本文介紹了基于元學習概念實現數字孿生的初步研究。邁向建立理想數字孿生的第一步的主要目標是評估適合國防工業環境的適當方法。主要的挑戰是如何在數據稀缺的情況下訓練和驗證模型,這也是國防領域的一個共同主題。目前的用例是先進的水下防御系統中使用的鋰離子電池,旨在創建一個可用于維護和設計目的的數字人工制品。最初的實施采用了循環神經網絡(RNN)和模型診斷元學習(MAML)來實現內部和外部學習循環,以達到學習者能夠快速適應新任務的目的。基礎學習器利用電池退化的開放數據集為元模型生成梯度。研究結果凸顯了數字孿生作為水下防御系統明智決策、提高可靠性和準備狀態的寶貴工具的潛力。
圖:理想情況下,數字孿生可支持系統的整個生命周期,包括設計、制造、使用和服務/維護。
2022 年底,薩伯公司向瑞典國防物資管理局(FMV)和瑞典武裝部隊交付了最先進的魚雷系統薩伯輕型魚雷(SLWT),如圖 所示。該魚雷長約 2.85 米,直徑 0.4 米,總重量約 340 千克。SLWT 的推進系統集成了一個泵噴射驅動裝置、一個帶變速箱的直流電動機和一個可充電鋰離子電池。
國防工業數字孿生技術的數據基礎設施所面臨的挑戰是多方面的,需要仔細考慮。數據收集和整合是重大障礙。數字孿生依賴于來自各種傳感器、平臺和系統的大量異構數據。以標準化格式整合和協調這些數據是一項復雜的任務,尤其是在處理可能具有不同協議和安全要求的遺留系統和機密信息時。顧名思義,數字孿生系統必須使用物理資產記錄的數據來構建,這就聯系到本文的基本研究問題。在人工智能時代,數據顯然至關重要,但航空航天和國防(以及其他領域)需要高度發達的數據保護程序,因此數據隱私和安全保證已成為人工智能發展的重要義務。個人數據和專有數據泄露、誤用和濫用的風險顯然令人擔憂,尤其是基于云的解決方案和其他分布式解決方案,因為這些解決方案的基本基礎設施掌握在第三方手中。要構建防御系統的數字孿生技術,在選擇 ML 技術時必須考慮有限的數據訪問和嚴格的數據處理程序。在國防領域,確保數據的安全性和保密性至關重要。考慮到數據泄露對軍事行動的潛在影響,保護敏感信息免遭未經授權的訪問或網絡威脅至關重要。實施強大的加密、訪問控制和安全數據傳輸機制對于維護數字孿生數據基礎設施的完整性和保密性至關重要。
另一個核心問題是可擴展性和實時數據處理,因為它們構成了重大挑戰。國防應用通常需要實時決策,這就要求數據基礎設施能夠處理大量數據并快速處理這些數據,以支持具有時間敏感性的行動。
同樣明顯的是,在與不同國防機構或盟國(如北約內部)合作時,數據互操作性仍然是一個挑戰。建立通用的數據標準和協議對于確保數字孿生系統之間的無縫數據交換和有效互操作性至關重要。要應對這些挑戰,需要采取整體方法,涉及國防機構、技術提供商和決策者之間的合作,為國防工業中的數字孿生創建穩健、適應性強的數據基礎設施。
在本文中,所需的數字孿生的主要目的是實現對所選 SLWT 資產進行實時監控和預測性維護的工具。通過根據每個資產的高保真模型模擬其電池的行為,可以深入了解每個資產電池的健康、性能和 RUL 方面的情況。通過探索各種運行條件和配置,有望促進優化和性能提升。從長遠來看,這反過來又可對電池參數進行微調,以在不同情況下實現最佳性能,特別是對于未來設計和其他系統概念而言。此外,預計數字孿生技術還將有助于風險評估和緩解。通過將虛擬電池置于模擬的極端條件和故障場景下,有可能找出并解決漏洞,從而提高整個 SLWT 的可靠性和安全性。因此,數字孿生技術有望促進更好地了解電池與系統中其他組件的相互作用,從而提高系統集成和整體效率。
本研究中介紹的數字孿生是一項正在進行中的工作,因此本節的重點是展示迄今為止取得的成果。使用 MAML 以及在牛津電池降解數據集上訓練的基礎學習器構建有效數字孿生的過程仍在進行中,有待進一步完善。盡管如此,所取得的成果為元學習器預測電池行為的潛力提供了寶貴的啟示。本節介紹了數字孿生設計的基本思想,接下來的章節將介紹當前的研究成果,展示數字孿生方法在實際應用中優化電池管理和性能預測的可行性和廣闊前景。
在新興的蜂群技術領域,無人機系統條令作為一種規定性的設計要素,一直處于缺乏、潛伏或被忽視的狀態。本文討論了一種與蜂群無人機系統任務條令并行的設計蜂群無人機系統的綜合方法。該方法的結構源自基于模型的系統工程、機器人學、人類系統集成、生物學和計算機科學等學科的啟發式方法。該方法為設計和操作蜂群無人機系統提供了一種標準方法,力求滿足任何預定任務的性能和條令要求。
蜂群體系結構的設計應支持 "少而精"、廣泛分散、高度網絡化、脈沖式攻擊的條令。一般來說,蜂群系統主要采用三種總體指揮與控制(C2)架構:協調控制、集中控制或分級控制,以及分布式控制或分散控制(Dekker,2008 年)。在協調控制中,根據指定的瞬時因素(如位置、狀態、任務場景)選擇一個智能體作為臨時領導者。領導者從其他智能體接收傳感器數據,并廣播融合后的共同綜合畫面。如果領導者失效,則會選擇一個替代者繼續扮演這一角色。這種架構具有一定的魯棒性,但無法擴展到更大的智能體群或地理位置分散的智能體群,而且會給一個智能體帶來很大的處理負擔。集中式控制架構類似于傳統的軍事指揮與控制結構,在這種結構中,智能體按層級組織,詳細的戰術信息通過指揮鏈向上反饋。雖然這種分層設計簡化了數據流,但并不穩健,在處理需要智能體快速反應的動態場景時缺乏靈活性。對蜂群進行集中控制需要一個樞紐-輻條式通信架構,這種架構有幾個缺點:它限制了蜂群的自主行為,無法實現智能體之間的通信,而且在設計中會出現單點故障(Chung 等人,2013 年)。分布式架構的特點是沒有領導者;而是通過智能體之間的集體共識做出蜂群決策。這種架構具有穩健性和可擴展性,但要求通信網絡能夠支持可能增加的數據流量。與蜂群系統設計的其他要素一樣,C2 架構的混合體也可用于發揮各自的優勢。美國海軍的 "合作參與能力"(Cooperative Engagement Capability)防空作戰系統采用分布式架構來獲取態勢感知數據,并采用協調架構來選擇目標定位(Dekker,2008 年)。分散控制架構,包括基于市場(或拍賣)的方法,以及隱式衍生的單智能體解決方案,已在蜂群無人機系統中得到成功驗證(Chung 等人,2013 年)。由于這些原因,無線網狀通信網絡被認為是蜂群無人機系統通信架構的一種潛在的關鍵使能形式(Frew,2008 年)。
