一個持久的、精確的和適應性強的安全應用是有效的部隊保護條件(FPCON)的必要組成部分,因為美國的軍事設施已經成為恐怖主義和暴力行為的常見目標。目前的軍事安全應用需要一種更加自動化的方法,因為它們嚴重依賴有限的人力和有限的資源。目前的研究開發了一個由嵌入式硬件組成的離網部署的聯合微調網絡,并評估了嵌入式硬件系統和模型性能。聯合微調采用集中預訓練的模型,并在一個聯邦學習架構中對選定的模型層進行微調。聯合微調模型的CPU負載平均減少65.95%,電流平均減少56.18%。MobileNetV2模型在網絡上傳輸的全局模型參數減少了81.59%。集中預訓練的MNIST模型開始訓練時,比隨機初始化的模型的初始準確率提高了53.94%。集中預訓練的MobileNetV2模型在第0輪訓練時表現出90.75%的初始平均準確率,在75輪聯合訓練后,整體性能提高了3.14%。目前的研究結果表明,聯合微調可以提高系統性能和模型精度,同時提供更強的隱私性和安全性,以抵御聯邦學習攻擊。
盡管人們對聯邦學習和貝葉斯神經網絡進行了研究,但對貝葉斯網絡的聯邦學習的實現卻很少。在本論文中,使用公共代碼庫Flower開發了一個貝葉斯神經網絡的聯邦學習訓練環境。隨之而來的是對最先進的架構、殘差網絡和貝葉斯版本的探索。然后用獨立同分布(IID)數據集和從Dirichlet分布得到的非IID數據集測試這些架構。結果顯示,貝葉斯神經網絡的MC Dropout版本可以通過聯邦學習對CIFAR10數據集的IID分區取得最先進的結果--91%的準確性。當分區為非IID時,通過概率權重的反方差聚合的聯邦學習與它的確定性對應物一樣好,大約有83%的準確性。這表明貝葉斯神經網絡也可以進行聯邦學習并取得最先進的結果。
使用FL是一個在邊緣采用人工智能的機會,并減少收集大量數據集的需要。這將極大地幫助海軍在艦隊中部署和訓練AI模型的工作。例如,通過傳統的人工智能管道,為海軍創建一個人工智能模型將需要每個指揮部合作創建一個全球數據集,無論是被動聲納還是網絡流量分析、維護或人力資源。這是一項非常昂貴和耗時的任務,隨著新數據的出現,在完成時可能已經過時了。然而,FL提供了一種方法,讓每個指揮部在他們本地的、當前的數據上訓練和部署一個模型,并將他們的模型與另一個指揮部的人工智能模型匯總。由于只傳遞模型的權重而不是整個數據集,所以通信成本也是最小的。雖然FL提出了一種在邊緣部署和訓練人工智能模型的方法,但貝葉斯網絡是一種不僅能提供預測,而且能對其評估的不確定性進行估計的模型。士兵在不確定的環境中工作,知道部署的人工智能模型何時對其預測不確定,可以防止人工智能和戰士的過度自信。這一特點可以極大地幫助人工智能-士兵團隊以更高的效率水平運作。將FL的分布式和持續學習特性以及貝葉斯NN的不確定性這兩個方面結合起來,將是海軍在各種應用中的巨大優勢,如網絡流量分析、合成孔徑雷達或無人機圖像分析,或無源聲納分析。
為了證明這一點,開發了一個FL框架來比較貝葉斯NN和它們的確定性對應物,并在本論文中分析了它們的結果。本論文的主要貢獻是在一個已知的數據集CIFAR10[2]上對這個框架進行了基準測試,以比較結果。該數據集在FL研究中被充分研究[3]-[6]。使用的人工智能模型架構是殘差網絡(ResNet)[7]。它是一個最先進的神經網絡架構,為CIFAR10數據集設定了一個基線。這使得貝葉斯ResNets可以在集中式和FL設置中與原始的最先進結果進行比較。本論文打算回答的主要問題有以下幾個:
這項研究對攻擊者-防御者的蜂群交戰進行了權衡分析,以比較制約蜂群行為因素的相對效率,即目標算法和單個無人機參數。特別是,我們研究了為 "服務學院蜂群挑戰賽"(SASC)開發的算法,這是一項蜂群對蜂群交戰的實戰演習。我們用動態蜂群模擬進行了分析,允許蜂群組成和行為發生變化。這使我們能夠確認SASC中關于蜂群性能的定性結果。此外,使用比例分析方法進行定量權衡分析,并開發了評估防御性蜂群適應性的函數形式。我們的結果為后續研究更復雜的蜂群行為提供了一個框架。
