強化學習(RL)方法的主要關注點之一是如何將在模擬環境中學到的策略轉移到現實環境中,同時獲得相似的行為和性能(即模擬到現實的可轉移性),這一點在機器人控制器中尤為重要[1]。在過去的幾年里,為了縮小模擬世界與現實世界之間的差距,實現更有效的策略轉移,人們已經跟蹤了多個研究方向。領域隨機化是學習遷移中應用最廣泛的方法之一,它將模型暴露在各種條件下,使模型對這些方面的建模誤差具有魯棒性。隨機化被認為是實現從模擬到真實轉移和一般穩健策略的關鍵[2]。另一種常用的方法是系統識別,它使用具有精確物理和動態系統數學模型的高保真環境。不過,系統識別的缺點是計算量大,因此需要更多時間進行訓練。其他相關方法有零點轉移法和域適應法 [3]。
大多數關于 RL 的研究都集中在使用端到端方法的低級控制器上,其中 RL 網絡將機載傳感器提供的原始信息作為輸入,并將應用于執行器的連續控制動作作為輸出 [4]。然而,這種方法有兩個主要局限性:(i) 它對平臺的配置有很強的依賴性,例如,與傳感器提供的信息及其質量有關,或與推進器等執行器的數量及其配置有關;(ii) 模擬到現實的傳輸差距更難縮小,因為經過訓練的策略會受到機器人平臺動態的強烈影響。例如,在文獻[5]中,作者在真實飛行器中使用了第二個訓練過程,學習過程繼續在線進行。在文獻[6]中,控制器需要進行額外的調整,以彌補模擬與真實世界之間的差異,但即便如此,現場結果仍顯示出較低的性能。
在本研究中,我們介紹了一種平臺便攜式深度強化學習方法,該方法已被用作自主車輛定位水下物體的路徑規劃系統,如圖 1 所示。我們設計了一個高級控制系統,以減少上述問題,并具有強大的模擬到實際的傳輸能力。此外,我們的方法易于配置,可在不同平臺和不同條件下部署。例如,訓練有素的智能體已成功部署在兩種不同的飛行器上: (i) 液體機器人公司(Liquid Robotics,美國)的自主水面飛行器(ASV)"波浪滑翔機";以及 (ii) IQUA 機器人公司(IQUA Robotics,西班牙)的自主水下飛行器(AUV)"Sparus II"。測試在加利福尼亞州蒙特雷灣和西班牙加泰羅尼亞 Sant Feliu de Gu?xols 港口進行。在這兩種情況下,飛行器都使用了僅測距的目標跟蹤方法來定位錨定的應答器[7]。
圖 1:制導、導航和控制系統,以及與制導相關的一些主要研究方向。用粗體字表示詳細描述的方面。
近期在基礎模型上的發展,如大型語言模型(LLMs)和視覺-語言模型(VLMs),它們基于大量數據訓練,促進了跨不同任務和模態的靈活應用。它們的影響覆蓋了多個領域,包括健康護理、教育和機器人技術。本文提供了基礎模型在現實世界機器人應用中的概覽,主要強調在現有機器人系統中替換特定組件。總結包括了基礎模型中輸入輸出關系的視角,以及它們在機器人技術領域內的感知、運動規劃和控制中的作用。本文最后討論了實際機器人應用面臨的未來挑戰和含義。
近期在人工智能領域的進步顯著擴展了機器人的操作能力,使它們能夠承擔多種多樣的活動【1-5】。雖然最初機器人的部署主要限于大規模生產環境【6-11】,但現在工業機器人的適用性已經擴展到小批量和高多樣性生產領域,包括室內空間和災難現場【12-15】。這種擴散不僅僅限于環境多樣性的增加;它還擴展到了任務范圍的擴大,包括日常活動,如整理【16-18】、洗滌【19,20】、擦拭【21,22】和烹飪【23,24】。機器學習為滿足這些機器人系統的需求提供了一種方式。然而,僅僅在特定領域數據上訓練每個模型對于多樣的機器人、任務和環境來說是不夠的。越來越多地需要開發可以使用單一的、預訓練的系統或模塊應用于各種機體、任務和環境的機器人。 解決這一挑戰的一個方案是引入基礎模型【25】。基礎模型是在大量數據上訓練的模型,可以通過上下文學習、微調或甚至零樣本的方式輕松應用于廣泛的下游任務【26,27】。顯著的例子包括大型語言模型(LLMs)如GPT【27】和視覺-語言模型(VLMs)如CLIP【28】,其中語言是結合各種類型模態的粘合劑。這些基礎模型的影響是顯著的,有幾篇綜述文章討論了它們在不同領域的影響【29-32】。Wang等人【29】和Zeng等人【30】進行了關于大型語言模型在機器人學中應用的綜述,而Firoozi等人【31】和Hu等人【32】進行了更廣泛的綜述,關注于基礎模型在機器人學中的應用。在本文中,我們總結了基礎模型對現實世界機器人的適用性,旨在加速它們在實際機器人應用中的采用。與其他綜述文章相比,我們提供了如何從基礎模型的輸入輸出關系以及機器人學中的感知、運動規劃和控制的角度,用基礎模型替換現有機器人系統中的特定組件的總結。 