有限狀態機(FSM)(或有限狀態自動機)已被證明可有效模擬多車自主無人系統架構(Weiskopf 等人,2002 年)。在有限狀態自動機架構中,每個智能體在給定時間內都處于幾種定義狀態之一。智能體感知到的環境條件或遇到的事件會觸發觸發事件,導致智能體在不同狀態間轉換。這種類型的結構適用于開發軍事蜂群系統,因為狀態和觸發器可以確定性地定義(就像交通信號燈一樣),這對于目標攻擊等高風險任務事件是必要的。相反,在搜索等其他任務事件中,可能需要一定程度的不可預測性。在這種情況下,可以使用概率有限狀態機 (PFSM)(或概率有限狀態自動機),允許在一個狀態內有不同的行為,或在狀態之間提供多種轉換(Paranuk,2003 年)。
為了真實地再現軍事行動,嚴肅的戰斗模擬要求建模實體具有合理的戰術行為。因此,必須定義作戰戰術、條令、交戰規則和行動概念。事實證明,強化學習可以在相關實體的行為邊界內生成廣泛的戰術行動。在多智能體地面作戰場景中,本文展示了人工智能(AI)應用如何制定戰略并向附屬單元提供命令,同時相應地執行任務。我們提出了一種將人類知識和責任與人工智能系統相結合的方法。為了在共同層面上進行交流,人工智能以自然語言下達命令和行動。這樣,人類操作員就可以扮演 "人在回路中 "的角色,對人工智能的推理進行驗證和評估。本文展示了自然語言與強化學習過程的成功整合。
為了獲得模型架構的靈感,我們研究了 DeepMind 的 AlphaStar 架構,因為它被認為是復雜 RL 問題領域的最先進架構。通過我們的架構(如圖 2 所示),我們提出了一種靈活、可擴展的行動空間與深度神經網絡相結合的適應性新方法。觀察空間的設計基于如何準備戰場的軍事經驗。通常使用地圖和可用部隊表。因此,模擬觀測被分為標量數據(如可用坦克數量及其彈藥)。同時,基于地圖的輸入作為視覺輸入提供給空間編碼器。
標量數據用于向人工智能提供幾乎所有場景細節的建議。其中包括有關自身部隊及其平臺的數據,以及有關敵方部隊的部分信息。輸入并非以絕對數字給出,而是采用歸一化方法來提高訓練效果。編碼器可以很容易地寫成多層感知器(MLP);不過,使用多頭注意力網絡可以大大提高訓練后智能體的質量,因此應予以采用(Vaswani 等人,2017 年)。
為了理解地理地形、距離和海拔高度的含義,人工智能會被輸入一個帶有實體編碼的地圖視覺表示。顏色方案基于三通道圖像,這使我們能夠輕松地將數據可視化。雖然使用更多通道會給人類的圖形顯示帶來問題,但人工智能能夠理解更多通道。不同的字段類型和實體會用特殊的顏色進行編碼,以便始終能夠區分。這種所謂的空間編碼器由多個卷積層組成。最初,我們嘗試使用 ResNet-50 (He 和 Zhang,2016 年)和 MobileNetV3 (Howard 等,2019 年)等著名架構,甚至使用預先訓練的權重。然而,這并沒有帶來可接受的訓練性能。因此,我們用自己的架構縮小了卷積神經網絡(CNN)的規模。
為了測試和優化這一架構,我們使用了一個自動編碼器設置,并使用了模擬中的真實樣本。我們能夠將參數數量從大約 200 萬減少到大約 47000。此外,我們還生成了一個預訓練模型,該模型已與模擬的真實觀測數據相匹配。這一步極大地幫助我們加快了 RL 進程。
一個可選元素是添加語言輸入,為人工智能定義任務。雖然一般的戰略人工智能不使用這一元素,但計劃將其用于下屬智能體。這些智能體將以自然語言接收來自戰略人工智能的任務,并使用雙向門控遞歸單元(GRU)編碼器對其進行處理。
視覺數據、任務數據和標量數據的編碼值被合并并輸入核心網絡。根據 Hochreiter 和 Schmidhuber(1997 年)的介紹,核心主要是一個擁有 768 個單元的長短期記憶(LSTM)組件。在軍事場景中,指揮官必須了解高價值資產的長期戰略規劃。在本模擬中,人工智能可以請求戰斗支援要素,這些要素在影響戰場之前需要長達 15 分鐘的時間。因此,人工智能必須了解未來任務的時間安排和規劃。在 RL 中使用 LSTM 網絡相當困難,因為它需要大量的訓練時間,而且會導致上面各層的梯度消失。因此,我們決定在 LSTM 上添加一個跳過連接,以盡量減少新增層的負面影響。
動作頭由一個自然語言處理(NLP)模型組成。這是一個非常簡化的動作頭模型,包含一個小型 LSTM 和一個額外的密集層,共有約 340000 個參數。其結果是一個尺寸為 8 x 125 的多離散動作空間。
除主模型外,還有一個單獨的價值網絡部分。價值網絡使用核心 LSTM 的輸出,并將對手信息串聯起來傳遞給 MLP。然后,MLP 可以精確預測價值函數。通過對手信息,價值網絡對模擬有了一個上帝般的地面實況視圖。由于該網絡只與訓練相關,因此可以在不干擾訓練完整性的情況下進行。
強化學習(RL)方法的主要關注點之一是如何將在模擬環境中學到的策略轉移到現實環境中,同時獲得相似的行為和性能(即模擬到現實的可轉移性),這一點在機器人控制器中尤為重要[1]。在過去的幾年里,為了縮小模擬世界與現實世界之間的差距,實現更有效的策略轉移,人們已經跟蹤了多個研究方向。領域隨機化是學習遷移中應用最廣泛的方法之一,它將模型暴露在各種條件下,使模型對這些方面的建模誤差具有魯棒性。隨機化被認為是實現從模擬到真實轉移和一般穩健策略的關鍵[2]。另一種常用的方法是系統識別,它使用具有精確物理和動態系統數學模型的高保真環境。不過,系統識別的缺點是計算量大,因此需要更多時間進行訓練。其他相關方法有零點轉移法和域適應法 [3]。
