亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

為計算機生成兵力(CGF)創建行為模型是一項具有挑戰性且耗時的任務,通常需要具備復雜人工智能算法編程方面的專業知識。因此,對于了解應用領域和培訓目標的主題專家來說,很難建立相關的場景并使培訓系統與培訓需求保持同步。近年來,機器學習作為一種為合成智能體建立高級決策模型的方法,已顯示出良好的前景。這類智能體已經能夠在撲克、圍棋和星際爭霸等復雜游戲中擊敗人類冠軍。我們有理由相信,軍事模擬領域也有可能取得類似的成就。然而,為了有效地應用這些技術,必須獲得正確的工具,并了解算法的能力和局限性。

本文討論了深度強化學習的高效應用,這是一種機器學習技術,可讓合成智能體學習如何通過與環境互動來實現目標。我們首先概述了現有的深度強化學習開源框架,以及最新算法的參考實現庫。然后,我們舉例說明如何利用這些資源為旨在支持戰斗機飛行員培訓的計算機生成兵力軟件構建強化學習環境。最后,基于我們在所介紹環境中進行的探索性實驗,我們討論了在空戰訓練系統領域應用強化學習技術的機遇和挑戰,目的是為計算機生成的兵力有效構建高質量的行為模型。

計算機生成兵力的學習環境

在實驗中,將強化學習環境構建為實現 OpenAI Gym 接口的 Python 模塊,因為許多現有的強化學習算法實現都支持該接口。環境的結構如圖 2 所示。環境的大部分功能都在 EnvironmentCore 類中實現。該類通過 SimulationInterface 與本地或遠程計算機上運行的仿真進程通信,在仿真中的實體和控制它們的強化學習智能體之間傳輸觀察結果和操作。SimulationInterface 還用于在計算機生成兵力軟件中加載模擬場景。

模擬與環境模塊之間的通信是通過 ZeroMQ 實現的,ZeroMQ 是一個開源、輕量級的消息傳遞中間件,可綁定多種編程語言,包括 C++ 和 Python。ZeroMQ 可以輕松實現幾種流行的消息傳遞模式,如請求-回復、發布-訂閱和推-拉。ZeroMQ使用谷歌協議緩沖區(Google protocol buffers)來指定消息,這是一種語言中立、平臺中立的結構化數據序列化機制。使用簡單的協議語言創建消息規范,然后將其編譯成各種編程語言(包括 C++ 和 Python)的源代碼。

要配置特定的環境,需要使用一些委托對象:

  • ActionDelegate: ActionDelegate 指定環境的動作空間(OpenAI Gym 中提供的空間定義之一)。在執行過程中,它將該空間中的動作作為輸入,并將其轉換為 ActionRequest 消息,然后由 EnvironmentCore 發送給模擬中的實體。 -ObservationDelegate:指定環境的觀察空間(OpenAI Gym 中提供的空間定義之一)。在執行過程中,它將來自模擬實體的狀態更新信息作為輸入,并將其轉換為來自觀察空間的狀態觀察信息,然后將其呈現給智能體。
  • RewardDelegate:將狀態觀測信息作為輸入,并計算出一個標量獎勵信號,然后將其發送給智能體。
  • ScenarioDelegate:管理要模擬的情景,包括終止標準。對于訓練過程中的每個情節,委托機構都會根據需要調整場景內容,并生成模擬請求(SimulationRequest)消息,由環境核心(EnvironmentCore)發送給模擬。
  • RenderDelegate:會渲染模擬場景當前狀態的視圖。這對調試非常有用。我們使用 Python Matplotlib 和 Basemap 庫實現了簡單的地圖渲染。

空戰仿真領域的深度強化學習

在空戰模擬領域的深度強化學習實驗中,我們發現了一些挑戰,這些挑戰通常不存在于許多強化學習的簡單基準環境中。狀態和行動空間的維度高且復雜,使得智能體難以學習重要的狀態特征和合適的決策策略。例如,在許多場景中,由于傳感器的限制或電子戰的影響,環境只能被部分觀測到。此外,在大多數場景中,智能體不會單獨行動,而是必須與盟友合作,同時與敵人競爭,以達到目標。為了處理長期和短期目標,可能需要在不同的時間尺度上進行決策。代表最重要目標的獎勵通常是延遲的、稀疏的,例如,如果智能體取得了勝利,就會在情景結束時給予獎勵,這樣就很難將功勞歸于正確的行動。此外,根據訓練需要,智能體的目標也有可能在不同的模擬運行中有所不同。例如,我們可能需要調整模擬的難度,以適應受訓者的熟練程度。最后,由于運行高保真模擬的計算成本很高,因此盡可能提高學習過程的樣本效率非常重要。在下面的章節中,我們將討論一些可以用來應對這些挑戰的技術。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

為了真實地再現軍事行動,嚴肅的戰斗模擬要求建模實體具有合理的戰術行為。因此,必須定義作戰戰術、條令、交戰規則和行動概念。事實證明,強化學習可以在相關實體的行為邊界內生成廣泛的戰術行動。在多智能體地面作戰場景中,本文展示了人工智能(AI)應用如何制定戰略并向附屬單元提供命令,同時相應地執行任務。我們提出了一種將人類知識和責任與人工智能系統相結合的方法。為了在共同層面上進行交流,人工智能以自然語言下達命令和行動。這樣,人類操作員就可以扮演 "人在回路中 "的角色,對人工智能的推理進行驗證和評估。本文展示了自然語言與強化學習過程的成功整合。