本研究的結構如圖1所示。在第2節中,我們將描述基礎模型本身。特別地,我們將根據它們使用的模態類型,例如視覺【33,34】、語言【35-41】等,以及它們可以應用的下游任務類型進行分類。在第3節中,我們將基于當前應用【2,3,42】描述如何將基礎模型應用于機器人學。一般來說,機器人需要配備感知模塊、規劃模塊和控制模塊。從這個角度,我們分類了可以將基礎模型應用于現實世界機器人學的方式,包括低級感知、高級感知、高級規劃和低級規劃。此外,我們還將解釋在訓練直接連接低級感知和低級規劃的映射時,對機器人學的數據增強。在第4節中,我們將描述包括機器人實體在內的基礎模型,即機器人基礎模型,包括關于如何就模型架構、數據集和學習目標制作這些機器人基礎模型的討論。在第5節中,我們將描述使用基礎模型的機器人、任務和環境。我們將任務分類為導航、操縱、帶有操縱的導航、運動和交流。最后,我們將討論未來的挑戰并提出我們的結論。
“基礎模型”一詞最初在【25】中被引入。在這項綜述中,我們將簡單描述在機器人應用中使用的基礎模型的類型,以及下游任務,將關于基礎模型本身的討論推遲到【25】。在2012年,深度學習因ILSVRC-2012比賽的獲勝模型而獲得機器學習社區的主流關注【43】。2017年,由【44】介紹的Transformer模型,促進了自然語言處理(NLP)【45】和計算機視覺【46】領域的重大進步。到2021年,一個經過大量數據訓練、能夠輕松應用于廣泛下游任務的模型被稱為“基礎模型”【25】。基礎模型的特點主要有三個:
上下文學習 * 規模定律 * 同質化
上下文學習使得僅用幾個例子就能完成新任務成為可能,無需重新訓練或微調。規模定律允許隨著數據、計算資源和模型大小的增加而持續提升性能。同質化允許某些基礎模型架構以統一的方式處理多種模態。 在這一章中,我們從在機器人學中的適用性的角度對基礎模型進行分類。機器人利用基礎模型的最關鍵標準是選擇使用哪些模態。本章從語言、視覺、音頻、3D表示和各種其他模態的角度討論了基礎模型的類型和它們可以執行的下游任務。在利用每種模態的背景下,我們進一步從網絡輸入和輸出的角度對基礎模型進行分類。概覽顯示在圖2中。請注意,我們的目標不是在這里全面覆蓋基礎模型;我們的重點仍然在于解決模態差異和基礎模型的分類。
通常,機器人的行為由感知、規劃和控制組成。在本研究中,我們將感知分為兩個類別:低級感知和高級感知。同時,我們將規劃和控制分別稱為高級規劃和低級規劃。加上對學習這些組成部分的數據增強,我們將機器人對基礎模型的利用分為以下五個類別。 * 低級感知 * 高級感知 * 高級規劃 * 低級規劃 * 數據增強
這些類別之間的關系如圖3所示。用于低級感知的基礎模型包括在圖像或3D表示中的語義分割和邊界框提取,以及在各種模態中的特征提取。用于高級感知的基礎模型涉及將從低級感知獲得的結果轉換和利用成如地圖、獎勵和運動約束等形式。用于高級規劃的基礎模型執行更高級別的抽象任務規劃,不包括直接控制。用于低級規劃的基礎模型執行較低級別的運動控制,包括關節和末端執行器控制。用于數據增強的基礎模型在執行連接低級感知和低級規劃的學習時,通過數據增強增強魯棒性。 在實踐中,通過組合這五種利用方法創建了各種應用。主要分為四種類型,如圖4所示。 (i) 進行低級感知,然后用高級規劃規劃行為。 (ii) 通過低級感知和高級感知提取獎勵和運動約束,并用于強化學習和軌跡優化。 (iii) 通過低級感知和高級感知生成地圖、場景圖等,并將它們作為任務規劃的基礎。 (iv) 使用數據增強,穩健地進行直接關聯低級感知的特征提取和控制輸入的端到端學習。 值得注意的是,也有一些研究方法不適用于這一框架。 從這些角度出發,我們選取了幾篇具有代表性的論文并在表1中進行了總結。
為計算機生成兵力(CGF)創建行為模型是一項具有挑戰性且耗時的任務,通常需要具備復雜人工智能算法編程方面的專業知識。因此,對于了解應用領域和培訓目標的主題專家來說,很難建立相關的場景并使培訓系統與培訓需求保持同步。近年來,機器學習作為一種為合成智能體建立高級決策模型的方法,已顯示出良好的前景。這類智能體已經能夠在撲克、圍棋和星際爭霸等復雜游戲中擊敗人類冠軍。我們有理由相信,軍事模擬領域也有可能取得類似的成就。然而,為了有效地應用這些技術,必須獲得正確的工具,并了解算法的能力和局限性。
本文討論了深度強化學習的高效應用,這是一種機器學習技術,可讓合成智能體學習如何通過與環境互動來實現目標。我們首先概述了現有的深度強化學習開源框架,以及最新算法的參考實現庫。然后,我們舉例說明如何利用這些資源為旨在支持戰斗機飛行員培訓的計算機生成兵力軟件構建強化學習環境。最后,基于我們在所介紹環境中進行的探索性實驗,我們討論了在空戰訓練系統領域應用強化學習技術的機遇和挑戰,目的是為計算機生成的兵力有效構建高質量的行為模型。