大多數關于 RL 的研究都集中在使用端到端方法的低級控制器上,其中 RL 網絡將機載傳感器提供的原始信息作為輸入,并將應用于執行器的連續控制動作作為輸出 [4]。然而,這種方法有兩個主要局限性:(i) 它對平臺的配置有很強的依賴性,例如,與傳感器提供的信息及其質量有關,或與推進器等執行器的數量及其配置有關;(ii) 模擬到現實的傳輸差距更難縮小,因為經過訓練的策略會受到機器人平臺動態的強烈影響。例如,在文獻[5]中,作者在真實飛行器中使用了第二個訓練過程,學習過程繼續在線進行。在文獻[6]中,控制器需要進行額外的調整,以彌補模擬與真實世界之間的差異,但即便如此,現場結果仍顯示出較低的性能。
在本研究中,我們介紹了一種平臺便攜式深度強化學習方法,該方法已被用作自主車輛定位水下物體的路徑規劃系統,如圖 1 所示。我們設計了一個高級控制系統,以減少上述問題,并具有強大的模擬到實際的傳輸能力。此外,我們的方法易于配置,可在不同平臺和不同條件下部署。例如,訓練有素的智能體已成功部署在兩種不同的飛行器上: (i) 液體機器人公司(Liquid Robotics,美國)的自主水面飛行器(ASV)"波浪滑翔機";以及 (ii) IQUA 機器人公司(IQUA Robotics,西班牙)的自主水下飛行器(AUV)"Sparus II"。測試在加利福尼亞州蒙特雷灣和西班牙加泰羅尼亞 Sant Feliu de Gu?xols 港口進行。在這兩種情況下,飛行器都使用了僅測距的目標跟蹤方法來定位錨定的應答器[7]。
圖 1:制導、導航和控制系統,以及與制導相關的一些主要研究方向。用粗體字表示詳細描述的方面。
本文提出了一種名為 "自適應蜂群智能體"(ASI)的新范例,在這種范例中,異構設備(或 "智能體")參與協作 "蜂群 "計算,以實現穩健的自適應實時操作。自適應群集智能是受自然界某些系統的協作和分散行為啟發而產生的一種范式,可應用于物聯網、移動計算和分布式系統等領域的各種場景。例如,網絡安全、聯網/自動駕駛汽車和其他類型的無人駕駛車輛,如 "智能 "無人機群。這絕不是一份詳盡無遺的清單,但卻說明了可以從這一范例中獲益的眾多不同領域。本文介紹了在未來聯網/自動駕駛車輛中進行合作傳感器融合的具體人工智能案例研究,該案例構成了由 IBM 主導的 DARPA DSSoC 計劃下的 "認知異構系統的高效可編程性"(EPOCHS)項目的驅動應用。鑒于 EPOCHS 的規模,我們將重點關注項目的一個具體部分:用于多車輛傳感器融合的 EPOCHS 參考應用 (ERA)。我們展示了 x86 系統上的特性分析結果,從而得出了有關 ERA 性能特征和實時需求的初步結論。本文簡要介紹了 EPOCHS 的路線圖和未來工作。
圖 4:作為 DARPA 贊助的 EPOCHS 項目的一部分,互聯/自動駕駛車輛中基于蜂群的傳感器融合。
這項工作旨在利用無線音頻傳感器網絡為無人駕駛航空器系統(UAS)提出一種探測、識別和跟蹤解決方案。根據適用于無人機系統的技術趨勢(更小、更便宜、更合作),我們提出了一種采用與 "攻擊者 "相同技術方法的分布式監控解決方案。特別是,由于無人機會引起周圍聲學環境的變化,我們研究了音頻傳感器網絡的使用。更確切地說,我們采用了一種三階段算法來檢測監控環境中音頻能量的存在,識別特定的音頻特征,然后與多節點方法合作跟蹤無人機。通過實驗獲取的音頻信號,我們展示了所提方法的初步性能。我們還討論了改進實際實施的未來工作。
微型和小型無人機(1 千歐元及以下)成本低,易于采購,使恐怖分子使用這種技術的障礙降至零。此外,開放源碼技術通常用于設計無人機系統的某些組件,這就為設計專用有效載荷的人填補了一個很小的知識空白。如此易于采購和個性化的飛行平臺最終可以接近合理的目標。根據這一趨勢,協調無人機中隊很快就會成為任何人都可以利用的資源。應對這種威脅的措施不可能是集中式的。目前,我們看到的非對稱解決方案適用于前沿作戰基地或安裝了大型無人機探測器的沙漠場景。然而,這種威脅在城市場景中可能無處不在,因此建議采用對稱的對策,即分布式、小型和廉價的對策。
特別是近年來無線傳感器網絡的不斷發展,以及節點的小型化和低成本化,可以為城市環境或復雜場景提供最合適的解決方案,因為在城市環境或復雜場景中,可能會有平民存在,而固定的軍事設施可能并不合適。
如圖 2-1 所示,這項工作將以大量廉價音頻傳感器為參考場景,每個傳感器都能夠識別無人機的音頻特征,并在發現匹配時,通過與其他節點協作定位惡意來源。研究的重點是在空曠場地場景中,利用音頻陣列檢測、識別和跟蹤單架無人機或小型無人機群,即可與單個大型單元同化。
由于所提方法的目標具有三重性(即檢測、識別和跟蹤惡意無人機),因此我們的方法采用了三層算法疊加的方式。圖 3-1 給出了所追求的研究方法的總體描述。我們依靠獲取音頻信號來準確描述無人機系統的存在。第一層用于檢測無人機系統的存在。在這一階段,音頻傳感器從環境中采集少量樣本,例如每秒一次,以揭示從環境中感知到的音頻能量異常。
當這一層檢測到匹配時,第二層就會在短時間內(如約 240 毫秒[3])通過連續采樣進行識別。識別階段的目標是區分異常聲音是否與飛越音頻傳感器網絡的無人機有關,并最終確定其類型。我們將研究兩種主要方法:一些作者在 [1] 中提出的方法和循環神經網絡 (RNN) [6]。第二識別層中的正匹配將啟用第三階段的跟蹤算法。在這一階段,發出警報的節點(在識別階段匹配成功的節點)會喚醒鄰居節點,以執行波束形成跟蹤。這是耗電量最大的階段,因為需要維護音頻傳感器網絡與其遠程控制中心之間的通信鏈路,以及音頻傳感器的連續采樣階段。
所采用的分層策略應能優化計算能力和電池需求。事實上,始終處于活動狀態的第一層執行的是低復雜度、低消耗的數學計算。另一方面,只有在出現異常音頻時,才會執行更強大的計算,即細粒度簽名識別和音頻跟蹤。