RELEGS:針對復雜作戰情況的強化學習

為了獲得模型架構的靈感,我們研究了 DeepMind 的 AlphaStar 架構,因為它被認為是復雜 RL 問題領域的最先進架構。通過我們的架構(如圖 2 所示),我們提出了一種靈活、可擴展的行動空間與深度神經網絡相結合的適應性新方法。觀察空間的設計基于如何準備戰場的軍事經驗。通常使用地圖和可用部隊表。因此,模擬觀測被分為標量數據(如可用坦克數量及其彈藥)。同時,基于地圖的輸入作為視覺輸入提供給空間編碼器。

標量數據用于向人工智能提供幾乎所有場景細節的建議。其中包括有關自身部隊及其平臺的數據,以及有關敵方部隊的部分信息。輸入并非以絕對數字給出,而是采用歸一化方法來提高訓練效果。編碼器可以很容易地寫成多層感知器(MLP);不過,使用多頭注意力網絡可以大大提高訓練后智能體的質量,因此應予以采用(Vaswani 等人,2017 年)。

為了理解地理地形、距離和海拔高度的含義,人工智能會被輸入一個帶有實體編碼的地圖視覺表示。顏色方案基于三通道圖像,這使我們能夠輕松地將數據可視化。雖然使用更多通道會給人類的圖形顯示帶來問題,但人工智能能夠理解更多通道。不同的字段類型和實體會用特殊的顏色進行編碼,以便始終能夠區分。這種所謂的空間編碼器由多個卷積層組成。最初,我們嘗試使用 ResNet-50 (He 和 Zhang,2016 年)和 MobileNetV3 (Howard 等,2019 年)等著名架構,甚至使用預先訓練的權重。然而,這并沒有帶來可接受的訓練性能。因此,我們用自己的架構縮小了卷積神經網絡(CNN)的規模。

為了測試和優化這一架構,我們使用了一個自動編碼器設置,并使用了模擬中的真實樣本。我們能夠將參數數量從大約 200 萬減少到大約 47000。此外,我們還生成了一個預訓練模型,該模型已與模擬的真實觀測數據相匹配。這一步極大地幫助我們加快了 RL 進程。

一個可選元素是添加語言輸入,為人工智能定義任務。雖然一般的戰略人工智能不使用這一元素,但計劃將其用于下屬智能體。這些智能體將以自然語言接收來自戰略人工智能的任務,并使用雙向門控遞歸單元(GRU)編碼器對其進行處理。

視覺數據、任務數據和標量數據的編碼值被合并并輸入核心網絡。根據 Hochreiter 和 Schmidhuber(1997 年)的介紹,核心主要是一個擁有 768 個單元的長短期記憶(LSTM)組件。在軍事場景中,指揮官必須了解高價值資產的長期戰略規劃。在本模擬中,人工智能可以請求戰斗支援要素,這些要素在影響戰場之前需要長達 15 分鐘的時間。因此,人工智能必須了解未來任務的時間安排和規劃。在 RL 中使用 LSTM 網絡相當困難,因為它需要大量的訓練時間,而且會導致上面各層的梯度消失。因此,我們決定在 LSTM 上添加一個跳過連接,以盡量減少新增層的負面影響。

動作頭由一個自然語言處理(NLP)模型組成。這是一個非常簡化的動作頭模型,包含一個小型 LSTM 和一個額外的密集層,共有約 340000 個參數。其結果是一個尺寸為 8 x 125 的多離散動作空間。

除主模型外,還有一個單獨的價值網絡部分。價值網絡使用核心 LSTM 的輸出,并將對手信息串聯起來傳遞給 MLP。然后,MLP 可以精確預測價值函數。通過對手信息,價值網絡對模擬有了一個上帝般的地面實況視圖。由于該網絡只與訓練相關,因此可以在不干擾訓練完整性的情況下進行。

付費5元查看完整內容

近年來,槍支暴力事件急劇增加。目前,大多數安防系統都依賴于人工對大廳和大廳進行持續監控。隨著機器學習,特別是深度學習技術的發展,未來的閉路電視(CCTV)和安防系統應該能夠檢測威脅,并在需要時根據檢測結果采取行動。本文介紹了一種使用深度學習和圖像處理技術進行實時武器檢測的安防系統架構。該系統依靠處理視頻饋送,通過定期捕捉視頻饋送中的圖像來檢測攜帶不同類型武器的人員。這些圖像被輸入一個卷積神經網絡(CNN)。然后,CNN 會判斷圖像是否包含威脅。如果是威脅,它就會通過移動應用程序向保安人員發出警報,并向他們發送有關情況的圖像。經過測試,該系統的測試準確率達到 92.5%。此外,它還能在 1.6 秒內完成檢測。