在實驗中,將強化學習環境構建為實現 OpenAI Gym 接口的 Python 模塊,因為許多現有的強化學習算法實現都支持該接口。環境的結構如圖 2 所示。環境的大部分功能都在 EnvironmentCore 類中實現。該類通過 SimulationInterface 與本地或遠程計算機上運行的仿真進程通信,在仿真中的實體和控制它們的強化學習智能體之間傳輸觀察結果和操作。SimulationInterface 還用于在計算機生成兵力軟件中加載模擬場景。
模擬與環境模塊之間的通信是通過 ZeroMQ 實現的,ZeroMQ 是一個開源、輕量級的消息傳遞中間件,可綁定多種編程語言,包括 C++ 和 Python。ZeroMQ 可以輕松實現幾種流行的消息傳遞模式,如請求-回復、發布-訂閱和推-拉。ZeroMQ使用谷歌協議緩沖區(Google protocol buffers)來指定消息,這是一種語言中立、平臺中立的結構化數據序列化機制。使用簡單的協議語言創建消息規范,然后將其編譯成各種編程語言(包括 C++ 和 Python)的源代碼。
要配置特定的環境,需要使用一些委托對象:
在空戰模擬領域的深度強化學習實驗中,我們發現了一些挑戰,這些挑戰通常不存在于許多強化學習的簡單基準環境中。狀態和行動空間的維度高且復雜,使得智能體難以學習重要的狀態特征和合適的決策策略。例如,在許多場景中,由于傳感器的限制或電子戰的影響,環境只能被部分觀測到。此外,在大多數場景中,智能體不會單獨行動,而是必須與盟友合作,同時與敵人競爭,以達到目標。為了處理長期和短期目標,可能需要在不同的時間尺度上進行決策。代表最重要目標的獎勵通常是延遲的、稀疏的,例如,如果智能體取得了勝利,就會在情景結束時給予獎勵,這樣就很難將功勞歸于正確的行動。此外,根據訓練需要,智能體的目標也有可能在不同的模擬運行中有所不同。例如,我們可能需要調整模擬的難度,以適應受訓者的熟練程度。最后,由于運行高保真模擬的計算成本很高,因此盡可能提高學習過程的樣本效率非常重要。在下面的章節中,我們將討論一些可以用來應對這些挑戰的技術。
本文介紹了基于元學習概念實現數字孿生的初步研究。邁向建立理想數字孿生的第一步的主要目標是評估適合國防工業環境的適當方法。主要的挑戰是如何在數據稀缺的情況下訓練和驗證模型,這也是國防領域的一個共同主題。目前的用例是先進的水下防御系統中使用的鋰離子電池,旨在創建一個可用于維護和設計目的的數字人工制品。最初的實施采用了循環神經網絡(RNN)和模型診斷元學習(MAML)來實現內部和外部學習循環,以達到學習者能夠快速適應新任務的目的。基礎學習器利用電池退化的開放數據集為元模型生成梯度。研究結果凸顯了數字孿生作為水下防御系統明智決策、提高可靠性和準備狀態的寶貴工具的潛力。
圖:理想情況下,數字孿生可支持系統的整個生命周期,包括設計、制造、使用和服務/維護。
2022 年底,薩伯公司向瑞典國防物資管理局(FMV)和瑞典武裝部隊交付了最先進的魚雷系統薩伯輕型魚雷(SLWT),如圖 所示。該魚雷長約 2.85 米,直徑 0.4 米,總重量約 340 千克。SLWT 的推進系統集成了一個泵噴射驅動裝置、一個帶變速箱的直流電動機和一個可充電鋰離子電池。
國防工業數字孿生技術的數據基礎設施所面臨的挑戰是多方面的,需要仔細考慮。數據收集和整合是重大障礙。數字孿生依賴于來自各種傳感器、平臺和系統的大量異構數據。以標準化格式整合和協調這些數據是一項復雜的任務,尤其是在處理可能具有不同協議和安全要求的遺留系統和機密信息時。顧名思義,數字孿生系統必須使用物理資產記錄的數據來構建,這就聯系到本文的基本研究問題。在人工智能時代,數據顯然至關重要,但航空航天和國防(以及其他領域)需要高度發達的數據保護程序,因此數據隱私和安全保證已成為人工智能發展的重要義務。個人數據和專有數據泄露、誤用和濫用的風險顯然令人擔憂,尤其是基于云的解決方案和其他分布式解決方案,因為這些解決方案的基本基礎設施掌握在第三方手中。要構建防御系統的數字孿生技術,在選擇 ML 技術時必須考慮有限的數據訪問和嚴格的數據處理程序。在國防領域,確保數據的安全性和保密性至關重要。考慮到數據泄露對軍事行動的潛在影響,保護敏感信息免遭未經授權的訪問或網絡威脅至關重要。實施強大的加密、訪問控制和安全數據傳輸機制對于維護數字孿生數據基礎設施的完整性和保密性至關重要。