無人機蜂群是由自主飛行器組成的群體,它們通過協調和溝通來實現目標[1]。無人機蜂群的規模可以根據蜂群的能力和后勤支持而任意擴大。在軍事上,大型蜂群對高價值單位(HVU)(如航空母艦)構成高風險,因為蜂群有能力壓倒現有的HVU點防御[2] 。
無人機蜂群的實戰能力在歷史上一直受到計算機處理、無人機與無人機之間的通信以及能量存儲密度的限制[3]。然而,這些領域的發展已經導致了蜂群的發展和可行性的提高。這導致無人機蜂群的風險急劇增加。大型蜂群已變得越來越有可能,中國早在2017年就測試了超過1000架無人機的蜂群[3]。使得無人機蜂群更加實用的技術改進預計將繼續下去。
對高價值單位來說,最大的無人機風險是空中無人機在利用機載炸藥執行自殺式任務。蜂群的目標是,通過數量,使HVU的防御達到飽和,并摧毀或使HVU失效。目前的HVU防御系統,如導彈或近距離武器系統,不足以對付大型無人機蜂群[2],也不經濟。這些旨在對付飛機和導彈的防御系統沒有能力對付無人機及其威脅狀況。蜂群的低成本和大規模使HVU有可能耗盡其有限的防御彈藥,而只能摧毀蜂群的一小部分[2]。在這種情況下,HVU將很容易受到蜂群殘余物或其他單位利用其疲憊的防御系統的攻擊。
HVU的戰略效用和經濟價值也會導致對手以整個無人機蜂群的代價從HVU的破壞中獲益。有能力的無人機可以以低至每架500,000美元的價格投入使用[2]。這個估計包括無人機、發射器和后勤支持的費用。因此,一個600架無人機蜂群,能夠削弱現有的HVU防御系統,將總共花費3億美元[2]。這與一艘航空母艦120億美元的成本相比更有優勢[4]。這種差距使得蜂群可以被用作力量倍增器,以盡量減少美國目前從昂貴的HVU中獲得的優勢[5]。
擬議的反無人機蜂群的方法包括激光和電磁武器以及無人機反集群。激光和電磁武器在技術上比現有的點狀防御系統更適合于反擊無人機蜂群,因為它們能夠耗費幾乎無限的射擊次數。然而,這兩種武器系統目前都沒有被廣泛使用。事實上,激光和電磁武器都面臨著巨大的技術困難,需要相當大的技術進步來提供可靠的反無人機防御[6]。
無人機反集群包括使用防御性無人機群來打擊進攻性的、敵對的無人機群。與進攻性無人機群相比,這種蜂群反制措施的研究相對較少。然而,與其他反制措施相比,防御性無人機群的優勢在于利用了刺激進攻性無人機群發展的相同技術進步。隨著進攻性無人機群的能力越來越強,防御性無人機群也是如此。事實上,防御性無人機群可能比進攻性無人機群更容易實施,因為防御性無人機群在受控空域的友軍中行動[7]。反蜂群還允許防御者破壞進攻型無人機群最重要的優勢,即其規模。防御性無人機群可以有足夠大的規模來減輕進攻性無人機群飽和防御的能力。
美海軍研究生院的研究人員以前的工作重點是將反集群作為一個最優控制問題進行研究[8]-[12]。此前的工作利用了基于潛力的模型、遠程武器和防御者集群戰略。本論文通過實施不同的蜂群合作規則和應用新的分析技術,在這些先前工作的基礎上進行研究。例如,以前的研究集中在遠程武器上,在這種情況下,攻擊蜂群是作為一個整體參與的。本論文著重于使用短程武器的模擬,其中防御者與單個攻擊者交戰。此外,本論文研究的是權衡分析,而不是優化,但這里描述的工具可以在未來的工作中與優化相結合。
發展防御性無人機群需要回答一系列問題。首先,防御型蜂群的最佳戰術是什么,以最好地對抗攻擊型蜂群?第二,什么樣的平臺規格,如速度或武器范圍,將是最有效的?第三,與這些平臺規格相關的成本或技術限制可能會影響到部署最佳蜂群的可行性?這三個分類問題包括許多其他問題。例如,給定一個算法和一套平臺規格,增加更多的機器人有什么好處?是否有一個點,在這個點上增加更多的無人機不再有好處?平臺規格的改進與增加無人機相比有何不同;例如,是速度翻倍還是無人機的數量更有利?