作為 CAF JADC2 AUAR 項目的一部分,本文研究了聯合全域指揮與控制系統的需求,特別是開發中的先進作戰管理系統(ABMS),以考慮極有可能發生的授權分布式作戰。本文認為,先進作戰管理系統不應只關注高層決策者和傳統指揮與控制要素的需求,而應考慮到部隊一級的使用。報告介紹了空軍單位級情報部門的作用和職責,將其作為一個使用案例來說明這一點,以便在整個聯合兵力中進行開發。
美國空軍前參謀長戴維-戈德芬(David Goldfein)將軍將開發中的先進作戰管理系統(ABMS)比作優步(Uber)的共享乘車應用。他描述了共同行動圖(COP)的相似之處,該圖可以顯示汽車和司機的位置,也可以顯示 "巡航導彈和攻擊型無人機 "的位置,從而實現乘客與汽車或射手與目標的高效自動匹配。在軍事方面,這樣一個系統展示了從傳感器到戰斗管理再到射手的連接,這樣,人與人之間的第一次互動就是海軍巡洋艦指揮官提出交戰選擇,以供最終決策。這種描述非常優雅,戈德費恩將軍無疑是想為大眾提供一個有用的說明,但即使是對聯合全域指揮與控制(JADC2)結構中的 ABMS 系統進行更多的技術描述,似乎也僅限于能夠實現更有效的中央指揮控制的系統。為了對抗未來高度對抗性的環境,像 ABMS 這樣的工具必須考慮整合各層次更廣泛的用戶。如果從一開始就不考慮任務指揮的分布式執行和廣泛使用,就有可能過度依賴集中決策,從而忽視下級操作人員的兵力倍增能力,并在無法與 C2 連接時危及作戰效能。空軍單位級情報(ULI)在支持飛行行動中的作用、能力和近期經驗表明,需要擴大 ABMS 的范圍,以實現彈性的 JADC2 和有效的聯合全域作戰(JADO)。
空軍部對聯合防務與發展組織的愿景認識到,"與近期的低強度沖突行動相比,JADC2 需要更大程度的分布式執行、更高程度的授權,以及對中央規劃和任務指導的更少依賴"。"由于通信能力下降和作戰環境發生重大變化等原因,需要通過 "基于條件的授權 "來實現這一點。授權允許通過使用任務類型的命令進行任務指揮,將上級指揮官的意圖明確傳達給行使授權的下級指揮官。這與空軍正在開發的未來分布式作戰概念(如 "敏捷戰斗部署"(ACE))非常吻合,該概念設想部隊在沒有與空中作戰中心(AOC)和其他 C2 平臺所體現的傳統集中式 C2 結構進行可靠通信的情況下開展行動。當除最短距離通信外的所有通信都被切斷時,空中遠征聯隊(AEW)指揮官或在不同作戰地點的更低級別的指揮官可能不得不在只有上級指揮官最新意圖的情況下執行本地 C2。從邏輯上講,這種分布式指揮調度可能涉及本地/可通信區域內多個領域和服務的能力。這種最具戰術性的 JADC2 將需要通過及時準確的友軍信息和敵方情報來實現。
ABMS 旨在提供態勢感知,使 JADC2 成為可能。它是一個系統,旨在通過通用應用程序和軟件開發工具包(SDK)將傳感器與作戰管理聯系起來,使開發人員能夠構建將信息傳遞到這些應用程序的平臺。組件應用程序包括數據源、人工智能/機器學習(AI/ML)、數據融合、COP 以及最終的 C2 功能。利用人工智能/ML 融合和評估所有可用傳感器數據并將其顯示給決策者的方法令人鼓舞,但現有文件顯示,指揮應用程序的主要客戶是 "未來的空間、空中、網絡和全域指揮與控制戰斗管理者",并列出了傳統的 C2 角色職業領域。這些職業領域通常與 AOC 和戰術 C2 平臺等傳統 C2 元素相關,這意味著其重點是改進當前模式下的決策制定,而不是重點構建可實現上述最分散和最授權形式 C2 的工具。盡管 ABMS 尚處于起步階段,傳統的 C2 要素是一個合理的起點,但必須擴大客戶范圍,將支持戰術決策者的參與者包括在內,直至單個射手。ULI 飛行員已經執行或預計執行的功能為 ABMS 功能的更廣泛應用提供了范例,這些功能將實現分布式 JADC2。
AFTTP 3-3.IPE 將 ULI 結構概述為一個應急情報網絡 (CIN)。CIN 包括 1. 作戰情報單元(CIC),負責綜合內部和外部來源,提供全來源分析,以支持聯隊指揮官、任務規劃人員、飛行單位以及網絡防御和兵力保護等其他聯隊職能部門,此外還負責協調聯隊向 AOC 等上級部門的情報報告;2. 情報人員納入聯隊任務規劃單元(MPC),以提供量身定制的威脅分析和目標數據;3. 中隊情報人員向飛行員提供針對任務的情報簡報,進行任務后匯報,并向中央情報中心報告從匯報中獲得的情報。圖 1 所示的所有這些職能對聯隊的行動都至關重要,可幫助指揮官做出決策,并為飛行員、保衛人員和聯隊其他人員提供威脅情報,通常還提供藍色作戰數據,特別是來自空中任務指令(ATO)等 AOC 文件的信息。簡而言之,如果能夠提供必要的情報和作戰數據,并利用有助于進行定制分析的工具,ULI 可以使決策制定深入到最底層,包括在某些平臺上執行任務時進入駕駛艙。
圖 1 CIN 的功能和關系
從條令上講,AOC 的情報監視和偵察處(ISRD)負責向部隊提供其所需的大部分作戰情報。情報監視和偵察處應以部隊支助小組為中介,通過情報摘要(INTSUM)、跟蹤威脅位置的作戰命令(OB)更新、匯集和評估所有部隊關于打擊目標和威脅位置及戰術變化的匯報數據的任務摘要、目標定位和武器設計數據,為聯合作戰環境情報準備工作(JIPOE)提供最新信息,并對總體局勢進行評估,同時還是答復部隊信息請求(RFIs)的主要樞紐。在實踐中,ISRD 的人員數量和單位經驗通常不足以在支持其他 AOC 部門和 ATO 生產的同時履行所有這些職能--這已經是一項幾乎不可能完成的任務。ABMS 所宣稱的傳感器融合、自動提示和 COP 生成等目標將使 ISRD 的許多分析、目標定位和收集管理流程自動化或輔助化,但不應將其視為簡單啟用 AOC 與部隊之間現有等級條令關系的一種方式。無論是由于物理距離、通信問題,還是由于缺乏定制產品所需的相關經驗,AOC 的部隊支持人員往往不具備滿足部隊需求的能力。