另一個核心問題是可擴展性和實時數據處理,因為它們構成了重大挑戰。國防應用通常需要實時決策,這就要求數據基礎設施能夠處理大量數據并快速處理這些數據,以支持具有時間敏感性的行動。
同樣明顯的是,在與不同國防機構或盟國(如北約內部)合作時,數據互操作性仍然是一個挑戰。建立通用的數據標準和協議對于確保數字孿生系統之間的無縫數據交換和有效互操作性至關重要。要應對這些挑戰,需要采取整體方法,涉及國防機構、技術提供商和決策者之間的合作,為國防工業中的數字孿生創建穩健、適應性強的數據基礎設施。
在本文中,所需的數字孿生的主要目的是實現對所選 SLWT 資產進行實時監控和預測性維護的工具。通過根據每個資產的高保真模型模擬其電池的行為,可以深入了解每個資產電池的健康、性能和 RUL 方面的情況。通過探索各種運行條件和配置,有望促進優化和性能提升。從長遠來看,這反過來又可對電池參數進行微調,以在不同情況下實現最佳性能,特別是對于未來設計和其他系統概念而言。此外,預計數字孿生技術還將有助于風險評估和緩解。通過將虛擬電池置于模擬的極端條件和故障場景下,有可能找出并解決漏洞,從而提高整個 SLWT 的可靠性和安全性。因此,數字孿生技術有望促進更好地了解電池與系統中其他組件的相互作用,從而提高系統集成和整體效率。
本研究中介紹的數字孿生是一項正在進行中的工作,因此本節的重點是展示迄今為止取得的成果。使用 MAML 以及在牛津電池降解數據集上訓練的基礎學習器構建有效數字孿生的過程仍在進行中,有待進一步完善。盡管如此,所取得的成果為元學習器預測電池行為的潛力提供了寶貴的啟示。本節介紹了數字孿生設計的基本思想,接下來的章節將介紹當前的研究成果,展示數字孿生方法在實際應用中優化電池管理和性能預測的可行性和廣闊前景。
應用人工智能模擬空對空作戰場景正引起越來越多的關注。迄今為止,高維狀態和行動空間、高度復雜的情況信息(如不完全信息和過濾信息、隨機性、對任務目標的不完全了解)以及非線性飛行動態對準確的空戰決策構成了巨大挑戰。當涉及多個異構代理時,這些挑戰會更加嚴峻。我們為具有多個異構代理的空對空作戰提出了一個分層多代理強化學習框架。在我們的框架中,決策過程分為兩個抽象階段,異構的低級策略控制單個單位的行動,而高級指揮官策略則根據總體任務目標下達宏觀命令。低層次政策是為精確控制部隊作戰而訓練的。它們的訓練是按照學習課程安排的,其中包括日益復雜的訓練場景和基于聯賽的自我比賽。根據預先訓練好的低級策略,對指揮官策略進行任務目標訓練。經驗驗證證明了我們設計方案的優勢。
這項工作旨在利用無線音頻傳感器網絡為無人駕駛航空器系統(UAS)提出一種探測、識別和跟蹤解決方案。根據適用于無人機系統的技術趨勢(更小、更便宜、更合作),我們提出了一種采用與 "攻擊者 "相同技術方法的分布式監控解決方案。特別是,由于無人機會引起周圍聲學環境的變化,我們研究了音頻傳感器網絡的使用。更確切地說,我們采用了一種三階段算法來檢測監控環境中音頻能量的存在,識別特定的音頻特征,然后與多節點方法合作跟蹤無人機。通過實驗獲取的音頻信號,我們展示了所提方法的初步性能。我們還討論了改進實際實施的未來工作。
微型和小型無人機(1 千歐元及以下)成本低,易于采購,使恐怖分子使用這種技術的障礙降至零。此外,開放源碼技術通常用于設計無人機系統的某些組件,這就為設計專用有效載荷的人填補了一個很小的知識空白。如此易于采購和個性化的飛行平臺最終可以接近合理的目標。根據這一趨勢,協調無人機中隊很快就會成為任何人都可以利用的資源。應對這種威脅的措施不可能是集中式的。目前,我們看到的非對稱解決方案適用于前沿作戰基地或安裝了大型無人機探測器的沙漠場景。然而,這種威脅在城市場景中可能無處不在,因此建議采用對稱的對策,即分布式、小型和廉價的對策。
特別是近年來無線傳感器網絡的不斷發展,以及節點的小型化和低成本化,可以為城市環境或復雜場景提供最合適的解決方案,因為在城市環境或復雜場景中,可能會有平民存在,而固定的軍事設施可能并不合適。
如圖 2-1 所示,這項工作將以大量廉價音頻傳感器為參考場景,每個傳感器都能夠識別無人機的音頻特征,并在發現匹配時,通過與其他節點協作定位惡意來源。研究的重點是在空曠場地場景中,利用音頻陣列檢測、識別和跟蹤單架無人機或小型無人機群,即可與單個大型單元同化。
由于所提方法的目標具有三重性(即檢測、識別和跟蹤惡意無人機),因此我們的方法采用了三層算法疊加的方式。圖 3-1 給出了所追求的研究方法的總體描述。我們依靠獲取音頻信號來準確描述無人機系統的存在。第一層用于檢測無人機系統的存在。在這一階段,音頻傳感器從環境中采集少量樣本,例如每秒一次,以揭示從環境中感知到的音頻能量異常。