為了回答這些問題,任務規劃者和設計者必須對無人機群參數進行全面的權衡分析,以確定如何在最小化群組成本的同時最大限度地提高群組能力。對諸如蜂群行為、蜂群規模和單個無人機性能(包括其速度和武器射程)等因素進行徹底的提煉,可以使任務規劃人員能夠派出最能勝任、最經濟的無人機群來反制對手的蜂群。如果沒有這種分析,任務規劃者就有可能制造一個不足以擊敗進攻性蜂群的蜂群,從而使HVU處于危險之中。反之,任務規劃者也可能建立一個無人機群,它可以很好地擊敗進攻性機群,但卻是一種低效的資源分配。目前,適合執行這些規劃任務的分析工具很少。本論文的目標是開始填補這一知識空白。
計算機視覺中的一項挑戰性任務是尋找技術來提高用于處理移動空中平臺所獲圖像的機器學習(ML)模型的目標檢測和分類能力。目標的檢測和分類通常是通過應用有監督的ML技術完成的,這需要標記的訓練數據集。為這些訓練數據集收集圖像是昂貴而低效的。由于一般不可能從所有可能的仰角、太陽角、距離等方面收集圖像,這就導致了具有最小圖像多樣性的小型訓練數據集。為了提高在這些數據集上訓練的監督性ML模型的準確性,可以采用各種數據增強技術來增加其規模和多樣性。傳統的數據增強技術,如圖像的旋轉和變暗,在修改后的數據集中沒有提供新的實例或多樣性。生成對抗網絡(GAN)是一種ML數據增強技術,它可以從數據集中學習樣本的分布,并產生合成的復制,被稱為 "深度偽造"。這項研究探討了GAN增強的無人駕駛飛行器(UAV)訓練集是否能提高在所述數據上訓練的檢測模型的可推廣性。為了回答這個問題,我們用描述農村環境的航空圖像訓練集來訓練"你只看一次"(YOLOv4-Tiny)目標檢測模型。使用各種GAN架構重新創建幀中的突出目標,并將其放回原始幀中,然后將增強的幀附加到原始訓練集上。對航空圖像訓練集的GAN增強導致YOLOv4-微小目標檢測模型的平均平均精度(mAP)平均增加6.75%,最佳情況下增加15.76%。同樣,在交叉聯合(IoU)率方面,平均增加了4.13%,最佳情況下增加了9.60%。最后,產生了100.00%的真陽性(TP)、4.70%的假陽性(FP)和零的假陰性(FN)檢測率,為支持目標檢測模型訓練集的GAN增強提供了進一步證據。
對從移動平臺上獲得的數據進行圖像和視頻分類技術的調查,目前是計算機視覺領域中一個越來越受關注的領域。由空中飛行器收集的圖像對于收集信息和獲得對環境的洞察力非常重要,否則在地面上的評估是無法實現的。對于訓練目標檢測模型來說,用于創建這些模型的訓練集的一個重要特征是這些訓練集必須在其圖像中包含廣泛的細節多樣性。過去的數據增強技術,例如旋轉、添加噪音和翻轉圖像,被用來增加訓練集的多樣性,但由于它們無法向數據集添加任何新的圖像,所以是弱的方法。研究新的圖像增強和分類方法,其中包括機器學習(ML)技術,有助于提高用于航空圖像分類的模型的性能。
最近,使用ML算法對圖像進行分類或預測的情況越來越多。雖然ML已經被使用了幾十年,但在圖像上,我們看到合理的進展是在過去的20年里。隨著信息收集和存儲的技術進步及其可及性的擴大,可用于分析的數據量正以指數級的速度增長。計算機的隨機存取存儲器(RAM)和硬件存儲的增加迎合了擁有巨大的數據集來訓練、測試和驗證ML模型以實現較低的偏差和變異的需要。技術上的其他進步來自于計算機圖形處理單元(GPU)的改進,它允許以更快的速度處理大量的數據,這是實時圖像處理的兩個重要能力[2]。