付費5元查看完整內容

強化學習(RL)方法的主要關注點之一是如何將在模擬環境中學到的策略轉移到現實環境中,同時獲得相似的行為和性能(即模擬到現實的可轉移性),這一點在機器人控制器中尤為重要[1]。在過去的幾年里,為了縮小模擬世界與現實世界之間的差距,實現更有效的策略轉移,人們已經跟蹤了多個研究方向。領域隨機化是學習遷移中應用最廣泛的方法之一,它將模型暴露在各種條件下,使模型對這些方面的建模誤差具有魯棒性。隨機化被認為是實現從模擬到真實轉移和一般穩健策略的關鍵[2]。另一種常用的方法是系統識別,它使用具有精確物理和動態系統數學模型的高保真環境。不過,系統識別的缺點是計算量大,因此需要更多時間進行訓練。其他相關方法有零點轉移法和域適應法 [3]。

大多數關于 RL 的研究都集中在使用端到端方法的低級控制器上,其中 RL 網絡將機載傳感器提供的原始信息作為輸入,并將應用于執行器的連續控制動作作為輸出 [4]。然而,這種方法有兩個主要局限性:(i) 它對平臺的配置有很強的依賴性,例如,與傳感器提供的信息及其質量有關,或與推進器等執行器的數量及其配置有關;(ii) 模擬到現實的傳輸差距更難縮小,因為經過訓練的策略會受到機器人平臺動態的強烈影響。例如,在文獻[5]中,作者在真實飛行器中使用了第二個訓練過程,學習過程繼續在線進行。在文獻[6]中,控制器需要進行額外的調整,以彌補模擬與真實世界之間的差異,但即便如此,現場結果仍顯示出較低的性能。

在本研究中,我們介紹了一種平臺便攜式深度強化學習方法,該方法已被用作自主車輛定位水下物體的路徑規劃系統,如圖 1 所示。我們設計了一個高級控制系統,以減少上述問題,并具有強大的模擬到實際的傳輸能力。此外,我們的方法易于配置,可在不同平臺和不同條件下部署。例如,訓練有素的智能體已成功部署在兩種不同的飛行器上: (i) 液體機器人公司(Liquid Robotics,美國)的自主水面飛行器(ASV)"波浪滑翔機";以及 (ii) IQUA 機器人公司(IQUA Robotics,西班牙)的自主水下飛行器(AUV)"Sparus II"。測試在加利福尼亞州蒙特雷灣和西班牙加泰羅尼亞 Sant Feliu de Gu?xols 港口進行。在這兩種情況下,飛行器都使用了僅測距的目標跟蹤方法來定位錨定的應答器[7]。

圖 1:制導、導航和控制系統,以及與制導相關的一些主要研究方向。用粗體字表示詳細描述的方面。

付費5元查看完整內容

應用人工智能模擬空對空作戰場景正引起越來越多的關注。迄今為止,高維狀態和行動空間、高度復雜的情況信息(如不完全信息和過濾信息、隨機性、對任務目標的不完全了解)以及非線性飛行動態對準確的空戰決策構成了巨大挑戰。當涉及多個異構代理時,這些挑戰會更加嚴峻。我們為具有多個異構代理的空對空作戰提出了一個分層多代理強化學習框架。在我們的框架中,決策過程分為兩個抽象階段,異構的低級策略控制單個單位的行動,而高級指揮官策略則根據總體任務目標下達宏觀命令。低層次政策是為精確控制部隊作戰而訓練的。它們的訓練是按照學習課程安排的,其中包括日益復雜的訓練場景和基于聯賽的自我比賽。根據預先訓練好的低級策略,對指揮官策略進行任務目標訓練。經驗驗證證明了我們設計方案的優勢。

付費5元查看完整內容

將人工智能(AI)融入陸軍后勤工作,可以徹底改變供應鏈管理、優化資源配置并增強決策能力。不過,這需要采取全面的方法,解決實施過程中的挑戰和問題。

人工智能技術的迅猛發展為將其應用于包括陸軍后勤在內的各行各業提供了新機遇。認識到人工智能的潛力,陸軍應努力大規模利用其能力,并將其應用到戰術層面,以改善供應鏈管理、資源分配和決策過程。通過與《聯合出版物 4-0:聯合后勤》、《野戰手冊 4-0:維持行動》和《陸軍條令出版物 4-0:維持》中概述的指導原則保持一致,陸軍可以在日益復雜和快速發展的世界中發展適應性強、反應迅速和有效的后勤行動。然而,將人工智能融入陸軍后勤工作會帶來一些挑戰和問題,如在自動化與人類專業技能之間找到最佳平衡點、確保強大的網絡安全、解決倫理問題以及使勞動力適應不斷變化的技術環境。本文探討了在陸軍后勤中整合人工智能的潛在優勢和劣勢,并討論了在最大限度地提高效益的同時,最大限度地降低風險和解決與實施人工智能相關的問題所需的全面方法。

最大化供應鏈管理: 真實案例

人工智能在大幅提升陸軍供應鏈管理方面的變革能力毋庸置疑。正如美陸軍物資司令部前司令埃德-戴利(Ed Daly)將軍所強調的那樣,人工智能對于實現實際后勤所需的相關速度至關重要。他的愿景是將人工智能和機器學習無縫融入陸軍后勤流程的方方面面,從而為戰場上的士兵提供無與倫比的效率和及時支持。為支持這一觀點,《國際生產經濟學雜志》上發表的一項研究顯示,將人工智能融入供應鏈管理可將效率提高 20% 或更多。