當這一層檢測到匹配時,第二層就會在短時間內(如約 240 毫秒[3])通過連續采樣進行識別。識別階段的目標是區分異常聲音是否與飛越音頻傳感器網絡的無人機有關,并最終確定其類型。我們將研究兩種主要方法:一些作者在 [1] 中提出的方法和循環神經網絡 (RNN) [6]。第二識別層中的正匹配將啟用第三階段的跟蹤算法。在這一階段,發出警報的節點(在識別階段匹配成功的節點)會喚醒鄰居節點,以執行波束形成跟蹤。這是耗電量最大的階段,因為需要維護音頻傳感器網絡與其遠程控制中心之間的通信鏈路,以及音頻傳感器的連續采樣階段。
所采用的分層策略應能優化計算能力和電池需求。事實上,始終處于活動狀態的第一層執行的是低復雜度、低消耗的數學計算。另一方面,只有在出現異常音頻時,才會執行更強大的計算,即細粒度簽名識別和音頻跟蹤。
這項工作使用來自建設性模擬的可靠數據,比較了有監督的機器學習方法,以估計空戰中發射導彈的最有效時刻。我們采用了重采樣技術來改進預測模型,分析了準確度、精確度、召回率和f1-score。事實上,我們可以發現基于決策樹的模型性能卓越,而其他算法對重采樣技術非常敏感。在未使用重采樣技術和使用重采樣技術的情況下,最佳f1-score模型的值分別為0.378和0.463,提高了22.49%。因此,如果需要,重采樣技術可以提高模型的召回率和f1-score,但準確率和精確度會略有下降。此外,通過創建基于機器學習模型的決策支持工具,有可能提高飛行員在空戰中的表現,這有助于提高攻擊任務命中特定目標的有效性。
這項工作比較了有監督的機器學習方法,使用來自建設性模擬的可靠數據來估計空戰期間發射導彈的最有效時刻。我們采用了重采樣技術來改進預測模型,分析了準確性、精確性、召回率和f1-score。事實上,我們可以識別出基于決策樹的模型的顯著性能和其他算法對重采樣技術的顯著敏感性。具有最佳f1分數的模型在沒有重采樣技術和有重采樣技術的情況下,分別帶來了0.379和0.465的數值,這意味著增加了22.69%。因此,如果可取的話,重采樣技術可以提高模型的召回率和f1-score,而準確性和精確性則略有下降。因此,通過建設性模擬獲得的數據,有可能開發出基于機器學習模型的決策支持工具,這可能會改善BVR空戰中的飛行質量,提高攻擊性任務對特定目標的打擊效果。
監督下的深度學習算法正在重新定義目標檢測和分類的最先進技術。然而,訓練這些算法需要大量的數據集,而收集這些數據集通常是昂貴和耗時的。在國防和安全領域,當數據具有敏感性質時,例如軍用船只的紅外圖像,這可能變得不切實際。因此,算法的開發和訓練往往是在合成環境中進行的,但這使人懷疑解決方案對現實世界數據的通用性。
在本文中,我們研究了在不使用真實世界的紅外數據的情況下訓練紅外自動目標識別的深度學習算法。使用目標-導彈交戰模擬軟件和10個高保真計算機輔助設計模型,生成了一個長波紅外波段的海上船只紅外圖像的大型合成數據集。探索了訓練YOLOv3架構的多種方法,并隨后使用真實世界紅外數據的視頻序列進行了評估。實驗表明,用少量的半標記偽紅外圖像樣本來補充訓練數據,可以明顯提高性能。盡管沒有真實的紅外訓練數據,但在我們的真實世界測試數據上,平均精度和召回率分別達到了99%和93%的高分。為了進一步推動自動目標識別算法的發展和基準測試,本文還提供了我們的照片真實合成紅外圖像數據集。
在學習型網絡物理系統(LE-CPS)中使用的機器學習模型,如自動駕駛汽車,需要能夠在可能的新環境中獨立決策,這可能與他們的訓練環境不同。衡量這種泛化能力和預測機器學習模型在新場景中的行為是非常困難的。在許多領域,如計算機視覺[1]、語音識別[2]和文本分析[3]的標準數據集上,學習型組件(LEC),特別是深度神經網絡(DNN)的成功并不代表它們在開放世界中的表現,在那里輸入可能不屬于DNN被訓練的訓練分布。因此,這抑制了它們在安全關鍵系統中的部署,如自動駕駛汽車[4]、飛機防撞[5]、戰場上的自主網絡物理系統(CPS)網絡系統[6]和醫療診斷[7]。這種脆性和由此產生的對基于DNN的人工智能(AI)系統的不信任,由于對DNN預測的高度信任而變得更加嚴重,甚至在預測通常不正確的情況下,對超出分布范圍(OOD)的輸入也是如此。文獻[8, 9]中廣泛報道了這種對分布外(OOD)輸入的不正確預測的高信心,并歸因于模型在負對數似然空間中的過度擬合。要在高安全性的應用中負責任地部署 DNN 模型,就必須檢測那些 DNN 不能被信任的輸入和場景,因此,必須放棄做出決定。那么問題來了:我們能不能把這些機器學習模型放在一個監測架構中,在那里它們的故障可以被檢測出來,并被掩蓋或容忍?