人工神經網絡(ANNs)是ML的一個子集,其靈感來自于大腦中神經元的生物結構,旨在解決復雜的分類和回歸問題[3]。深度學習是ANNs的一個子集,它創建了多個相互連接的層,以努力提供更多的計算優勢[3]。卷積神經網絡(CNN)是ANN的一個子集,它允許自動提取特征并進行統一分類。一般來說,CNN和ANN需要有代表性的數據,以滿足操作上的需要,因此,由于現實世界中的變化,它們往往需要大量的數據。雖然在過去的十年中收集了大量的數據,但微不足道和不平衡的訓練數據集的問題仍然阻礙著ML模型的訓練,導致糟糕的、有偏見的分類和分析。相對較小的數據集導致了ML模型訓練中的過擬合或欠擬合。過度擬合的模型在訓練數據上顯示出良好的性能,但在模型訓練完成后,卻無法推廣到相關的真實世界數據。通過提供更大、更多樣化的訓練數據集,以及降低模型的復雜性和引入正則化,可以避免模型過擬合[4]。
過度擬合的模型不能學習訓練集的特征和模式,并對類似的真實世界數據做出不準確的預測。增加模型的復雜性可以減少欠擬合的影響。另一個克服模型欠擬合的方法是減少施加在模型上的約束數量[4]。有很多原因可以說明為什么大型、多樣的圖像集對訓練模型以檢測視頻幀中捕獲的目標很有用。當視頻取自移動平臺,如無人機或汽車時,存在Bang等人[5]所描述的進一步問題。首先,一天中拍攝圖像的時間以及天氣狀況都會影響亮度和陰影。其次,移動平臺收集的圖像有時會模糊和失真,這是因為所使用的相機類型以及它如何被移動平臺的推進系統投射的物理振動所影響。移動平臺的高度、太陽角度、觀察角度、云層和距離,以及目標的顏色/形狀等,都會進一步導致相機采集的樣本出現扭曲的影響。研究人員忽視這些參數的傾向性會導致模型在面對不同的操作數據時容易崩潰。這些因素使得我們有必要收集大量包含各種特征、圖像不規則性和扭曲的視頻幀,以復制在真實世界的圖像收集中發現的那些特征,從而訓練一個強大的目標檢測和分類模型。
為了增加圖像的多樣性,希望提高在數據上訓練的分類模型的結果準確性,可以使用數據增強技術來扭曲由無人駕駛飛行器(UAV)收集的圖像。目前的一些數據增強技術包括翻轉、旋轉或扭曲圖像的顏色。雖然這些增強技術可以在數據集中引入更多的多樣性,但它們無法為模型的訓練提供全新的框架實例。
生成性對抗網絡(GAN)是一種ML技術,它從數據集的概率分布和特征中學習,以生成數據集的新的合成實例,稱為 "深度假象"。GAN的實現是一種更強大的數據增強技術,因為它為訓練集增加了新的、從未見過的實例,這些實例仍然是可信的,并能代表原生群體。為ML模型提供這種新的訓練實例,可以使模型在實際操作環境中用于檢測時更加強大。
圖像采集面臨的一個普遍問題是沒有收集足夠大和多樣化的訓練和測試數據集來產生高效的ML模型。這些微不足道的訓練集所顯示的多樣性的缺乏,使模型在用于實時檢測時表現很差。找到增加這些數據集的方法,無論是通過額外的數據收集還是其他方法,對于創建一個強大的、可歸納的模型都很重要。
計算機視覺中的第二個問題是傳統的數據增強技術所產生的圖像多樣性增加不足。通過旋轉、翻轉或調暗每一個收集到的視頻幀來增強數據集,不能為訓練集增加任何額外的實例,這與上面提到的第一個問題相矛盾。需要找到一種新的數據增強技術,在不需要收集更多數據的情況下提供新的實例,這對于快速訓練檢測模型以便在快速變化的操作環境中部署非常重要。
本研究試圖回答以下問題:
1.由移動平臺獲取的包含GAN生成的合成圖像的增強圖像訓練數據集是否會提高卷積神經網絡(CNN)目標檢測模型的分類精度和可推廣性?
2.由移動平臺獲取的包含GAN生成的合成圖像的增強圖像訓練數據集是否會提高CNN目標檢測模型的定位和通用性?
3.從未增強的數據集和增強的數據集中可以得出什么推論,顯示它們的相似性和不相似性?
