最近無人駕駛飛行器(UAV)能力的進步導致對蜂群系統的研究越來越多。然而,無人機群的戰術應用將需要安全通信。不幸的是,到目前為止的努力還沒有產生可行的安全通信框架。此外,這些系統的特點是有限的處理能力和受限的網絡環境,這使得許多現有的安全群體通信協議無法使用。最近在安全群組通信方面的研究表明,消息層安全(MLS)協議可能為這些類型的系統提供一個有吸引力的選擇。這篇論文記錄了MLS與先進機器人系統工程實驗室(ARSENL)無人機群系統的整合情況。ARSENL的實施是為了證明MLS在安全蜂群通信中的功效,是一個概念驗證。實施的測試結果是在模擬環境中進行的實驗和用物理無人機進行的實驗。這些結果表明,MLS適用于蜂群,但需要注意的是,測試中沒有實施交付機制以確保數據包的可靠交付。對于未來的工作,如果要維持一個可靠的MLS系統,需要緩解不可靠的通信路徑。
目前,無人駕駛飛行器(UAVs)的進步已經導致了對蜂群能力的研究。目前,多無人機群已被建議或用于一系列廣泛的應用,包括但不限于: 1:
無人機群的戰術利用將取決于安全通信。不幸的是,單個蜂群平臺的處理能力有限,而且蜂群系統通常依賴于帶寬有限且可能不可靠的通信框架。這些限制使這些系統滿足安全要求的能力受到質疑。
以前的設備群通信安全方法不太可能適用于現有或設想中的蜂群系統。然而,最近對安全群組通信的研究表明,消息層安全(MLS)協議[10]可以提供一個有吸引力的選擇,其特點似乎特別適合這些類型的系統。該協議提供了一種有效的計算方法來實現異步安全的群體密鑰管理,但需要在現實的系統中進行實驗,以評估該協議在這些計算和通信有限的環境中的功能。這項工作是在海軍研究生院(NPS)高級機器人系統工程實驗室(ARSENL)的無人機群中實施MLS協議,以保護特定的信息流。
NPS ARSENL開發并利用了一個無人駕駛飛行器(UAV)群系統,該系統已經成功地演示了多達50個UAV[11]。盡管這種能力為軍事行動提供了巨大的潛力,但ARSENL系統缺乏最終在現實世界中使用所需的通信安全功能。本論文在ARSENL蜂群系統上實現了MLS,以評估其對此類系統更廣泛的適用性。
MLS提供了一些與多無人機系統特別相關的能力。MLS提供了一個動態添加和刪除成員的機制,同時不斷地在群組成員之間提供安全的通信。由于無人機群成員可能是高度動態的,添加和刪除群成員是很重要的能力。隨著蜂群規模的增加,群體安全協議必須有效地擴展。同樣有利的是,MLS協議有利于強制移除已經被劫持的、被破壞的或發生故障的無人機。在這些情況下,該協議為小組提供了更新通信密鑰的手段,以排除被破壞或故障的無人機。本論文旨在解決以下問題:
1.MLS協議能否適用于ARSENL無人機群的使用?
2.MLS對ARSENL無人機群的性能有何影響?
3.ARSENL無人機能否加入群組并與群組的其他成員安全地進行通信?
4.小組密鑰是否能夠通過不可靠的ARSENL蜂群網絡定期更新?
5.在出現紕漏或其他標準的情況下,是否可以將無人機從ARSENL群中移除,不再解密信息?