我們認為,我們已經確定了這樣一個用于高安全性學習的CPS的候選架構:在這個架構中,我們建立一個預測性的上下文模型,而不是直接使用深度學習模型的輸出,我們首先驗證并將其與上下文模型融合,以檢測輸入是否會給模型帶來驚喜。這似乎是一個語義學的練習--即使是通常的機器學習模型通常也會 "融合 "來自不同傳感器的解釋,這些解釋構成了模型的輸入,并隨著時間的推移進行整理--但我們認為,我們提出的監測架構相當于重點的轉移,并帶來了新的技術,正如我們將在本報告中說明的。我們建議,一個更好的方法是根據背景模型來評估輸入:模型是我們所學到的和所信任的一切的積累,根據它來評估新的輸入比只預測孤立的輸入更有意義。這是我們推薦的方法的基礎,但我們把它定位在一個被稱為預測處理(PP)的感知模型中[10],并輔以推理的雙重過程理論[11]。在這份報告中,我們還提供了這個運行時監控架構的候選實現,使用基于歸一化流的特征密度建模來實現第一層監控,以及基于圖馬爾科夫神經網絡的神經符號上下文建模來實現第二層。
我們用一個自主汽車的簡單例子來解釋我們方法背后的基本原理,并展示了上下文模型如何在監測LEC中發揮作用。考慮一下汽車視覺系統中有關檢測交通線的部分。一個基本的方法是尋找道路上畫的或多或少的直線,自下而上的方法是在處理每一幀圖像時執行這一過程。但這是低效的--當前圖像幀中的車道很可能與前幾幀中的車道相似,我們肯定應該利用這一點作為搜索的種子,而且它是脆弱的--車道標記的缺失或擦傷可能導致車道未被檢測到,而它們本來可以從以前的圖像中推斷出來。一個更好的方法是建立一個道路及其車道的模型,通過預測車道的位置,用它來作為搜索當前圖像中車道的種子。該模型及其對車道的預測將存在一些不確定性,因此發送給視覺系統的將是最好的猜測,或者可能是幾個此類估計的概率分布。視覺系統將使用它作為搜索當前圖像中車道的種子,并將預測和當前觀察之間的差異或 "誤差 "發送回來。誤差信號被用來完善模型,旨在最小化未來的預測誤差,從而使其更接近現實。
這是一個 "綜合分析 "的例子,意味著我們提出假設(即候選世界模型),并偏向于那些預測與輸入數據相匹配的模型。在實際應用中,我們需要考慮有關 "預測 "的層次:我們是用世界模型來合成我們預測傳感器將檢測到的原始數據(如像素),還是針對其局部處理的某個更高層次(如物體)?
這種自上而下的方法的重要屬性是,它專注于世界模型(或模型:一個常見的安排有一個模型的層次)的構建和前利用,與更常見的自下而上的機器學習模型形成對比。我們將展開論證,自上而下的方法對于自主系統中感知的解釋和保證是有效的,但有趣的是,也許可以放心的是,人們普遍認為這是人類(和其他)大腦中感知的工作方式,這是由Helmholtz在19世紀60年代首次提出的[12]。PP[13],也被稱為預測編碼[14]和預測誤差最小化[15],認為大腦建立了其環境的模型,并使用這些模型來預測其感覺輸入,因此,它的大部分活動可以被視為(近似于)迭代貝葉斯更新以最小化預測誤差。PP有先驗的 "預測 "從模型流向感覺器官,貝葉斯的 "修正 "又流回來,使后驗模型跟蹤現實。("自由能量"[16]是一個更全面的理論,包括行動:大腦 "預測 "手,比如說,在某個地方,為了盡量減少預測誤差,手實際上移動到那里。) 這與大腦從上層到下層的神經通路多于反之的事實是一致的:模型和預測是向下流動的,只有修正是向上流動的。
有趣的是,大腦似乎以這種方式工作,但有獨立的理由認為,PP是組織自主系統感知系統的好方法,而不是一個主要是自下而上的系統,其中傳感器的測量和輸入被解釋和融合以產生一個世界模型,很少有從模型反饋到傳感器和正在收集的輸入。2018年3月18日在亞利桑那州發生的Uber自動駕駛汽車與行人之間的致命事故說明了這種自下而上的方法的一些不足之處[17]。