人工智能分析海量數據、預測未來趨勢和資源分配需求的能力是陸軍后勤的另一大優勢。通過利用人工智能驅動的分析,陸軍可以更精確地預測士兵的需求,確保重要物資在正確的時間和地點到達目的地。此外,預測分析還能通過簡化人員和裝備分配來優化陸軍行動。陸軍后勤中的預測分析可以確定車輛部件何時需要更換,從而在故障發生前進行主動維護。這種方法可節省大量成本并提高運營安全性,減少因維護和事故而計劃外停機的可能性。此外,預測性分析還可以通過預測供應需求和驗證在正確的時間和地點是否有正確的資源來完善供應鏈管理。這一戰略可提高運營效率、縮短交付周期并提高供應鏈的可見性。

自適應后勤與決策: 對實時信息做出反應

適應當地快速變化條件的能力是現代軍事行動的重要組成部分。適應性后勤和決策對于維持陸軍在復雜環境中的有效性和反應能力至關重要。人工智能通過提供實時信息、復雜的分析和先進的決策支持工具,有可能徹底改變軍事后勤的這一方面。

人工智能在適應性后勤方面的一個重要優勢是它有能力收集和分析來自各種來源的大量數據,包括傳感器、衛星和其他情報平臺。此外,人工智能還能訪問來自不同陸軍源系統的記錄系統數據,如全球指揮與控制系統-陸軍、后勤現代化計劃、港口自動化工具和運輸協調員移動信息自動化系統 II。人工智能還可以利用非陸軍系統,如全球決策支持系統和后勤功能區服務。通過這種全面的數據分析,可以做出更明智的決策,提高后勤效率。

這些信息可為作戰環境提供全面的最新情況,使指揮官能夠根據實時情報做出明智決策。通過獲取準確及時的數據,陸軍可以更有效地應對新出現的威脅,最大限度地降低風險,并抓住機遇。

除了提供實時信息外,人工智能還能通過識別人類分析人員可能不易察覺的模式和趨勢來加強決策。通過機器學習算法和先進的數據分析,人工智能系統可以發現隱藏的相關性,并產生可操作的見解,為戰略和戰術決策提供依據。例如,人工智能可以幫助預測敵人的動向,預測后勤瓶頸,或在潛在的供應鏈中斷發生之前加以識別。有了這些洞察力,指揮官就能做出更明智的決策,更有效地分配資源,并在戰場上保持競爭優勢。

人工智能還能通過自動化某些后勤規劃和決策環節,提高陸軍應對突發事件和緊急情況的能力。例如,人工智能驅動的系統可以根據不斷變化的環境條件或供應鏈的突然中斷,自動調整物資和人員的路線。通過實現這些流程的自動化,陸軍可以最大限度地減少延誤,并確保將關鍵資源運送到最需要的地方,即使在不確定和逆境中也是如此。

人工智能在適應性后勤中的另一項應用涉及使用模擬和優化技術來支持復雜多變條件下的決策。人工智能驅動的模擬模型可以幫助指揮官探索各種場景,評估潛在的行動方案,并確定實現目標的最有效策略。這可以使后勤計劃更加穩健、更具彈性,并提高任務的整體成功率。

反駁意見

雖然將人工智能融入陸軍后勤會帶來諸多益處,但也有合理的擔憂和潛在的弊端需要考慮。一些批評者認為,依賴人工智能可能會導致過分強調技術,而忽視人的經驗和直覺,而人的經驗和直覺在復雜和不可預測的情況下至關重要。人工智能有可能造成虛假的安全感,導致過度自信和戰略失誤。

此外,與實施人工智能技術相關的巨大成本,如基礎設施升級、軟件開發和持續維護,可能會超過潛在的好處。預算限制和相互競爭的優先事項可能會使為人工智能集成分配足夠的資源變得具有挑戰性,從而可能限制其有效性。

另一個令人擔憂的問題是人工智能系統易受網絡攻擊和敵方操縱。隨著人工智能驅動的后勤系統對陸軍行動越來越關鍵,它們也成為對手試圖破壞或損害軍事能力的高價值目標。制定強有力的網絡安全措施至關重要,但無法保證這些防御措施在應對快速發展的威脅時始終有效。

此外,還要考慮與軍事后勤中的人工智能有關的倫理問題。使用人工智能可能會導致決策偏差、缺乏透明度或意想不到的后果。必須明確界定人工智能系統行動的責任,以確保在出現錯誤或故障時能追究責任。

最后,將人工智能融入陸軍后勤可能會給后勤軍事職業專業帶來意想不到的后果。雖然特定任務的自動化可以提高效率,但也可能導致工作崗位的轉移,并需要對勞動力進行大量的再培訓。確保陸軍能夠適應這些變化并保留一支熟練的勞動力隊伍至關重要,但這需要持續的努力和投資。