在本論文中,研究了在NPS ARSENL無人機群中使用MLS作為一個連續的組密鑰協議。來自MLS GitHub倉庫[12]的社區維護的C++代碼被調整為納入ARSENL蜂群系統代碼庫。特別是,MLS組的密鑰更新、成員添加和成員刪除等操作被實現和測試。該研究包括分析MLS協議的使用對ARSENL蜂群性能的影響。指標包括各個無人機之間的數據包傳輸和接收率、可擴展性和時間。
本文的其余部分分為四章。第二章提供了理解MLS和無人機群的必要背景信息。這包括討論多無人機群和常見的群組通信架構,ARSENL群組系統,以及潛在的安全通信方法,包括成對和分組協議。本章最后討論了MLS和它是如何工作的。
第三章描述了代碼開發過程。它首先總結了ARSENL機載軟件的機器人操作系統(ROS)框架和用于實現MLS功能的C++應用編程接口(API)。然后,本章討論了代碼的實現,包括代碼概述和討論將MLS集成到ARSENL蜂群中的經驗教訓。
第四章討論了MLS實現的實驗,并分析了它對各個ARSENL蜂群平臺的影響,這些影響受蜂群大小和密鑰更新率的影響。本章包括對測試過程的描述和對結果的描述。
最后,第5章提供了一個結論,包括本研究的意義和對未來工作的建議。
許多武裝部隊正變得以網絡為中心并高度互聯。數字化戰場的技術進步促成了這一轉變和分散決策。隨著戰場的演變,任務要求部隊具有機動性并支持多種戰術能力,目前部署靜態無線電中繼節點以擴大通信范圍的概念可能不再適用。因此,本論文旨在設計一種使用無人機系統(如航空浮空器和戰術無人機)的作戰概念,為戰術部隊提供視距外通信,同時克服全球定位系統失效環境下的限制。鑒于聯邦通信委員會規定工業、科學和醫療頻段的最大有效各向同性輻射功率為 36 dBm,擬議的概念分為三個階段,以評估操作和通信系統需求。兩個節點之間的最大通信距離可使用 Friis 傳播方程進行研究。此外,還使用 Simulink 軟件研究了有效應用吞吐量與距離的關系。分析結果表明,IEEE 802.11ax 可提供更高的數據吞吐量,并支持 2.4 GHz 和 5.0 GHz 兩個頻段。通過模擬環境和運行場景,確定了在 50 千米乘 50 千米的區域內提供通信覆蓋所需的航空系統估計數量。
隨著數字化戰場的擴展,以及對可進行多域作戰的高度互聯部隊的需求日益增長,目前在戰區采用靜態中繼節點的通信概念可能不再可行。因此,本論文旨在設計一種作戰概念,利用無人機作為戰術部隊的通信中繼節點,同時克服全球定位系統(GPS)封閉環境的限制。具體來說,這項研究的主要重點是確定這一作戰概念的最大通信范圍,并研究兩個空中中繼節點之間的有效數據吞吐量。此外,研究還試圖確定提供 50 千米乘 50 千米或同等通信覆蓋所需的空中中繼節點數量。最終,本論文的研究結果旨在進一步提高作戰行動環境中的通信效率。
擬議的作戰通信框架將采用一種混合通信系統,同時使用航空浮空器系統和戰術無人機作為通信中繼節點。利用戰術無人機的靈活性,在需要時可以方便地增加網絡數據帶寬。為分析行動需求和可部署的通信系統類型,擬議的行動構想分為三個不同階段。
為了研究擬議概念的可行性,采用了 IEEE 802.11ax 和 IEEE 802.11n Wi-Fi 標準來檢查網絡性能,并確定估計的有效通信范圍。之所以采用這些 IEEE 標準,是因為它們可以在 2.4 GHz 和 5.0 GHz 頻段上運行。