鑒于在日益復雜的作戰環境中,部隊一級需要大量的支持功能,而且預期 AOC 支持不會像條令所規定的那樣完整,因此 ULI 空軍人員經常依賴人工數據處理和分析。和平時期,根據聯隊任務定制的 JIPOE 是通過對一系列情報界(IC)來源的研究建立的。戰時更新則來自任何可用來源,包括原始報告。由于缺乏來自 AOC 的足夠詳細的信息或更新頻率,用于任務規劃的威脅 OB 是通過相對較新的多情報可視化工具(如 MIST 和 Thresher)建立的,盡管要求分析人員融合多種來源以得出最終評估結果。飛行員提供的任務數據仍需匯報并手動輸入報告系統,目前這些系統幾乎無法向大型多重情報工具提供反饋,因此必須臨時納入威脅位置和戰術評估。空中和防空行動固有的聯合性質往往也要求 ULI 人員了解兄弟部隊的能力,這通常是通過經驗和關系而非正式流程實現的。這些例子僅涵蓋了較為傳統的飛行支持要求,但其他任務(如兵力保護和網絡空間防御支持)對 ULI 空軍人員的要求可能會成倍增加。
考慮戰術級情報人員(如 ULI)以及他們所支持的分布式指揮官的信息需求,應從一開始就納入 ABMS 等系統。毫無疑問,向聯合部隊指揮官(JFC)、部隊指揮官及其 C2 機構等高級決策者提供信息仍然至關重要,但啟用 JADC2 的系統同樣需要預測權力如前所述被下放的情況,并隨時準備為責任加重的低級別人員提供量身定制的信息。最近的 ULI 經驗和針對 ACE 情景的規劃展示了一些在單位層面執行的職能實例,這些職能在理論上可能是 AOC 或其他 C2 要素的職責。這些功能包括:為有機傳感器建立作戰偵察目標甲板,以滿足當地的信息需求;直接向空中的飛行員傳達具有時效性的威脅或目標更新信息;以及執行先進的目標開發以實現打擊。了解這些可能的非理論使用案例的全部范圍,并將其納入 ABMS 開發和其他 JADC2 概念中,將使有能力的 ULI 飛行員能夠利用而不是圍繞經過測試的工具和理論支持真正的分布式行動。通過利用人工智能/人工智能支持的數據融合和顯示,消除來自不同來源的人工處理和分析,該領域的有意開發可簡化 ULI 的許多任務。
認識到像 ULI 這樣的行動者在開發 JADC2 系統中的重要性,突出了使系統在對抗性、分布式行動中發揮作用的一些額外要求。考慮到在不斷變化的作戰環境中,授權可能會迅速改變,因此必須在不同的用戶訪問權限中預置權限和數據顯示,以便在上級失去連接時自動激活。考慮到用戶可能會搬遷到條件較差的地方,系統應能在連接較少或沒有連接的情況下運行。這就需要在本地網絡上進行本地存儲和繼續運行,直到恢復更廣泛的連接,然后提供一種同步和突出顯示已更改信息的方法。所有這一切都需要對高層領導的風險承受能力進行認真的討論,而不是理論上的討論,以便在獲得最佳數據和合格分析師的情況下,在最基層做出決策。
這種情況不僅適用于分布式空中行動。在空軍條令中,納入系統開發可將作戰決策權下放到最基層的分布式執行,這與其他軍種的基本概念也是一致的。例如,陸軍的任務指揮概念是 "授權下級根據情況決策和分布式執行",使用任務命令明確概述指揮官的意圖。聯合海上條令還強調了海軍長期以來的傳統,即 "任務指揮涉及集中指導、協作規劃以及分布式控制和執行"。因此,條令框架存在跨多領域授權的可能性,如果適當地集成到 JADC2 系統中,就可以通過與 ULI 相當的實體支持來實現。這些系統最終將使下放的權力能夠跨域行使指揮控制權,盡管要在整個聯合兵力中建立有效的全域作戰知識還有很多工作要做。
即使有了先進的通信和數據處理技術,假定傳統 C2 結構中的決策在對抗性行動中會有效也是不明智的。像 ABMS 這樣的 JADC2 規劃和系統開發必須預見到真正下放權力的影響,以及最基層指揮官和操作人員的信息需求。空軍 ULI 提供了一個例子,說明如果將其納入這些新開發的范圍,用戶集合就能隨時支持分布式行動
近來,物聯網(IoT)技術為農業、工業和醫學等許多學科提供了后勤服務。因此,它已成為最重要的科研領域之一。將物聯網應用于軍事領域有許多挑戰,如容錯和 QoS。本文將物聯網技術應用于軍事領域,創建軍事物聯網(IoMT)系統。本文提出了上述 IoMT 系統的架構。該架構由四個主要層組成: 通信層、信息層、應用層和決策支持層。這些層為 IoMT 物聯網提供了容錯覆蓋通信系統。此外,它還采用了過濾、壓縮、抽象和數據優先級隊列系統等數據縮減方法,以保證傳輸數據的 QoS。此外,它還采用了決策支持技術和物聯網應用統一思想。最后,為了評估 IoMT 系統,使用網絡仿真軟件包 NS3 構建了一個密集的仿真環境。仿真結果證明,所提出的 IoMT 系統在性能指標、丟包率、端到端延遲、吞吐量、能耗比和數據減少率等方面均優于傳統的軍事系統。
IoMT 系統由一組在戰場上應組織良好的軍事設備組成。無人機、作戰基地、艦艇、坦克、士兵和飛機等這些物品應在一個有凝聚力的網絡中進行通信。在 IoMT 網絡中,態勢感知、響應時間和風險評估都會得到提高。此外,IoMT 環境應涉及對普適計算、普適管理、普適傳感和普適通信的全面認識。此外,IoMT 可能會導致傳感器等網絡事物產生超大規模的數據。此外,這類網絡所需的計算量非常大,而這些計算的結果應能實時準確地實現。因此,IoMT 系統架構應考慮上述注意事項。
因此,建議的體系結構由四層組成: 通信層、信息層、應用層和決策支持層(見圖 1)。通信層關注的是事物如何在一個大網絡中相互通信。信息層涉及軍事數據的收集、管理和分析。應用層包括控制不同通信軍事系統的應用程序。最后,決策支持層負責決策支持系統,幫助戰爭管理者做出準確、實時的決策。下文將對每一層進行深入討論。