提供支持第一和第二個問題的證據可以改變數據科學家進行數據收集的方式,并將他們的努力轉向使用GAN的增強技術來創建用于ML研究的數據集。該模型不僅要能夠對目標進行分類,而且要訓練一個強大的目標檢測模型,使其能夠在圖像中找到感興趣的目標,并具有較高的交叉聯合(IoU)值,這就驗證了該模型能夠找到移動的目標,這些目標在捕獲的幀中的位置各不相同。一個模型的泛化是指該模型對網絡從未見過的輸入進行準確預測和分類的能力[6]。增強的數據集必須在質量和數量上與原始數據集相似,以證明模型泛化能力增強的斷言。
對最后一個問題的回答提供了理由,即來自GAN的增強對象在性質上是否與原始樣本相似,并且是對現實世界環境中發現的東西的合理復制。同類目標之間的高相似率可能會使GAN增強變得脆弱,需要進一步研究以用于實際應用。
本研究的最大限制之一是能否獲得適當的硬件和軟件來實現不同的ML算法。雖然ML模型可以在中央處理器(CPU)上執行,但本論文中的模型在單個CPU上運行需要幾天,甚至幾周的時間。在運行深度學習模型時,GPU的效率要高得多,尤其是那些為圖像探索設計的模型。在整個研究過程中,GPU的使用非常有限,這給CNN和GAN模型的復雜性增加了限制,也增加了每個模型完成訓練迭代的時間。模型不可能同時運行,大大增加了本論文的完成時間。
另一個限制是本研究過程中可用的內存和硬盤內存的數量。內存不足進一步導致了模型復雜性的下降,以及模型在研究的訓練和測試過程中某一時刻可以利用的數據量的下降。這兩個模型組成部分的減少會導致次優模型。在這項研究中,我們采取了一些措施來減輕這些影響,包括選擇參數較少但性能與較復雜的模型相同的高水平的模型。此外,在訓練和測試過程中,將數據集劃分為多個批次,有助于緩解RAM和硬盤內存問題。
本章討論了本論文將集中研究的ML的一般領域,以及概述了ML研究中出現的好處和限制。第2章提供了一個文獻回顧,研究了CNNs和GANs的理論。此外,它還提供了使用CNNs、GANs和從無人機收集的圖像幀進行的相關研究。第3章詳細介紹了數據集增強前后的CNN檢測模型的訓練過程。第4章提供了用于增強訓練集的合成目標的細節。第5章介紹了在原始和增強的訓練集上訓練的最佳模型的評估結果。第6章概述了在原始測試集訓練結束后進行的三個不同實驗的方法。第7章回顧了這三個不同實驗的結果。最后,第8章討論了從結果中得出的結論,以及對使用生成性對抗網絡(GANs)對移動平臺獲取的圖像進行數據增強領域的未來研究建議。
確保信息和武器系統免受網絡威脅是美國國防部及其盟國合作伙伴的一個重要目標。了解這些系統在現實操作條件下的端到端性能,包括網絡干擾,對于實現任務目標至關重要。在不利的操作條件下,識別和減輕操作性能的不足,可以為我們的防御能力提供重要價值,并直接拯救生命。
作為一個說明性的例子,我們考慮聯合全域指揮與控制(JADC2)系統。JADC2從根本上依靠通信和網絡來包含、提取和傳播時間敏感的、與任務相關的信息,以決定性地贏得對敵方部隊的勝利。未來的沖突很可能涉及到試圖破壞對JADC2通信和高度復雜的武器系統的可靠運行至關重要的信息系統。破壞已經是潛在對手部隊的一種能力,并將蔓延到與他們結盟的次要威脅。JADC2綜合網絡和動能戰場的復雜性要求訓練、分析、測試和評估部門充分考慮到網絡操作退化和/或利用網絡漏洞對整體任務結果的潛在影響。這促使人們對工具、技術和方法進行大量的持續研究和開發,以評估一般軍事系統,特別是作戰系統的網絡復原力。
戰斗系統之間的復雜性和相互依賴性以及它們之間的聯系使目前的彈性分析方法變得復雜。例如,假設故障是隨機的硬件故障,那么與網絡中的單點故障相關的風險可以通過冗余的組件來緩解。然而,一個未被緩解的網絡漏洞也可能導致冗余組件出現相同的故障。即使組件本身沒有漏洞,成功干擾數據交換時間的攻擊,例如通過加載數據總線,也可能導致作戰系統性能下降。同樣,通過延遲的、間歇性連接的、低帶寬的環境建立通信聯系,可能需要使用多跳來轉發信息,這增加了對中間人攻擊的敏感性。