根據美國聯邦通信委員會 (FCC) 的規定,在 2.4 GHz 頻段工作時,工業、科學和醫療 (ISM) 頻段的最大有效各向同性輻射功率 (EIRP) 規定為 36 dBm。通過限制輸出功率和有效輻射功率,可以確定在 2.4 GHz 和 5 GHz 頻段工作時的理論有效通信范圍。利用弗里斯傳播方程,計算出的范圍分別約為 5.5 千米和 2.6 千米。
通過修改 MATLAB Simulink 軟件中現有的 IEEE 802.11 MAC 和應用吞吐量測量模型,確定了使用 IEEE 802.11ax 和 IEEE 802.11n 標準的有效應用吞吐量。從仿真結果可以看出,隨著距離的增加,兩種工作頻率的應用吞吐量都會下降,這是由延遲和數據包丟失數量增加等因素造成的。此外,與 2.4 GHz 相比,5 GHz 頻段的傳輸距離較短。因此,為了彌補傳輸距離的限制并優化在 5 GHz 頻段工作時的數據吞吐量,建議使用比在 2.4 GHz 頻段工作時更高的信道帶寬。
從模擬結果來看,IEEE 802.11ax Wi-Fi 標準的數據吞吐量高于 IEEE 802.11n。這是因為 IEEE 802.11ax 采用了比 IEEE 802.11n 更有效的調制和編碼方案。因此,以 IEEE 802.11ax 作為推薦的 Wi-Fi 標準,在 2.4 GHz 和 5 GHz 上運行時的最大應用吞吐量分別約為 4.403 Mbps 和 4.488 Mbps。
為了估算在 50 千米乘 50 千米的作戰區域內提供通信覆蓋所需的空中中繼節點數量,使用了地圖規劃工具軟件 ArcGIS Pro 來模擬作戰區域并規劃通信網絡。根據計算得出的有效通信距離和地圖規劃,估計總共需要 23 個航空浮空器系統才能在 2.4 GHz 頻段上提供網絡覆蓋,另外還需要 24 架戰術無人機才能支持在 5 GHz 頻段上運行的更高數據帶寬網絡。
值得注意的是,本論文僅限于分析兩個空中中繼節點之間的性能,并使用了仿真模型。在現實世界中,有多種因素可能會影響室外環境中的網絡性能,例如地形影響造成的衰減。因此,為了更好地了解系統的性能,建議在實地進行深入的開發測試,并考慮環境造成的衰減和干擾。在這種情況下,提供通信覆蓋所需的空中中繼節點的估計數量可能會有所不同。此外,性能和有效通信距離也可能下降。
除中繼通信外,空中中繼節點的高度優勢還可提供額外服務,如執行監視和偵察任務。因此,為了最大限度地提高系統性能,建議未來的研究人員研究不同傳感器系統可能造成的干擾影響。為了最大限度地降低干擾幾率,可能有必要制定詳細的頻率分配計劃,以確保不同系統之間有足夠的頻率間隔。
當前的多域指揮和控制計算機網絡需要大量監督,以確保可接受的安全水平。防火墻是網絡邊緣的主動安全管理工具,用于確定惡意和良性流量類別。這項工作旨在通過深度學習和半監督聚類來開發機器學習算法,以便在大規模網絡中通過網絡流量分析對潛在威脅進行剖析。為了實現這些目標,本研究利用深度學習對數據包級的企業網絡數據進行分析,從而對流量模式進行分類。此外,本研究還檢驗了幾種機器學習模型類型和多種不平衡數據處理技術的功效。這項工作還結合了數據包流來識別和分類用戶行為。對數據包分類模型的測試表明,深度學習對惡意流量很敏感,但與傳統算法相比,在識別允許流量方面表現不佳。不過,不平衡數據處理技術為某些深度學習模型帶來了性能優勢。相反,半監督聚類能準確識別和分類多種用戶行為。這些模型為學習和預測未來流量模式提供了自動化工具。在大規模網絡中應用這些技術可以更快地檢測到異常情況,并讓網絡運營商更好地了解用戶流量。