IoMT 系統可視為物聯網的一個特殊例子。因此,IoMT 環境與物聯網環境有些相似,只是在事物類型、通信方式等方面略有不同。根據這一理念,IoMT 環境可定義為一組使用互聯網相互通信的不同網絡。這些網絡應包括軍事任務中的主動和被動事物。IoMT 系統中應構建的主要網絡包括無線傳感器(WSN)、射頻識別(RFID)、移動特設(MANET)、衛星和高空平臺(HAP)網絡。由于 WSN 在許多軍事問題中的重要性,它被納入了 IoMT 系統。WSN 通過快速收集和提供危險數據來協助戰爭行動。然后,將這些數據發送給最合適的人員,以便實時做出正確決策。因此,除了協調自身的軍事活動外,WSN 的主要目標是監測和跟蹤敵方士兵和其他敵方事物的動向。傳感器可以遠距離分布,覆蓋大片區域。這些傳感器通過控制其行為的基站進行通信。由于 RFID 網絡在軍事領域的重要性,它在 IoMT 環境中得到了體現。軍隊中最重要的問題之一就是大部分物品都要貼上標簽。在戰場上使用 RFID 可以為士兵、貨物、小型武器、飛機、射彈、導彈等提供一個具有監控功能的跟蹤系統。例如,定期掃描每個人的醫療情況和效率是戰爭中一個非常重要的問題。城域網在 IoMT 系統中的表現也是一個重要問題,因為它可以用來促進士兵、武器、車輛等的通信。城域網在軍事上有許多特別的應用,如安裝在飛機和地面站之間的網絡或船舶之間的網絡。每種特設網絡的要求都取決于軍事任務的類型。此外,在軍事應用中使用的特設設備都配備了路由場景,可以利用最佳路由路徑自動轉發數據。物聯網依賴互聯網技術來促進通信,這是一個普遍的邏輯。遺憾的是,某些作戰地點可能沒有互聯網技術。因此,尋找替代通信技術非常重要。這就是在覆蓋目標中使用 HAP 網絡的原因。軍用物資分布面積大,因此必須以可靠的方式進行覆蓋,以保證通信效率。HAP 網絡可作為互聯網之外的第二種通信策略選擇。HAP 網絡的高度有限,因此容易成為敵方的攻擊目標,其故障概率可能很高。如果 HAP 網絡出現故障,通信系統將面臨很大問題,可能會影響軍事任務的執行。因此,應構建一個衛星網絡來覆蓋故障的 HAP 網絡,并覆蓋 HAP 網絡或互聯網可能無法覆蓋的軍事事物(見圖 2)。不同網絡之間的通信難題只需使用報頭恢復技術即可解決。在這種技術中,每個網絡之間都應添加一個翻譯器,用目的節點的報頭封裝每個數據包。新的報頭使數據包可以被理解;這可以通過系統路由器來實現(見圖 3)。
圖2: 通信網絡(該圖部分摘自[23])
圖3: 報頭轉換過程
這一層非常重要,因為它代表著 IoMT 系統架構的核心。射頻識別(RFID)、傳感器等軍用設備收集的信息應以安全、珍貴、實時的方式進行傳輸、存儲和分析。這一層的首要功能是在信息處理后對收集到的信息進行組織和存儲。IoMT 系統數據的處理被認為是一個具有挑戰性的問題,因為在短時間內可以收集到 TB 級的數據。因此,應在不影響質量的前提下盡量減少這些數據。此外,IoMT 的特殊要求(如實時決策)也不容忽視。在 IoMT 系統架構中,數據處理包括四個步驟: 優先化、過濾、壓縮和抽象。下面將對優先級排序過程進行說明。數據過濾、數據壓縮和數據抽象技術在第 4.1 小節中說明。
確定優先級的步驟包括處理不同優先級的數據。對于戰爭管理者(即軍隊將領)來說,收集到的每項數據都有一定的重要程度。因此,應將數據分為若干優先級,以便在 IoMT 系統饑餓的情況下優先處理和發送高優先級的數據。隊列系統就是用來實現這一優先級劃分步驟的。由于 IoMT 系統數據分類數量龐大,因此采用了六隊列系統。因此,IoMT 系統數據將被分為六個不同的類別。第一類代表最重要的 IoMT 系統數據;第二類代表不太重要的數據,依此類推。分類過程將動態完成,因此每個類別中的數據可能會根據戰爭任務的性質發生變化。為切實實現這一步,下一代路由器應具備對 IoMT 系統數據進行分類的能力。圖 4 說明了優先級排序過程。
圖4: 數據分類過程的簡單視圖
IoMT 系統架構中的應用層包括管理、監視等戰爭任務中使用的異構應用。該層應使用一個通用應用程序管理這些應用程序的功能,同時不影響其效率。這些應用程序的統一過程應基于通信數據(信息交換)來實現。在數據通信中,一個應用系統的輸出數據可能是另一個應用系統的輸入數據。因此,確定戰爭應用程序的輸入數據和輸出數據被認為是這一層最重要的目標之一。例如,飛機或發射器的火箭發射應用的輸入需要衛星監控應用的輸出數據,而衛星監控應用可能需要 WSN 應用的數據。信息層和應用層之間的通信非常重要,因為作為輸入和輸出的數據應首先在信息層處理。因此,在設計用于管理軍事應用程序的通用應用程序時,應首先確定每個應用程序的輸入和輸出數據。然后,應確定數據處理的時間(硬、實或軟)。例如,在戰斗停止期間,某個目標的坐標突然發生變化,三個應用程序應實時交互,以完成任務并擊中新位置上的目標。這些相互作用的應用程序構成了 WSN、戰爭管理以及執行任務的飛機機艙。還應確定應用特殊應用程序的優先順序。例如,在敵方多次攻擊特定目標的情況下,防御應用程序將優先啟動。
根據上述討論,一般管理應用程序應有一個專門的數據庫。該數據庫存儲有關單個軍事應用程序的動態變化數據。這些數據與以下主題有關: 輸入和輸出、單個應用程序之間的數據流方向、硬時間軍事情況、實時軍事情況、軟時間軍事情況以及每個應用程序的優先級。這些優先級應根據戰爭形勢來確定。根據綜合管理 IoMT 應用程序的性質,IoMT 系統數據庫的設計可以是分布式的,也可以是集中式的。在分布式數據庫中,應注意數據庫服務器之間交互的復雜性,特別是在需要硬時間或實時交互的事件中(見圖 6)。 、
戰爭中最重要的問題之一是決策過程。在技術戰爭中,決策應具備準確性、實時性、清晰性、安全性和快速分發等諸多規格。所有這些指標都應與信息層收集的數據相關。雖然信息與軍事決策之間關系密切,但所提出的 IoMT 系統架構在信息層和決策支持層之間還有一個中間層,即應用層。短時間內收集到的大量 TB 信息需要進行分析、過濾、優先排序和壓縮。這些過程已經在信息層中完成。但是,信息層沒有能力確定信息在應用層之間的移動方向(即信息的正常順序)。這種信息順序意味著,每個數據段都應指向一個合適的應用程序,以便實現互補和平衡。這些信息將用于決策過程。例如,假設戰爭管理者有一個目標,要求以特定的安排和特定的順序處理信息,直到軍事偵察之旅取得一定的結果。該目標的完成將通過步兵和防空來實現。因此,應用層和決策支持層之間的聯系將對高精度規格的決策產生良好的影響,這將在關鍵的戰爭事件中發揮作用。