雖然反駁意見中提出的擔憂不無道理,但必須指出,不應完全否定整合人工智能的潛在好處。相反,有必要采取一種平衡的方法,仔細考慮與人工智能實施相關的風險和挑戰,同時尋求利用其在陸軍后勤中的變革潛力。通過制定全面的戰略,陸軍可以解決這些問題,最大限度地發揮人工智能集成的效益。

結論

將人工智能融入陸軍后勤工作,為徹底改變供應鏈管理、優化資源配置和加強決策過程提供了眾多機會。然而,至關重要的是要認識到并解決與實施人工智能相關的挑戰和問題,如在自動化和人類專業知識之間取得適當平衡、確保強大的網絡安全、解決道德問題以及使勞動力適應不斷變化的技術環境。

為了充分利用人工智能的潛力,陸軍應采取全面的方法,包括投資人工智能基礎設施、促進公共和私營部門之間的合作、為人員提供持續的教育和培訓,以及制定強有力的網絡安全措施。此外,必須就人工智能在軍事后勤中的道德影響保持公開對話,并建立明確的指導方針和問責結構,以確保負責任地部署人工智能。

通過采取全面的方法,陸軍可以克服與人工智能集成相關的挑戰,釋放其變革潛力,并在日益復雜和快速發展的全球安全環境中保持競爭優勢。

付費5元查看完整內容

人工智能(AI)和統計機器學習(ML)與復雜系統的集成,給傳統的測試與評估(T&E)實踐帶來了各種挑戰。隨著更多不同級別的決策由人工智能系統(AIES)處理,我們需要測試與評估流程為確保系統的有效性、適用性和生存性奠定基礎。這涉及到評估 ML 模型和人工智能算法組件的方法,包括展示它們如何產生可重復和可解釋的決策的能力,以及對任何故障模式和故障緩解技術的了解。此外,還需要人工智能保證,以證明人工智能算法按預期運行,不存在因設計缺陷或惡意插入數據或算法代碼而產生的漏洞。T&E 需要新的流程來鑒定 ML 模型的訓練數據是否充足、算法和模型性能、系統性能以及運行能力。弗里曼(Freeman,2020 年)概述了當前復雜軟件支持系統的測試與評價方法所面臨的挑戰、嵌入式人工智能所加劇的關鍵挑戰,以及針對 AIES 的測試與評價需要如何改變的 10 個主題[1]。

為了充分測試 AIES,測試與評估界需要應對以下挑戰:

  • 當狀態空間的大小導致測試所有情況不可行,或開放世界問題導致無法枚舉所有情況時,確定測試要求;
  • 解決這些突發系統可以分解這一可能無效的假設;以及
  • 處理動態變化的系統,這些系統在部署過程中可能永遠不會處于 "最終 "狀態[1]。

圖 1 總結了加強測試與評估的 10 個不同主題,以應對充分測試和評估 AIES 所面臨的挑戰。在過去的一年中,弗吉尼亞理工大學致力于測試和評估各種 AIES。本最佳實踐指南對圖 1 中的主題進行了進一步的完善和補充。本文所包含的最佳實踐將這些主題轉化為可執行的測試與評估實踐。在編寫本指南的過程中,我們充分利用了我們在人工智能系統開發和與更廣泛的人工智能社區合作方面的 T&E 工作經驗。這里所包含的最佳實踐反映了我們為使人工智能系統的測試與評估具有可操作性所做的初步嘗試。這些實踐需要在各種人工智能系統中進行測試,以確保它們是真正的最佳實踐。貫穿許多最佳實踐的一個亮點是數據的重要作用。數據不再僅僅是 T&E 的產物。現在,它已成為人工智能系統開發本身的輸入。這一顯著變化推動了對人工智能系統的技術與評估提出新的要求和實踐。此外,這份清單還遠遠不夠完整,應被視為一份活生生的實踐文檔。隨著越來越多的人工智能系統可供測試,新的實踐將不斷發展,本清單也需要不斷更新。不過,本文件中的每種做法都已證明在美國防部 AIES 測試中非常有用。

付費5元查看完整內容

美國陸軍對人工智能和輔助自動化(AI/AA)技術在戰場上的應用有著濃厚的興趣,以幫助整理、分類和澄清多種態勢和傳感器數據流,為指揮官提供清晰、準確的作戰畫面,從而做出快速、適當的決策。本文提供了一種將作戰模擬輸出數據整合到分析評估框架中的方法。該框架有助于評估AI/AA決策輔助系統在指揮和控制任務中的有效性。我們的方法通過AI/AA增強營的實際操作演示,該營被分配清理戰場的一個區域。結果表明,具有AI/AA優勢的模擬場景導致了更高的預期任務有效性得分。

引言

美國陸軍目前正在開發將人工智能和輔助自動化(AI/AA)技術融入作戰空間的決策輔助系統。據美國陸軍機動中心稱,在決策輔助系統等人工智能/輔助自動化系統的協助下,士兵的作戰效率可提高10倍(Aliotta,2022年)。決策輔助工具旨在協助指揮官在作戰場景中減少決策時間,同時提高決策質量和任務效率(Shaneman, George, & Busart, 2022);這些工具有助于整理作戰數據流,協助指揮官進行戰場感知,幫助他們做出明智的實時決策。與使用AI/AA決策輔助工具相關的一個問題是,陸軍目前缺乏一個有效的框架來評估工具在作戰環境中的使用情況。因此,在本文中,我們將介紹我們對分析框架的研究、設計和開發,并結合建模和仿真來評估AI/AA決策輔助工具在指揮和控制任務中的有效性。