強化學習(RL)的成功,如《星際爭霸》和《DOTA 2》等視頻游戲達到了高于人類的性能水平,這就提出了關于該技術在軍事建設性模擬中的未來作用的問題。本研究的目的是使用卷積神經網絡(CNN)來開發人工智能(AI)Agent,能夠在具有多個單位和地形類型的簡單場景中學習最佳行為。這篇論文試圖納入一個可用于軍事建設性模擬領域的多Agent訓練方案。八個不同的場景,都有不同的復雜程度,被用來訓練能夠表現出多種類型戰斗行為的Agent。總的來說,結果表明,人工智能Agent可以學習在每個場景中實現最佳或接近最佳性能所需的強大戰術行為。研究結果還表明,對多Agent訓練有了更好的理解。最終,CNN與RL技術的結合被證明是一種高效可行的方法,可以在軍事建設性模擬中訓練智能Agent,其應用有可能在執行實戰演習和任務時節省人力資源。建議未來的工作應研究如何最好地將類似的深度RL方法納入現有的軍事記錄構建性模擬項目中。
正確預測對手在戰爭中的戰略或戰術行為的愿望與人類進行這些戰爭的能力一樣古老[1]。在中國古代,像魏黑和圍棋這樣的游戲最初被用作加強軍事和政治領導人的戰略思維能力的方法。后來,羅馬人利用沙盤在戰役或戰斗前討論自己和敵人的可能行動。然而,直到19世紀初,普魯士人用他們的兵棋推演(Kriegsspiel)才開始利用具有嚴格規則的游戲來預測軍事交戰的可能結果。雖然這些兵棋推演在接下來的幾十年里在世界各地的許多武裝部隊中越來越受歡迎,但進行必要計算的能力有限,總是限制了這些基于棋盤的兵棋推演所能達到的復雜程度。此外,棋盤游戲的物理限制限制了設計者簡化行為和游戲元素,而不是努力追求真實。然而,計算能力的提高和用戶友好的圖形界面使設計者在20世紀末能夠以更高的復雜性來模擬兵棋推演的規則和游戲中的組件數量。此外,計算機的使用允許實施基于計算機的對手,在基于硬編碼規則的人工智能軟件的基礎上成功地與人類玩家進行比賽。
今天,基于計算機的兵棋推演,也被稱為建設性模擬[2],已經成為整個國防部(DOD)的一個有用工具。它們使軍事領導人能夠進一步學習和發展他們在那些通常被認為成本太高或太危險而無法定期演練的領域的行動程序。領導人有能力在實際執行前針對多種紅色力量設計使用他們的部隊,使他們有機會在不承擔任何額外風險的情況下驗證他們的機動方案。在戰略層面上,大型單位的工作人員經常使用建設性的模擬作為訓練方法[3],領導人可以在模擬環境中進行投入,但他們不參與確定場景的結果[2]。
在基于計算機的兵棋推演中用來表現對抗行為的方法,需要由場景設計者通過腳本直接編碼,或者使用真人玩家進行所有紅軍的決策。這兩種方法都能提供足夠的分辨率來表現對抗性行為,但每種方法都有其缺點[4]。對于低級別的場景來說,直接對特定行為進行編碼可能是可行的,但隨著場景的擴大,單位的數量和可能的行動對于腳本的控制來說變得太有挑戰性,往往會導致不現實的行為[4]。對于大型場景,使用人類玩家作為紅色力量可能會提供更真實的結果,但額外的人力資源會造成后勤方面的壓力,而且整體的生產力也受限于單個玩家的知識和能力。