簡單地說,本文概述的決策支持流程包括五個步驟: 事件權重、解決方案識別、選擇一種解決方案、行動和輸出評估(見圖 7)。戰爭管理者可根據自身經驗水平提取事件權重。一旦對事件有了充分了解,就該確定解決方案了。在準備決策時,有許多不同的備選方案。因此,確定可用行動的范圍非常重要。接下來,應選擇備選方案,并確定每個備選方案的風險。然后,就該采取行動了。應確定實施計劃,并提供實施所選解決方案所需的資源。應預先確定執行時間,然后開始執行。最后,應對選定解決方案的執行結果進行評估。請注意,有許多決策支持系統在經過實際測試(如 [24,25])后,可在 IoMT 中實施。
決策支持層可能面臨三大挑戰。第一個挑戰是數據過多或不足。這意味著決策支持層的輸出會延遲或不準確,這可能會造成災難,因為在大多數戰爭時期都需要實時決策。第二個挑戰是問題識別錯誤。在大多數戰爭任務中,圍繞一項決策會有許多問題。然而,有時卻無法確認這些問題的真實性。第三個挑戰是對結果過于自信。即使決策過程得到了準確執行,實際產出也可能與預期產出不完全一致。應用層將通過確定決策構建所需的準確信息、對問題的準確定義以及輸出調整來應對這些挑戰。因此,決策支持層將使用應用層的輸出。因此,在擬議的 IoMT 架構中,這些層之間的分離是一個需要考慮的重要問題。
首先,應構建一個軍事模擬環境,以測試所提議的 IoMT 架構的性能。網絡模擬器 3(NS3)是最廣泛使用的網絡模擬軟件包之一,將用于實現這一目標。軍事模擬環境由五種不同類型的網絡組成,其中包括分布在大片區域的大量節點。這五種網絡分別是 WSN、RFID、MANET、HAP 和衛星網絡。這些網絡是根據戰場需求確定的。文獻[26]中的仿真用于評估所提出的 IoMT 架構。在 WSN 仿真中,成千上萬的傳感器分布并部署在戰爭環境中。一個或多個基站將這些傳感器相互連接起來,并從中收集信息。在突發事件中,傳感器能夠向基站發送陷阱信息。然后,如果情況緊急,需要迅速做出決定,基站將直接把信息發送給執行者,如戰士、管理人員等。不過,在正常情況下,基站會將收集到的信息(詳細信息或摘要)重新發送給負責決策的管理人員。基站應該是智能的,并通過編程來實現這一目標。為了在 IoMT 中準確呈現 WSN,傳感器應具有不同的傳輸范圍。對于 RFID,美國軍方在第二次海灣戰爭中使用了最佳方案[27]。每個士兵身上都應貼有一個 RFID 標簽,以便在戰場上進行追蹤。此外,商業貨運和航空托盤等戰爭工具也應貼上 RFID 標簽,以便了解坦克和計劃等關鍵工具的最新狀態。此外,為了挽救士兵的生命,建議的模擬系統考慮了專門用于戰爭的移動醫院,并應配備 RFID 技術。此外,還利用 RFID 技術觀察軍隊的小型庫存物品,以實現更嚴格的庫存控制。對于城域網仿真,它包含戰場對象(如車輛、士兵和信息提供者)之間的臨時通信。在某些軍事情況下,很難通過數據采集中心傳遞或發送信息。因此,城域網仿真的一個考慮因素就是在數據傳輸中使用這種網絡。文獻[28]中所述的架構用于 HAP 和衛星網絡的通信。互聯網仿真使用了 [29] 中介紹的路由算法和 [30] 中介紹的物聯網混合組播架構。多媒體傳輸使用[31],但傳統軍事系統的模擬則使用[32,33]中所述的準則。
在信息層模擬中,將隨機、動態地創建 IoMT 數據。然后,這些數據將被分類并進入隊列,每個隊列將作為一個數據類別。動態數據的創建取決于存儲在特殊數據庫中的戰爭任務。本模擬場景中使用了 [34] 中所述的壓縮技術和數據過濾技術來減少數據,這是信息層的主要目標之一。應用層模擬也取決于戰爭任務,其中包括許多模擬網絡場景。每個網絡應用程序的輸入和輸出數據都在模擬文件中預先確定。網絡應用程序與綜合管理應用程序之間的通信是通過信息傳輸實現的。文獻[35]中的仿真用于決策支持層。戰爭任務的部分建模和仿真來自文獻[36],仿真中使用的武器的一般規格來自文獻[37]。圖 8 顯示了擬議的 IoMT 系統模擬環境的全貌。
本報告記錄了通過利用深度學習(DL)和模糊邏輯在空間和光譜領域之間整合信息,來加強多模態傳感器融合的研究成果。總的來說,這種方法通過融合不同的傳感器數據豐富了信息獲取,這對情報收集、數據傳輸和遙感信息的可視化產生了積極的影響。總體方法是利用最先進的數據融合數據集,為并發的多模態傳感器數據實施DL架構,然后通過整合模糊邏輯和模糊聚合來擴展這些DL能力,以擴大可攝入信息的范圍。這項研究取得的幾項進展包括:
出版物[1, 2, 3, 4, 5]進一步詳細介紹了取得的進展。
近幾十年來,國防系統的規劃已經演變成基于能力的規劃(CBP)過程。本文試圖回答兩個問題:首先,如何表達一個復雜的、真實世界的能力需求;其次,如何評估一個具有交互元素的系統是否滿足這一需求。我們建議用一套一致的模型以可追蹤的方式來表達能力需求和滿足該需求的解決方案。這些模型將目前的能力模型,具體到規劃級別和能力觀點,與系統思維方法相結合。我們的概念模型定義了環境中的防御系統,數據模型定義并組織了CBP術語,類圖定義了CBP規劃元素。通過給出一個能力參數化的例子來說明這個方法,并將其與DODAF能力觀點和通用CBP過程進行比較。我們的數據模型描述了能力在行動中是如何退化的,并將該方法擴展到能力動態。定量能力定義的目的是支持解決現實世界中相互作用的子系統,這些子系統共同實現所需的能力。
在本節中,能力被定義為執行任務的效果或功能并作為系統時,我們討論CBP;在1.2小節中進一步討論Anteroinen的分類中的第三和第五類。為了專注于軍事系統或軍事單位的結構定義和未來的數學建模,只考慮系統的物理組成部分,即人員和物資,以及他們與能力的關系。環境的影響--天氣條件、地形、周圍的基礎設施和其他軍事單位--被省略,以關注兩種力量之間的相互作用;盡管在實踐中,環境和其他更廣泛的系統問題顯然是相關的。通常情況下,CBP過程定義了環境的相關方面和軍事行動的類型,為能力需求定義、能力評估和解決方案選擇制定了可能的規劃情況集合。