作為分析框架開發的一部分,我們進行了廣泛的文獻綜述,并與30多個利益相關者進行了利益相關者分析,這些利益相關者在人工智能/AA、決策輔助、指揮與控制、建模與仿真等領域具有豐富的知識。根據他們對上述主題的熟悉程度,我們將這些利益相關者分為若干焦點小組。我們與每個小組舉行了虛擬焦點小組會議,收集反饋意見,并將其用于推動我們的發現、結論和建議(FCR)。同時,我們還開發了一個逼真的戰場小故事和場景。利用該場景和我們的FCR輸出,我們與美國陸軍DEVCOM分析中心(DAC)合作開發了一個功能層次結構,通過建模和仿真來測量目標。我們將假設的戰斗場景轉移到 "一個半自動化部隊"(OneSAF)中,該模擬軟件利用計算機生成部隊,提供部分或完全自動化的實體和行為模型,旨在支持陸軍戰備(PEOSTRI, 2023)。使用分析層次過程,我們征詢了評估決策者的偏好,計算了功能層次中目標的權重,并創建了一個電子表格模型,該模型結合了OneSAF的輸出數據,并提供了量化的價值評分。通過A-B測試,我們收集了基線模擬和模擬AI/AA效果的得分。我們比較了A情景和B情景的結果,并評估了AI/AA對模擬中友軍任務有效性的影響。

文獻綜述

分析評估框架可針對多標準決策問題對定量和/或定性數據進行評估。定性框架,如卡諾模型(Violante & Vezzetti, 2017)、法式問答(Hordyk & Carruthers, 2018)和定性空間管理(Pascoe, Bustamante, Wilcox, & Gibbs, 2009),主要用于利益相關者的投入和頭腦風暴(Srivastava & Thomson, 2009),不需要密集的計算或勞動。定量評估框架以數據為導向,提供一種數學方法,通過衡量性能和有效性來確定系統的功能。分析層次過程(AHP)適用于我們的問題,因為它使用層次設計和成對的決策者偏好比較,通過比較權重提供定性和定量分析(Saaty,1987)。雖然AHP已被廣泛應用,但據我們所知,該方法尚未被用于評估人工智能/自動分析決策輔助工具,也未與A-B測試相結合進行評估。

指揮與控制(C2)系統用于提供更詳細、更準確、更通用的戰場作戰畫面,以實現有效決策;這些C2系統主要用于提高態勢感知(SA)。研究表明,使用數字化信息顯示方法的指揮官比使用無線電通信收集信息的指揮官顯示出更高水平的態勢感知(McGuinness和Ebbage,2002年)。AI/AA與C2的集成所帶來的價值可以比作戰斗視頻游戲中的 "作弊器":它提供了關于敵方如何行動的信息優勢,并幫助友軍避免代價高昂的后果(McKeon,2022)。對C2系統和SA的研究有助于推動本文描述的小故事和場景的發展。

建模與仿真(M&S)是對系統或過程的簡化表示,使我們能夠通過仿真進行預測或了解其行為。M&S生成的數據允許人們根據特定場景做出決策和預測(TechTarget,2017)。這使得陸軍能夠從已經經歷過的作戰場景和陸軍預計未來將面臨的作戰場景中生成并得出結論。模擬有助于推動陸軍的能力評估。測試和評估通常與評估同時進行,包括分析模型以學習、改進和得出結論,同時評估風險。軍隊中使用了許多不同的M&S工具。例如,"步兵戰士模擬"(IWARS)是一種戰斗模擬,主要針對個人和小單位部隊,用于評估作戰效能(USMA, 2023)。高級仿真、集成和建模框架(AFSIM)是一種多領域M&S仿真框架,側重于分析、實驗和戰爭游戲(West & Birkmire, 2020)。在我們的項目范圍內,"一支半自動化部隊"(OneSAF)被用于模擬我們所創建的戰斗情況,以模擬在戰場上擁有人工智能/自動機優勢的效果。

如前所述,人工智能/AA輔助決策的目標是提高決策的質量和速度。人工智能可用于不同的場景,并以多種方式為戰場指揮官和戰士提供支持。例如,人工智能/AA輔助決策系統可以幫助空中和地面作戰的戰士更好地 "分析環境 "和 "探測和分析目標"(Adams, 2001)。人工智能/自動機輔助決策系統可以幫助減少人為錯誤,在戰場上創造信息和決策優勢(Cobb, Jalaian, Bastian, & Russell, 2021)。這些由AI/AA輔助決策系統獲得的信息分流優勢指導了我們的作戰小故事和M&S場景開發。