解決這個問題的一個可能的方法可能在于利用人工神經網絡。在計算機游戲領域,這種方法最近已被證明是相當成功的。例如,對于實時戰略游戲《星際爭霸II》,一個人工神經網絡被開發出來,打敗了99.8%經常參加在線比賽的玩家[5]。雖然在計算機游戲領域,人工神經網絡的利用最近取得了巨大的進展,但在軍事用途的兵棋推演領域,研究才剛剛開始。在最近的研究中,Boron[6]和Sun等人[7].已經表明,人工神經網絡適合解決簡單軍事兵棋推演場景中的挑戰。基于以前的工作,特別是Boron[6]的工作,本論文旨在提高所使用的軍事場景的復雜性。雖然Boron使用了簡單的多層感知器(MLP)神經網絡,但在處理己方和敵方單位的動態起始位置以及敵人的動態行為時,這種結構被證明是不合適的。此外,所使用的場景被限制在戰場上最多五個單位[6]。在本論文中,將建立一個支持卷積神經網絡(CNN)架構的訓練模擬,包括多個單位和地形類型以克服這些限制。此外,將在一個確定的場景中應用多智能體訓練,以測試這種方法是否可以成功地用于軍事建設性模擬領域。
深度神經網絡(DNN)在幾乎所有的學術和商業領域都產生了突破性的成果,并將作為未來人機團隊的主力,使美國防部(DOD)現代化。因此,領導人將需要信任和依賴這些網絡,這使得它們的安全成為最重要的問題。大量的研究表明,DNN仍然容易受到對抗性樣本的影響。雖然已經提出了許多防御方案來對付同樣多的攻擊載體,但沒有一個成功地使DNN免受這種脆弱性的影響。新穎的攻擊暴露了網絡防御的獨特盲點,表明需要一個強大的、可適應的攻擊,用來在開發階段早期暴露這些漏洞。我們提出了一種基于強化學習的新型攻擊,即對抗性強化學習智能體(ARLA),旨在學習DNN的漏洞,并產生對抗性樣本來利用這些漏洞。ARLA能夠顯著降低五個CIFAR-10 DNN的準確性,其中四個使用最先進的防御。我們將我們的方法與其他最先進的攻擊進行了比較,發現有證據表明ARLA是一種適應性攻擊,使其成為在國防部內部署DNN之前測試其可靠性的有用工具。
美國海軍(USN)和國防部(DOD)建立對對手的持久技術優勢[1],他們必將尖端的機器學習(ML)技術整合到當前的系統和流程中。ML,即系統從原始數據中提取意義和知識[2],已經將更廣泛的人工智能(AI)領域推向了似乎無止境的應用。人們很難找到一個領域,無論是學術、商業還是醫療領域,ML都沒有進行過革新。ML已經被用來幫助識別汽車保險欺詐[3],提供宮頸癌的早期檢測[4],以及檢測和描述飛機上冰的形成[5]。在這些情況下,ML模型的作用不是做決定,只是為人類操作員提供更好的信息。通過以類似的方式應用ML,國防部有一個路線圖,可以將系統和流程演變成遵守道德人工智能原則的人機團隊[6]。
雖然ML可以包含廣泛的用于預測的模型,但一個被稱為深度學習的子集是這個人工智能夏天的驅動力。與線性回歸建模和支持向量機等更簡單的ML技術不同,深度學習包含了利用深度神經網絡(DNNs)的ML模型,它使用許多隱藏的人工神經元層,通過數據學習復雜的概念[2]。盡管DNNs被用于許多目的,但本論文重點關注那些專門用于圖像識別的DNNs。
美國防部要想成功過渡到人機團隊,軍事和文職領導人必須能夠信任和依賴基礎技術。這對高級領導人來說是一個不小的要求。與人類分析師不同,他們的思維過程可以通過對話來理解,但沒有明確的路徑來理解DNN如何完全基于數據做出決定。因此,信任必須建立在一個合理的信念上,即該系統能夠抵御攻擊,其結果是一致和可靠的。任何關于可信度和可靠性的擔憂都是合理的,因為一連串的研究已經證明,DNN在對抗性樣本面前始終是脆弱的。