一個軍事單位或一個組織由其人員和物資組成。經過組織和訓練的人員配備了適當的物資,代表、擁有或產生能力。當兩個軍事單位相互作戰時,他們會啟動自己的能力,以造成敵人的物資和人員的退化。為了定義能力需求并計劃如何作為軍事單位或系統來實施,需要解決的問題是:在與敵人的互動過程中,能力將如何演變,而敵人的能力卻鮮為人知?圖1說明了在敵人能力的作用下,自己的軍事作戰和維持能力的動態互動。我們的能力削弱了敵方的人員和物資,對敵方的能力產生了影響;而敵方的能力削弱了我們的人員和物資,對我們的能力產生了影響。外部資源,也就是供應和維持能力,維持著被削弱的人員和物資。如因果循環圖所示,敵方的能力可以與我方的能力對稱地表示。第3節的進一步建模集中在我們自己的能力上,由圖1中的虛線表示,以便更純粹地表示。
對我們自己的能力的定義說明,由人員和物資提供,表明了復雜的結構和與能力有關的功能和元素之間的相互作用。此外,真正的軍事單位,通常由較小的編隊組成,有幾種能力,由大量不同的物資和人員組成,并與環境互動。
架構被定義為 "一個系統在其環境中的基本概念或屬性,體現在其元素、關系以及設計和進化的原則中"。因此,架構描述是一種表達架構的工作產品。架構框架是在一些應用領域或社區應用架構描述的基礎。架構框架為網絡系統的復雜性管理提供了結構化的方法,使利益相關者之間能夠進行溝通,并支持未來和現有系統的系統分析和設計。企業架構的Zachman框架是這類通用框架的一個例子。DoDAF、MODAF和NAF是用于國防系統分析和定義的架構框架,特別是用于指揮、控制、通信、計算機、情報、監視和偵察系統(C4ISR)。這些架構框架由觀點組成,定義了代表特定系統關注點的一組架構視圖的規則。架構視圖由一個或多個模型組成。架構框架基礎的元模型定義了不同視點中元素之間的關系。DoDAF元模型DM2有一個概念數據模型圖(DIV-1),用來向管理者和執行者傳達架構描述的高層數據構造的概念。MODAF元模型詳細定義了每個架構視圖的數據模型。
利益相關者需要適當的支持,以促進他們彼此之間以及與規劃專家團體的溝通,從而從CBP方法中獲益。軍事專家的作用不是參與復雜的工具和方法,而是為規劃過程提供重要的領域專業知識。架構框架是一個很好的工具,可以定義當前的防御系統,確定能力需求,并描述系統解決方案。不幸的是,架構框架和相關元模型的精確但復雜的機制與復雜的符號并不一定能以明顯的方式解釋能力觀點和要素之間的關系。因此,架構觀點和典型的CBP流程并沒有明顯的聯系。因此,參與能力規劃的軍事專家和決策者很少能夠加深理解,或者在沒有專門掌握這些工具和方法的人員的情況下,通過應用架構框架確定解決方案。需要對能力進行更簡單的定義,與流程兼容。
圖2提出了一個高層次的數據模型,它代表了能力定義問題的抽象。數據模型描述了能力模型類型及其關系,作為能力和防御系統建模的框架。符號的選擇是為了保持信息量,但對更多的人來說是可讀的,因此它不遵循任何特定的方法,但與SODA的認知圖譜有一些共同點。
能力的現實世界實例在圖的左邊,而概念模型類型在右邊。該模型的第一個版本已經被Koivisto和Tuukkanen應用于一個基于研發的自下而上的過程和概念性的未來系統,即認知無線電。原始模型描述,系統模型定義了物資、戰斗力和功能能力。實際上,這是一種雙向的關系:在所需能力和所需資源的驅動下建立系統模型,然后用系統模型來預測特定環境和實例中的結果。
防御系統由系統、系統要素及其相互作用組成,其突發屬性由系統、系統要素和它們的相互作用界定。圖3中的模型代表了系統層次結構中的防御系統層次。防御系統可以被看作是SoS,但我們應用一般的系統術語來保持模型的可擴展性,并為防御系統層次結構的較低層次提供合適的術語。在國防系統層次結構的任何一級,系統代表一個由系統元素組成的軍事單位:人員和物資。
圖3 國防系統在其背景下的概念系統模型。防御系統,即利益系統(SOI),被環境和其他行為者的系統所包圍。這些系統包括相互作用的系統要素人員(P)和物資(M)。子系統和系統元素之間的聯系是示范性的。
除了系統元素和它們的組織之外,還要定義功能和相應的輸出,以獲得更全面的系統定義。我們將能力定義為執行任務的效果或功能,是一種功能能力。在CBP過程中,功能能力定義了一些當前或計劃中的軍事單位或由物資和人員組成的系統的能力潛力。最終,能力發展過程必須以現實世界的軍事單位來定義系統的實施。力量要素的概念定義了最終的系統結構,也就是要生產的現實世界的軍事單位的組織。在我們的數據模型中,功能能力被安排在SOI內部,以代表系統的涌現屬性。當這種潛力或涌現被計劃為引起某種效果時,系統,具體來說是其功能能力,在計劃過程中被分配到一個任務中。此外,當軍事單位執行任務時,效果就會產生。高層數據模型的作用,如圖4,是將關鍵的術語及其關系可視化。
圖 4 基于能力的規劃中術語及其關系的高級數據模型表示
圖5中的類圖將圖3所示的概念系統模型中確定的國防系統規劃要素與圖4中的能力模型類型結合起來。由于我們關注的是國防系統,國家權力和軍事力量的要素被認為是其環境的一部分,不在圖中。然而,我們建議,國家權力也可以通過效應來表示。
圖 5 基于能力的規劃元素的統一建模語言 (UML) 類圖表示
本文介紹了在卡勒獎學金第一年內進行的研究,研究如何自主控制檢查平臺向故障平臺行駛以完成檢查相關任務。這項研究的目的是開發一個有限時間的相對位置控制框架,使檢查衛星能夠安全地接近發生故障的平臺,因為平臺的通信能力受到阻礙,導致其在接近過程中根本無法通信。故障平臺導致獨特的挑戰,即平臺的狀態被認為是先驗未知的,檢查器可能無法從故障平臺提供的準確和連續的信息中受益;故障平臺也可能受到機動和干擾。
在該獎學金的第一期內,使用 MATLAB 和 Simulink 開發了仿真軟件,以演示檢查平臺與故障平臺執行會合操作。首先引入基于視線的相對運動模型,直接使用導航信息,然后以自適應非奇異終端滑模控制器的形式開發魯棒控制框架,以確保閉環系統穩定并保證有限時間收斂到所需的狀態。然后在最終討論未來的工作和目標之前展示和討論模擬結果。