亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要

越來越多的信息以非結構化文本數據的形式在網上分享,尤其是在社交媒體上,這為補充傳統的網絡威脅情報來源提供了機會。由于這種大量的數據無法人工處理,我們探討了使用機器學習來協助分析的一些可能性。我們特別關注與命名的威脅者有關的信息的檢索。通過對現有的語言模型進行微調以完成特定的下游任務,基于偽自動注釋的數據,我們獲得了檢測和提取以前未見過的威脅行為者的模型。我們在不同的條件下進行了多次評估,其中一些評估結果表明,這些模型確實能夠產生在半自動分析環境下有用的結果。此外,我們認為這是一個將一般語言模型應用于特定領域任務的案例研究,并反思了一些更普遍的經驗教訓。

引言

威脅情報是網絡防御的一個組成部分。對技術系統的記錄和監測是網絡威脅情報(CTI)的傳統來源。越來越多的信息在網上分享,尤其是在社交媒體上,為補充傳統來源提供了一個機會,以提高網絡環境中的態勢感知。要大規模地利用這些新來源,需要有能力以比任何分析家都要高得多的速度篩選大量的非結構化數據。因此,有必要進行半自動分析,將分析員的思維優勢與計算機的處理能力相結合。

自然語言處理(NLP)和機器學習(ML)的最新發展提供了強大和多功能的語言模型,這些模型代表了對語言的一般理解,通過大量的文本數據和計算能力獲得。這些模型可以在更小的數據量上進行微調,以學習一個特定的任務。在這項工作中,我們探索了將這種語言模型應用于CTI背景的可能性,特別是我們專注于自動識別文本中提到的(以前未見過的)網絡威脅者的任務。除了與CTI有關的這種能力的好處外,這也是一個將一般語言模型應用于利基和特定領域的任務的案例研究,對于這些任務,不能假定有預先存在的數據集和評估基準。

圖4-1:為人工評估機器學習模型而設計的儀表板。除其他外,它顯示了在不同閾值下被歸類為包含威脅行為者的推文的百分比(餅圖),以及在選定的時間間隔內,威脅行為者候選人的前十名名單。
付費5元查看完整內容

相關內容

論文(Paper)是專知網站核心資料文檔,包括全球頂級期刊、頂級會議論文,及全球頂尖高校博士碩士學位論文。重點關注中國計算機學會推薦的國際學術會議和期刊,CCF-A、B、C三類。通過人機協作方式,匯編、挖掘后呈現于專知網站。

摘要

為了能夠在一個日益脆弱的世界中捍衛自己的生活方式和價值觀,團結在北約框架內的西方民主國家必須有能力在必要時 "以機器速度作戰"。為此,國防領域的數字化不能只局限于后勤、維護、情報、監視和偵察,而必須同樣能夠實現負責任的武器交戰。以歐洲未來戰斗航空系統(FCAS)為重點,我們討論了基于人工智能的武器系統的道德統一系統工程的各個方面,這可能會在國際社會中找到更廣泛的同意[1]。在FCAS計劃中,這是自二戰以來歐洲最大的軍備努力,有人駕駛的噴氣式飛機是一個網絡系統的元素,無人駕駛的 "遠程載體 "保護飛行員并協助他們完成戰斗任務。鑒于正在進行的辯論,德國國防部長已經強調。"歐洲戰略自主的想法走得太遠了,如果它被認為意味著我們可以在沒有北約和美國的情況下保證歐洲的安全、穩定和繁榮。那是一種幻覺[2]"。在這個意義上,FCAS與北約的目標是一致的。

引言

"武器的殺傷力越大,影響越深遠,就越需要武器背后的人知道他們在做什么,"沃爾夫-馮-鮑迪辛將軍(1907-1993)說,他是1955年成立的二戰后德國聯邦國防軍的富有遠見的設計師(見圖1)。"如果沒有對道德領域的承諾,士兵就有可能成為一個單純的暴力功能者和管理者"。他深思熟慮地補充道。"如果僅僅從功能的角度來看,也就是說,如果要實現的目標在任何情況下都高于人,那么武裝部隊將成為一種危險[3]"。