對抗性樣本(AE)是一個良性的輸入樣本,通過添加擾動導致目標DNN返回不正確的輸出而被畸形化。AE的目的是在降低目標網絡的整體準確性的同時顯得非惡意的,這可能會產生嚴重的、威脅生命的后果。例如,考慮到自動駕駛以及汽車不混淆停車和讓行標志是多么關鍵。對于軍事指揮官來說,如果一個網絡對對抗性樣本不健全,那么對該系統的信任很容易就會下降,并且該系統會被忽略,而被用于更傳統和耗時的分析。想象一下一個系統,DNN正確地過濾掉90%的圖像,只留下10%的標簽供人類審查。如果該系統被成功攻擊,那么人機團隊就會失敗,分析員很快就會被新的工作量壓垮。
對抗性攻擊算法的核心是函數,即給定一個良性的輸入??,就會產生一個對抗性的???。許多攻擊可能需要樣本的真實標簽(??),或目標網絡或它的一些近似值,但它們仍然只是函數。因此,在給定的一組輸入變量的情況下,某種攻擊總是會輸出相同的AE。深度學習不是攻擊本身的一部分,這意味著在創建對抗性樣本時沒有涉及ML。這種生成AE的算法方法使我們考慮到強化學習(RL)領域,其中一個DNN "智能體"學習在特定環境中的最佳行為,同時追求一個特定的目標[7]。來自RL研究小組DeepMind的大量成功案例表明,RL能夠在各種游戲中實現超人類的表現[8]-[11]。最簡單的說法是,RL智能體通過觀察環境的模式進行學習,采取獲得某種獎勵的行動,然后觀察隨后的狀態。智能體試圖使其獲得的總獎勵最大化,最終學會了最佳的行為策略。
考慮到RL和對抗性樣本對DNN構成的威脅,我們提出了第一個研究問題:
1)如果圖像是環境,像素變化是可玩的行動,強化學習智能體能否學會生成最小擾動的對抗性樣本?
在所有研究對抗性攻擊的學術文獻中,有同樣多的文獻涉及對抗性防御: 一個新的攻擊被提出來,之后的某個時候會有一個反擊它的防御,而這個循環會重復下去。雖然最先進的防御手段可以抵御所有當前的攻擊,但不能保證防御手段能夠抵御未知的攻擊。如果一種攻擊可以適應任何防御,它將幫助研究人員和開發人員領先于未知的攻擊。考慮到攻擊的適應性,我們提出了第二個研究問題:
2)基于強化學習的對抗性攻擊能否成為一種適應性攻擊?
通過解決這兩個問題,我們首次將對抗性研究和強化學習這兩個領域融合在一起。
這項研究引入了第一個基于RL的對抗性攻擊。命名為對抗性強化學習智能體(ARLA),我們的攻擊使用良性樣本圖像作為學習環境來生成對抗性樣本,目標是找到與原始樣本的?2距離最短的對抗者。ARLA使用雙重深度Q-learning(DQL),在第2章中進行了解釋,并采用了改進的深度Q-網絡(DQN)智能體架構,在第2章和第3章中進行了詳細解釋。我們的結果提供了證據,證明ARLA是一種自適應的對抗性攻擊,對本論文中用于攻擊評估的所有五種模型都顯示出明顯的攻擊成功。雖然我們的結果很有希望,但還需要做更多的工作來穩定ARLA如何學習最佳行為政策。
我們研究的目的是為國防部提供一個有效的工具來評估武裝部門正在開發的DNN。與其他需要由技術專家對特定防御進行調整的適應性攻擊不同,基于RL的對抗性攻擊可能會以更大的難度和最少的培訓來利用。我們希望ARLA就是這樣一種攻擊,并成為在作為未來軍事系統一部分部署的人機團隊中建立機構信任的一個小而有價值的步驟。