純粹的自下而上的系統甚至不能回憶起之前的傳感器讀數,這就排除了從位置計算速度的可能性。因此,感知系統通常保持一個簡單的模型,允許這樣做:林的視覺處理管道的物體跟蹤器[18]就是一個例子,Uber汽車也采用了這樣的系統。Uber汽車使用了三個傳感器系統來建立其物體追蹤器模型:攝像頭、雷達和激光雷達。對于這些傳感器系統中的每一個,其自身的物體檢測器都會指出每個檢測到的物體的位置,并試圖將其分類為,例如,車輛、行人、自行車或其他。物體追蹤器使用一個 "優先級方案來融合這些輸入,該方案促進某些追蹤方法而不是其他方法,并且還取決于觀察的最近時間"[17,第8頁]。在亞利桑那車禍的案例中,這導致了對受害者的識別 "閃爍不定",因為傳感器系統自己的分類器改變了它們的識別,而且物體追蹤器先是喜歡一個傳感器系統,然后是另一個,如下所示[17,表1]。
這種 "閃爍 "識別的深層危害是:"如果感知模型改變了檢測到的物體的分類,在生成新的軌跡時就不再考慮該物體的跟蹤歷史"[17,第8頁]。因此,物體追蹤器從未為受害者建立軌跡,車輛與她相撞,盡管她已經以某種形式被探測了幾秒鐘。
這里有兩個相關的問題:一個是物體追蹤器保持著一個相當不完善的世界和決策背景的模型,另一個是它對輸入的決策方法沒有注意到背景。預測性處理中的感知所依據的目標是建立一個準確反映世界的背景模型;因此,它所編碼的信息要比單個輸入多得多。我們想要的是一種測量情境模型和新輸入之間的分歧的方法;小的分歧應該表明世界的常規演變,并可以作為模型的更新納入;大的分歧需要更多的關注:它是否表明一個新的發展,或者它可能是對原始傳感器數據解釋的缺陷?在后面兩種情況中的任何一種,我們都不能相信機器學習模型的預測結果。
預測處理方法的實施可以采用貝葉斯方法[19]。場景模型表示環境中的各種物體,以及它們的屬性,如類型、軌跡、推斷的意圖等,并對其中的一些或全部進行概率分布函數(pdf s)。觀察更新這些先驗,以提供精確的后驗估計。這種貝葉斯推理通常會產生難以處理的積分,因此預測處理采用了被稱為變異貝葉斯的方法,將問題轉化為后驗模型的迭代優化,以最小化預測誤差。卡爾曼濾波器也可以被看作是執行遞歸貝葉斯估計的一種方式。因此,像神經科學、控制理論、信號處理和傳感器融合這樣不同的領域都可能采用類似的方法,但名稱不同,由不同的歷史派生。思考PP的一種方式是,它將卡爾曼濾波的思想從經典的狀態表征(即一組連續變量,如控制理論)擴展到更復雜的世界模型,其中我們也有物體 "類型 "和 "意圖 "等表征。預測處理的一個有吸引力的屬性是,它為我們提供了一種系統的方法來利用多個輸入和傳感器,并融合和交叉檢查它們的信息。假設我們有一個由相機數據建立的情境模型,并且我們增加了一個接近傳感器。預測處理可以使用從相機中獲得的模型來計算接近傳感器預計會 "看到 "什么,這可以被看作是對模型準確性的可驗證的測試。如果預測被驗證了,那么我們就有了對我們上下文模型某些方面的獨立確認。我們說 "獨立 "是因為基于不同現象的傳感器(如照相機、雷達、超聲波)具有完全不同的解釋功能,并在不同的數據集上進行訓練,這似乎是可信的,它們會有獨立的故障。在一個完全集成的預測處理監視器中,情境模型將結合來自所有來源的信息。情境模型將保守地更新以反映這種不確定性,監測器將因此降低其對機器學習模型的信心,直到差異得到解決。
請注意,上下文模型可以是相當簡單粗暴的:我們不需要場景的照片,只需要知道我們附近的重要物體的足夠細節,以指導安全行動,所以相機和接近傳感器 "看到 "的相鄰車輛的輪廓之間的差異,例如,可能沒有什么意義,因為我們需要知道的是他們的存在,位置,類型和推斷的意圖。事實上,正如我們將在后面討論的那樣,我們可以在不同的細節層次上對上下文進行建模,自上而下的生成模型的目標是生成不同層次的感知輸入的抽象,而不是準確的傳感器值。在報告中討論的我們的實現中,我們在兩個層次上對上下文進行建模--第一個層次使用深度神經網絡的特征,第二個層次對場景中物體之間更高層次的空間和時間關系進行建模。除了傳感器,感知的上層也將獲得關于世界的知識,可能還有人工智能對世界及其模型的推理能力。例如,它可能知道視線和被遮擋的視野,從而確定在我們附近的車輛可能無法看到我們,因為一輛卡車擋住了它的去路,這可以作為有關車輛的可能運動("意圖")的增加的不確定性納入世界模型中。同樣,推理系統可能能夠推斷出反事實,比如 "我們將無法看到可能在那輛卡車后面的任何車輛",這些可以作為 "幽靈 "車輛納入世界模型,直到它們的真實性被證實或被否定。我們對監控架構第2層的神經符號建模的選擇對于整合這種背景和學習的知識以及對這些知識進行推理至關重要。