本文方法

  • 行動示意圖和場景開發

在我們的作戰小故事中,第1營被分配到一個小村莊,直到指定的前進路線。營情報官羅伊上尉(BN S2)使用AI/AA輔助決策系統(即助手)準備情報態勢模板(SITTEMP),該系統可快速收集和整合積累的紅色情報和公開來源情報衍生的態勢數據。然后,它跟隨瓊斯少校和史密斯上尉,即營行動指揮員(BN S3)和S3助理(AS3),使用AI/AA輔助決策系統制定機動行動方案(COA),以評估 "假設 "情景、 她根據選定的機動方案開發指定的利益區域(NAI),然后在其內部資產和上層資源之間協調足夠的情報、監視和偵察(ISR)覆蓋范圍。假設時間為2030年,雙方均不使用核武器或采取對對方構成生存威脅的行動,天氣條件對藍軍和紅軍的影響相同,時間為秋季,天氣溫暖潮濕。

  • 利益相關者分析和功能層次開發

作為解決方案框架背景研究的一部分,我們與32位民用和軍用利益相關者進行了接觸,他們都是AI/AA及其對決策和仿真建模的貢獻方面的專家。我們進行的利益相關者分析過程如下: 1)定義和識別利益相關者;2)定義焦點小組;3)將利益相關者分配到焦點小組;4)為每個焦點小組制定具體問題;5)聯系利益相關者并安排焦點小組會議;6)進行焦點小組會議;7)綜合并分析利益相關者的反饋;以及8)制定FCR矩陣。我們利用FCR矩陣的結果來繪制功能層次圖,其中包括從模擬場景中生成/收集的目標、衡量標準和度量。然后根據這些目標、措施和指標對任務集的重要性進行排序。這為使用層次分析法(如下所述)奠定了基礎。

  • 層次分析法和A-B測試

AHP是托馬斯-薩蒂(Thomas Saaty)于1987年提出的一種方法,它利用專家判斷得出的一系列成對比較,將功能層次結構中的每個功能和子功能放入一個優先級表中。然后通過有形數據或專家定性意見對各種屬性進行排序。如表1所示,這些排序被置于1-9的范圍內。在賦予每個屬性1-9的權重后,再賦予標準和次級標準權重,以顯示其相對重要性(Saaty,1987)。

付費5元查看完整內容

在現代空戰中,超視距(BVR)交戰越來越頻繁。飛行員面臨的主要挑戰之一是機動計劃,這反映了他們的決策能力,并能決定成敗。為確保采用虛擬BVR空戰模擬的飛行員訓練取得成功,計算機生成部隊(CGF)的高精度水平至關重要。要實現這一目標,不僅要充分復制和模擬實體的物理特性,還要使其具有接近人類的行為。在本文中,我們提出了應對這些挑戰的總體概念: 首先,我們引入飛行運動動態模型(飛機、導彈、箔條)以及干擾器。然后,我們分析典型的超視距空戰的工作流程,將其分為攻擊、自衛和決定。在此背景下,我們引入行為樹作為這些任務的建模方法,并解釋其優點。進一步的計劃包括在未來由人類控制的對手飛機(飛行員)與CGF對飛的實驗活動中驗證和確認CGF的行為。最后,我們對未來的工作進行了展望,我們打算在包含多個自由度的任務中采用強化學習。

付費5元查看完整內容

圖4. 人工智能對目標定位的增強:人工智能可以通過搜索目標并在發現后發出警報來增強動態目標定位周期。

開發和使用新的軍事技術是一個軍事專業人員工作的一部分。事實上,軍事歷史在很大程度上是一個技術革新的故事,士兵需要學習如何操作新系統。因此,關于整合人工智能的很多東西并不新鮮。就像坦克、飛機甚至弩一樣,隨著時間的推移,士兵們學會了使用和運用技術,工業界學會了以足夠的數量和質量生產技術,高級領導人學會了運用技術來實現戰略效果。如前所述,人工智能技術與它們的顛覆性“前輩”之間的區別在于,前者有能力改善廣泛的軍事武器、系統和應用。由于這種潛在的普遍性,幾乎所有的士兵都必須在某種程度上變得熟練,才能有效地和道德地運用AI技術。隨著這項技術在應用上的擴展,戰爭將像管理暴力一樣管理數據。

這種普遍性也提出了關于人類發展和人才管理的問題。盡管培訓計劃最終會培養出更多的知識型士兵,人事系統也會提高管理士兵的能力,但軍警人員能夠獲得知識和技能的限制仍然存在,特別是在作戰層面。盡管討論的目的不是要建立嚴格的指導方針,但討論確定了士兵需要獲得的許多知識。例如,士兵將需要知道如何策劃和培訓數據庫,而該數據庫對他們正在執行的任務有著重要作用。這樣做需要確保數據的準確、完整、一致和及時。使用這些數據需要熟練應用推薦模型卡中描述的條件,而熟練的操作有助于確保算法以有效和道德的方式執行。

當然,信任不能僅靠政策和程序來保證。指揮官、參謀員和操作員需要知道他們被信任做什么,以及他們信任系統做什么。指揮官、參謀員和操作員信任人工智能系統來識別合法目標,并避免識別非法目標。參與這一過程的人必須在使用這些信息時,既需要擊敗敵人,又必須避免友軍和非戰斗人員的傷亡。要找到這種平衡,就需要判斷人應該承擔多大的風險。