合成孔徑雷達(SAR)圖像中基于人類的目標檢測是復雜的、技術性的、費力的、緩慢的,但時間很關鍵,是機器學習(ML)的完美應用。訓練一個用于目標檢測的ML網絡需要非常大的圖像數據集,這些數據集中嵌入了準確和精確標記的目標。不幸的是,不存在這樣的SAR數據集。因此,本文提出一種方法,通過結合兩個現有的數據集來合成寬視場(FOV)SAR圖像: SAMPLE,由真實和合成的單物體芯片組成,以及MSTAR雜波,由真實的寬視場SAR圖像組成。合成目標使用基于閾值的分割從SAMPLE中提取,然后再與MSTAR雜波中的斑塊進行α-混合。為了驗證新的合成方法,使用一個簡單的卷積神經網絡(CNN)創建了單個物體芯片并進行了分類;針對測量的SAMPLE子集進行測試。還開發了一種新穎的技術來研究深層的訓練活動。擬議的數據增強技術使測量的SAR圖像分類的準確性增加了17%。這一改進表明,來自分割和混合的任何殘余偽影都不會對ML產生負面影響,這對于未來在廣域SAR合成中的使用是很有希望的。
"在MSTAR數據收集期間拍攝的M1的EO圖像(a,c)和同一車輛的真實CAD模型(b,d)從兩個角度進行了比較。請注意,即使是小的細節,如火炮的位置、艙門和車輛側面的電纜,在兩張圖像之間也很一致。提供CAD模型的顏色是為了識別零件組裝,并不表示任何影響電磁模擬的具體屬性" [10]。
"SAMPLE數據集中每個飛行器的一個圖像的例子。測量的MSTAR圖像在最上面一行,相應的合成圖像在最下面一行....,我們看到諸如陰影、方向和相對回波幅度等細節都很一致"[10]。
隨著無人駕駛飛行器(UAVs),也被稱為無人機,變得容易獲得和負擔得起,這些設備的應用已經大大增加。其中一種應用是使用無人機飛越大面積區域并探測所需實體。例如,一群無人機可以探測海洋表面附近的海洋生物,并向用戶提供發現的動物的位置和類型。然而,即使無人機技術的成本降低,由于使用內置先進功能的定制硬件,這種應用的成本也很高。因此,本論文的重點是編制一個容易定制的、低成本的無人機設計,并配備必要的硬件,以實現自主行為、蜂群協調和機載物體探測能力。此外,本論文概述了必要的網絡結構,以處理無人機群的互連和帶寬要求。
無人機機載系統使用PixHawk 4飛行控制器來處理飛行機械,使用Raspberry Pi 4作為通用計算能力的配套計算機,并使用NVIDIA Jetson Nano開發套件來實時進行物體檢測。實施的網絡遵循802.11s標準,采用HWMP路由協議進行多跳通信。這種拓撲結構允許無人機通過網絡轉發數據包,大大擴展了蜂群的飛行范圍。我們的實驗表明,所選的硬件和實現的網絡可以在高達1000英尺的范圍內提供直接的點對點通信,通過信息轉發可以擴大范圍。該網絡還為帶寬密集型數據(如實時視頻流)提供了足夠的帶寬。預計飛行時間約為17分鐘,擬議的設計為中程空中監視應用提供了低成本的無人機群解決方案。
一個持久的、精確的和適應性強的安全應用是有效的部隊保護條件(FPCON)的必要組成部分,因為美國的軍事設施已經成為恐怖主義和暴力行為的常見目標。目前的軍事安全應用需要一種更加自動化的方法,因為它們嚴重依賴有限的人力和有限的資源。目前的研究開發了一個由嵌入式硬件組成的離網部署的聯合微調網絡,并評估了嵌入式硬件系統和模型性能。聯合微調采用集中預訓練的模型,并在一個聯邦學習架構中對選定的模型層進行微調。聯合微調模型的CPU負載平均減少65.95%,電流平均減少56.18%。MobileNetV2模型在網絡上傳輸的全局模型參數減少了81.59%。集中預訓練的MNIST模型開始訓練時,比隨機初始化的模型的初始準確率提高了53.94%。集中預訓練的MobileNetV2模型在第0輪訓練時表現出90.75%的初始平均準確率,在75輪聯合訓練后,整體性能提高了3.14%。目前的研究結果表明,聯合微調可以提高系統性能和模型精度,同時提供更強的隱私性和安全性,以抵御聯邦學習攻擊。
