第 9 章和第 10 章中,我描述了構建高質量放射學報告標記器的過程,這些標記器可以解決噪音和專家注釋的有限可用性。
雖然醫學圖像解讀中的大多數基礎工作已經在訓練它們的相同數據集分布上評估算法,但這些算法的部署需要了解它們在臨床相關分布變化下的性能。在第 11 章中,我以胸部 X 光解讀為例,描述了在存在未標記或訓練期間存在的疾病的情況下,對深度學習模型性能的系統評估。在第 12 章中,我描述了對不同胸部 X 光模型的系統研究,該模型應用于未經任何微調的智能手機胸部 X 光照片和外部數據集。
總體而言,本論文展示了深度學習醫學圖像解讀的進展,結合了以下方面的進步:(1)在大小標記數據集背景下的算法,(2)通過臨床知情管理和標記的數據集,(3)和研究系統地評估算法在臨床相關分布變化下的性能。
圖:實驗裝置概述
圖:測試了 8 種不同的胸部 X 光模型,應用于 (1) 胸部 X 光的智能手機照片和 (2) 沒有任何微調的外部數據集時的診斷性能。所有模型都由不同的團隊開發并提交給 CheXpert 挑戰賽,并在沒有進一步調整的情況下重新應用于測試數據集。
在過去的幾年中,深度學習和醫學的交叉領域取得了快速的發展,特別是在醫學圖像的解譯方面。在本文中,我描述了三個關鍵方向,為醫學圖像解釋的深度學習技術的發展提出了挑戰和機遇。首先,我討論了專家級醫學圖像解譯算法的發展,重點是用于低標記醫學數據設置的遷移學習和自監督學習算法。其次,我討論了高質量數據集的設計和管理以及它們在推進算法發展中的作用,重點是使用有限的手動注釋的高質量標記。第三,我討論了真實世界的評估醫學圖像算法的研究,系統地分析了在臨床相關分布變化下的性能。總之,這篇論文總結了關鍵貢獻和見解,在這些方向與關鍵應用跨醫學專業。
摘要:近年來,在開發更準確、高效的醫學和自然圖像分割機器學習算法方面取得了重大進展。在這篇綜述文章中,我們強調了機器學習算法在醫學成像領域有效和準確分割中的重要作用。我們特別關注幾個關鍵的研究涉及到應用機器學習方法在生物醫學圖像分割。我們回顧了經典的機器學習算法,如馬爾可夫隨機場、k均值聚類、隨機森林等。盡管與深度學習技術相比,這種經典的學習模型往往精度較低,但它們通常更具有樣本效率,結構也更簡單。我們還回顧了不同的深度學習結構,如人工神經網絡(ANNs)、卷積神經網絡(CNNs)和遞歸神經網絡(RNNs),并給出了這些學習模型在過去三年中獲得的分割結果。我們強調每種機器學習范式的成功和局限性。此外,我們還討論了與不同機器學習模型訓練相關的幾個挑戰,并提出了一些解決這些挑戰的啟發方法。