在這方面,另一個關于人腦組織的理論很有意思;這就是 "雙過程 "模型[20, 21],由卡尼曼推廣的獨立 "快慢 "思維系統[22]。它的效用最近已經通過一個非常有限的實現被證明用于計算機器學習模型的信心[23, 24]。系統1是無意識的、快速的、專門用于常規任務的;系統2是有意識的、緩慢的、容易疲勞的、能夠斟酌和推理的,這就是我們所說的 "思考"。就像預測處理一樣,我們提倡雙過程模型并不僅僅是因為它似乎符合大腦的工作方式,而是因為它似乎是獨立的,是一個好架構。在這里,我們可以想象一個特征密度正常化的流生成模型形成一個高度自動化的 "系統1",而更多的深思熟慮的神經符號模型構成一個 "系統2",當系統1遇到大的預測錯誤時,該系統會主動參與。系統1維持一個單一的生成性世界模型,而系統2或者對其進行潤色,或者維持自己的更豐富的世界模型,具有對符號概念進行反事實的 "what-if "推理能力。人們認為,人類保持著一個模型的層次結構[20, 21, 22],這似乎也是自主系統的一個好方法。我們的想法是,在每一對相鄰的模型(在層次結構中)之間都有一個預測處理的循環,因此,較低的層次就像上層的傳感器,其優先級和更新頻率由預測誤差的大小決定。
人類的預測處理通常被認為是將 "驚訝 "降到最低的一種方式,或者說是保持 "情況意識"。加強這一點的一個方法是在構建世界模型時增加系統2對假設推理的使用,以便將沒有看到但 "可能存在 "的東西明確地表示為 "幽靈 "或表示為檢測到的物體屬性的不確定性增加。一個相關的想法是利用人工智能進行推斷,例如,檢測到前面有許多剎車燈,就可以推斷出某種問題,這將被表示為世界模型中增加的不確定性。這樣一來,本來可能是意外情況的驚奇出現,反而會發展為不確定性的逐漸變化,或將幽靈解決為真實的物體。圖馬爾科夫神經網絡提供了一個有效的機制,既可以對這些關系和更豐富的背景進行建模,又可以通過反事實查詢和背景知情的預測進行審議。因此,雙重過程理論激發了我們的運行時監控器的兩層預測編碼結構。雖然這些理論旨在解釋人類的認知,但我們將這些作為運行時監控器來計算底層模型的驚喜,因此,當模型由于新奇的或超出分布的或脫離上下文的輸入而不能被信任時,就會被發現。
圖 1:基于預測處理和雙過程理論的自主量化保障架構
圖1展示了所提出的深度學習模型運行時監控的整體架構。如圖所示,該架構有兩個層次(由雙重過程理論激發)。在第一層,我們使用生成模型,學習輸入的聯合分布、預測的類輸出和模型提供的解釋。在第二層,我們使用圖馬爾可夫神經網絡來學習物體檢測任務的物體之間的空間和時間關系(更一般地說,輸入的組成部分)。在這兩層中,我們在本報告中的重點是運行時監測,而不是開發一個認知系統本身(而使用所提出的方法建立一個強大的、有彈性的、可解釋的系統將是自然的下一步)。因此,由這兩層檢測到的驚喜被監控者用來識別底層LEC何時不能被信任。這也可以作為LE-CPS的一個定量保證指標。
第3節介紹了預測性處理和雙進程架構(低級別的自動化和高級別的審議),并認為這可以支持一種可信的方法來保證自主系統的穩健行為。它也被廣泛認為反映了人類大腦的組織。我們提出了使用不同的神經架構和神經符號模型的組成來可擴展地完成這些的機制。結果在第4節報告。第5節提供了一些與工業建議的比較,并提出了結論和額外研究的建議。
強化學習在最近的學術和商業研究項目中的應用已經產生了能夠達到或超過人類性能水平的強大系統。本論文的目的是確定通過強化學習訓練的智能體是否能夠在小型戰斗場景中實現最佳性能。在一組計算實驗中,訓練是在一個簡單的總體層面上進行的,模擬能夠實現確定性和隨機性的戰斗模型,神經網絡的性能被驗證為質量和武力經濟性戰術原則。總的來說,神經網絡能夠學習到理想的行為,其中作戰模型和強化學習算法對性能的影響最為顯著。此外,在集結是最佳戰術的情況下,訓練時間和學習率被確定為最重要的訓練超參數。然而,當武力的經濟性是理想的時候,折扣系數是唯一有重大影響的超參數。綜上所述,本論文得出結論,強化學習為發展戰斗模擬中的智能行為提供了一種有前途的手段,它可以應用于訓練或分析領域。建議未來的研究對更大、更復雜的訓練場景進行研究,以充分了解強化學習的能力和局限性。