無人駕駛飛行器(UAV),即所謂的無人機的使用在過去十年中一直在迅速增長。今天,它們被用于,除其他外,監測任務和檢查人們難以進入的地方。為了有效和穩健地執行這些類型的任務,可以使用無人機群,即一組無人機在一起協調。然而,這對用于控制和導航的解決方案提出了新的要求。無人機群自主導航的兩個重要方面是編隊控制和避免碰撞。
為了管理這些問題,我們提出了四個不同的解決方案算法。其中兩個使用領導者-追隨者控制來保持隊形,使用人工勢場(APF)進行路徑規劃,使用控制障礙函數(CBF)/指數控制障礙函數(ECBF)來保證控制信號的安全性,即無人機保持理想的安全距離。另外兩個解決方案使用運動規劃問題的優化控制問題表述,以產生開環或閉環軌跡,并使用線性二次調節器(LQR)控制器進行軌跡跟蹤。軌跡在時間和隊形保持方面進行了優化。解決方案中使用了兩種不同的控制器。其中一個使用級聯PID控制,另一個使用級聯PID控制和LQR控制的組合。
作為測試我們解決方案的一種方式,我們創建了一個場景,可以顯示所提出的算法的效用。該場景由兩個無人機群組成,它們將在同一環境中執行不同的任務,其中無人機群將處于相互直接碰撞的狀態。實施的解決方案應保持理想的隊形,同時順利避免碰撞和僵局。測試是在真實的無人機上進行的,使用Bitcraze AB的開源飛行開發平臺Crazyflie 2.1。由此產生的軌跡在時間、路徑長度、編隊誤差、平穩性和安全性方面進行了評估。
獲得的結果表明,與使用APF+領導-追隨者+CBF/ECBF相比,從優化控制問題中生成的軌跡更出色。然而,最后提到的算法的一個主要優點是,決策是在每一個時間步驟中完成的,使這些解決方案對環境中的干擾和變化更加穩健。
最近小型無人駕駛飛行器(UAV)技術的進步重新激發了對民用和軍用廣域搜索(WAS)算法的額外研究需求。但由于無人機環境和設計的差異性極大,利用數字工程(DE)來減少推進這項技術所需的時間、成本和精力。數字工程還允許快速設計和評估利用和支持WAS算法的自主系統。現代WAS算法可以大致分為基于決策的算法、統計算法和人工智能(AI)/機器學習(ML)算法。這項研究繼續了Hatzinger和Gertsman的工作,創建了一個基于決策的算法,該算法將搜索區域細分為被稱為單元的子區域,決定一個最佳的下一個單元進行搜索,并將搜索結果分配給其他合作搜索資產。每個合作搜索資產將存儲以下四個關鍵數組,以決定搜索哪個單元:每個單元的當前估計目標密度;一個單元中的當前資產數量;每個合作資產的下一個搜索單元;以及任何資產在一個單元中的總時間。一個基于軟件的模擬環境,即模擬、集成和建模高級框架(AFSIM),被用來完成驗證過程,創建測試環境和被測系統(SUT)。此外,該算法針對各種分布的威脅進行了測試,以模擬目標的集群。最后,從人工智能和ML中引入了新的有效性措施(MOEs),包括精確度、召回率和F分數。使用方差分析(ANOVA)和協方差矩陣對Hatzinger和Gertsman的新的和原始的MOEs進行了分析。這項研究的結果顯示,該算法對原始MOEs或新MOEs沒有明顯的影響,這可能是由于與Hatzinger和Gertsman相比,網絡化協作自主彈藥(NCAM)的傳播情況相似。該結果與目標分布標準差的減少即目標聚類呈負相關。這第二個結果更令人驚訝,因為更緊密的目標分布可能會導致更少的搜索區域,但NCAM繼續分布它們的位置,而不管確定的集群。