只要參與流程的人類能夠與系統進行有效的互動,由人工智能賦能的系統就能促進找到這種平衡。在將人類控制整合到機器流程中時,人們經常被迫在控制和速度之間做出選擇:強加的人類控制越多,系統的運行速度就越慢。但本研究發現這種兩難的局面是錯誤的。盡管在某些情況下,在人的控制和速度之間進行平衡可能是必要的,但如果系統要最佳地運作,人的輸入是必要的。

實現最佳性能首先要求指揮官確保參謀和操作人員了解模型能力,理解數據質量的重要性,以及洞悉模型在作戰環境中的表現。盡管它可能不會使系統更加精確或準確,但實現這些任務可使系統能夠更好地對輸出進行概率分配。第二,指揮官需要確定對任務、友軍戰斗人員和敵方非戰斗人員的風險有多大才合適。這一決定很復雜,其中關鍵任務可能是需要容忍更多的友軍和非戰斗人員傷亡。同樣,如果非戰斗人員的密度較低,即使任務不那么緊急,也可以容忍較高的風險。尋找這種平衡將是人類的工作。

但在前面描述的模糊邏輯控制器的幫助下,指揮官可以更好地確定什么時候可以信任一個人工智能系統在沒有人類監督的情況下執行一些目標定位步驟。此外,可以通過構建交互的邏輯,以找到多種不同的人機互動配置,確保系統的最佳使用,同時避免不必要的傷害。在LSCO期間,讓指揮官在需要時選擇智能和負責任地加快目標定位過程將是至關重要的,本報告中提出的設計實現了這一目標。這一成就在未來尤其重要,因為為了保護部隊并實現任務目標,指揮官將面臨大量時間敏感目標,及面臨承擔更多風險的操作條件。

在培養具有正確技能的足夠數量士兵以充分利用人工智能技術方面,仍有大量的工作。目前的人才管理計劃尚未達到管理這一挑戰的要求,盡管多個有前途的計劃準備最終滿足需求。然而,在大多數情況下,這些計劃都是為了滿足機構層面的要求,在機構層面上做出全軍采買人工智能和相關技術的決策。但是,這些技能將如何滲透到作戰陸軍,尚不清楚。

盡管人工智能在目標定位中的使用并不違反當前的戰爭法,但它確實引起了一些道德倫理問題。在所討論的目標定位系統背景下,這些倫理問題中最主要的是問責制差距和自動化偏見。第一個問題對于回答核心問題至關重要,“指揮官在什么基礎上可以信任人工智能系統,從而使指揮官可以對這些系統的使用負責?”自動化偏見和數據衛生與問責制差距有關,因為當這些問題存在時,它們會破壞指揮官可能希望實施的有意義的人類控制措施。指揮官可以通過以下方式縮小問責差距:首先,確保人員受到適當的教育、技能和培訓,以整理相關數據;其次,確保指揮官允許的風險,準確地反映完成任務與保護友軍士兵和非戰斗人員之間的平衡需求。指揮官還可以通過在機器需要更多監督時向參與該過程的人類發出信號來減少自動化偏見的機會及其潛在影響。

作為一個專業人員,不僅僅意味著要提供服務,還要在出問題時承擔責任。專業人員還必須了解各種利益相關者,包括公眾和政府及私營部門實體,如何與本行業互動和競爭。鑒于這些技術的潛力,軍事專業人員必須首先學會在技術及其應用的發展中管理預期。由于這種演變影響到專業工作的特點,軍事專業人員還必須注意專業以外的人如何重視、獎勵和支持這項工作。因此,隨著美軍繼續將人工智能和數據技術整合到各種行動中,對其專業性的考驗將在于擁有專業知識的能力,以及建立能夠繼續發展、維護和認證這種專業知識的機構,這些機構既能滿足美國人民的國防需求,又能反映他們的價值觀。

付費5元查看完整內容

在過去的幾年里,人工智能(AI)系統的能力急劇增加,同時帶來了新的風險和潛在利益。在軍事方面,這些被討論為新一代 "自主"武器系統的助推器以及未來 "超戰爭 "的相關概念。特別是在德國,這些想法在社會和政治中面臨著有爭議的討論。由于人工智能在世界范圍內越來越多地應用于一些敏感領域,如國防領域,因此在這個問題上的國際禁令或具有法律約束力的文書是不現實的。

在決定具體政策之前,必須對這項技術的風險和好處有一個共同的理解,包括重申基本的道德和原則。致命力量的應用必須由人指揮和控制,因為只有人可以負責任。德國聯邦國防軍意識到需要應對這些發展,以便能夠履行其憲法規定的使命,即在未來的所有情況下保衛國家,并對抗采用這種系統的對手,按照其發展計劃行事。因此,迫切需要制定概念和具有法律約束力的法規,以便在獲得利益的同時控制風險。

本立場文件解釋了弗勞恩霍夫VVS對當前技術狀況的看法,探討了利益和風險,并提出了一個可解釋和可控制的人工智能的框架概念。確定并討論了實施所提出的概念所需的部分研究課題,概述了通往可信賴的人工智能和未來負責任地使用這些系統的途徑。遵循參考架構的概念和規定的實施是基于人工智能的武器系統可接受性的關鍵推動因素,是接受的前提條件。

付費5元查看完整內容
北京阿比特科技有限公司