還有一種情況是,武器系統的網絡漏洞不一定是任務漏洞,因為利用該漏洞可能會也可能不會影響實現任務目標所需的整體系統能力。為了保證任務免受網絡威脅,武器系統的網絡彈性必須在現實的戰術環境中進行評估,以便:
使用虛擬機(VM)的傳統網絡演習是網絡系統的最高保真表現,因為它們不僅虛擬了通信協議,還虛擬了操作系統和應用程序,因此,在這些模塊中發現了漏洞。因此,網絡范圍經常被用于網絡攻擊和防御評估和培訓。然而,虛擬機往往需要大量的硬件足跡來模擬大型網絡,并需要大量的時間和人力來配置特定實驗的范圍。這種類型的網絡范圍受到以下額外的限制:
在本文的其余部分,我們從以任務為中心的角度研究了使用網絡數字孿生體來提高軍事(戰斗)系統的網絡彈性。網絡數字孿生依靠高保真模擬和仿真來對物理系統進行建模,并在可移植性、可擴展性、對無線網絡和通信進行建模的能力以及支持整個產品開發周期的網絡分析方面提供好處。我們還提出了一組用例,說明數字孿生在不同系統的網絡彈性評估中發揮的作用。
我們認為,將基于虛擬機的網絡范圍與網絡數字孿生體相結合的網絡框架,可以為調查各種戰術系統的網絡復原力和脆弱性提供一個理想的平臺。
圖 3. 連接兵棋模擬器和網絡數字孿生。
圖 4. 使用網絡數字孿生進行網絡分析。
越來越多的信息以非結構化文本數據的形式在網上分享,尤其是在社交媒體上,這為補充傳統的網絡威脅情報來源提供了機會。由于這種大量的數據無法人工處理,我們探討了使用機器學習來協助分析的一些可能性。我們特別關注與命名的威脅者有關的信息的檢索。通過對現有的語言模型進行微調以完成特定的下游任務,基于偽自動注釋的數據,我們獲得了檢測和提取以前未見過的威脅行為者的模型。我們在不同的條件下進行了多次評估,其中一些評估結果表明,這些模型確實能夠產生在半自動分析環境下有用的結果。此外,我們認為這是一個將一般語言模型應用于特定領域任務的案例研究,并反思了一些更普遍的經驗教訓。
威脅情報是網絡防御的一個組成部分。對技術系統的記錄和監測是網絡威脅情報(CTI)的傳統來源。越來越多的信息在網上分享,尤其是在社交媒體上,為補充傳統來源提供了一個機會,以提高網絡環境中的態勢感知。要大規模地利用這些新來源,需要有能力以比任何分析家都要高得多的速度篩選大量的非結構化數據。因此,有必要進行半自動分析,將分析員的思維優勢與計算機的處理能力相結合。
自然語言處理(NLP)和機器學習(ML)的最新發展提供了強大和多功能的語言模型,這些模型代表了對語言的一般理解,通過大量的文本數據和計算能力獲得。這些模型可以在更小的數據量上進行微調,以學習一個特定的任務。在這項工作中,我們探索了將這種語言模型應用于CTI背景的可能性,特別是我們專注于自動識別文本中提到的(以前未見過的)網絡威脅者的任務。除了與CTI有關的這種能力的好處外,這也是一個將一般語言模型應用于利基和特定領域的任務的案例研究,對于這些任務,不能假定有預先存在的數據集和評估基準。
許多視頻分類應用需要訪問用戶的個人數據,從而對用戶的隱私構成入侵性安全風險。我們提出了一種基于卷積神經網絡的單幀方法視頻分類的隱私保護實現,該實現允許一方從視頻中推斷出標簽,而無需視頻所有者以非加密的方式向其他實體披露他們的視頻。類似地,我們的方法消除了分類器所有者以明文形式向外部實體透露其模型參數的要求。為此,我們將現有的用于私有圖像分類的安全多方計算(MPC)協議與用于無關單幀選擇和跨幀安全標簽聚合的新MPC協議相結合。結果是一個端到端的隱私保護視頻分類流程。我們在一個私人人類情感識別的應用評估了提出的解決方案。各種安全設置的結果,包括計算各方的誠實和不誠實的大多數配置,以及被動型和主動型對手,表明視頻可以以最先進的精確度分類,而且不會泄露敏感用戶信息。