弗朗西斯-培根(1561-1626)關于實現權力是所有知識的意義的聲明標志著現代項目的開始[4]。然而,自從人工智能(AI)在國防領域出現后,旨在造福人類的技術可能會反過來影響它。這種類型的工具性知識使現代危機像在聚光燈下一樣明顯。關于人的倫理知識,關于人的本質和目的,必須補充培根式的知識。有一種 "人的生態學",一位德國教皇提醒德國議員說。"他不制造自己;他要對自己和他人負責[5]"。因此,任何符合倫理的工程必須是以人類為中心的。這對于國防領域的人工智能來說是最迫切的。因此,數字倫理和相應的精神和道德是必不可少的技能,要與卓越的技術同時系統地建立起來。因此,領導哲學和個性發展計劃應鼓勵設計和使用基于人工智能的防御系統的道德能力。

北約STO的科技界如何在技術上支持負責任地使用我們從人工智能中收獲的巨大力量?為了更具體地論證,讓我們以德國聯邦國防軍的文件為指導,從它在20世紀50年代成立的時候,也就是人工智能這個詞真正被創造出來的時候,到最近的聲明。由于這些武裝部隊已經從暴政和以當時高科技為特征的 "全面戰爭 "中吸取了教訓,他們似乎在概念上已經為掌握數字挑戰做了準備。這一點更是如此,因為聯邦國防軍是一支載于《德國基本法》的議會軍隊,它完全按照聯邦議院的具體授權行事,即以德國人民的名義行事。

國防領域的人工智能旨在將軍事決策者從常規或大規模任務中解脫出來,并 "馴服 "復雜性,讓他們做只有個人才能做的事情,即智能地感知情況并負責任地采取行動。自動化對聯邦國防軍的重要性很早就被認識到了。馮-鮑迪辛在1957年提出:"然后,人類的智慧和人力將再次能夠被部署到適合人類的領域"[6]。從這個角度來看,武裝部隊作為基于人工智能的系統的使用者,并沒有面臨根本性的新挑戰,因為技術的發展一直在擴大感知和行動的范圍。

圖1:"最高度機械化的戰斗需要[......]讓士兵意識到他們的責任,讓他們體驗到他們的行為和不行為的后果。"沃爾夫-馮-鮑迪辛(1954)? 聯邦國防軍
付費5元查看完整內容

摘要

最近,利用深度神經網絡進行生成性建模的進展使得制造數字媒體比以往任何時候都更容易,可以用來促進宣傳和虛假信息在互聯網上的傳播。因此,對社交媒體的情報收集變得越來越重要。在本文中,我們評估了檢測自動生成并上傳到Twitter的圖像和文本的方法。我們的研究結果表明,盡管這些檢測器在某些條件下能夠達到很高的精度,并且確實有潛力幫助情報分析員開展工作,但要建立足夠可靠的綜合檢測系統,以便在野外部署,仍然是一個挑戰。

引言和前期工作

隨著大規模的網絡影響行動變得越來越復雜,能夠核實網上信息的可信度也變得越來越困難。生成式建模的進步使得對手有可能生成大量被認為是真實的數字媒體。例如,公開的人工智能工具[1, 2]可以被利用來建立看起來像真的社交媒體資料的機器人網絡,其中用戶資料內容(如個人資料圖片[3])和打算傳播的信息(如虛假信息的推文)都是自動生成的。因此,開發能夠檢測生成的媒體的工具非常重要;不僅要對其采取行動,而且要研究將檢測器納入用于情報收集的系統的可能性,作為提高態勢感知的一個步驟。從大量的非結構化網絡數據中自動提取感興趣的信息的能力最終可能有助于簡化情報分析員和決策者的工作流程。

先前的工作表明,基于神經的檢測器可以在生成模型為防御者所知的受控環境中可靠地檢測生成的媒體[4, 5, 6, 7, 8]。然而,在野外未知來源的數據上評估檢測器的工作很有限。由于檢測器對后處理和模型變化的脆性是眾所周知的[4, 5, 6, 9],它們是否足夠可靠以用于現實世界的系統還不明顯。有鑒于此,我們在Twitter數據上評估了最先進的檢測器,這些數據包括個人資料圖片和推文的文本。我們訓練XceptionNet[10]來檢測用生成對抗網絡(GANs)合成的人臉圖像,并微調基于變換器的語言模型RoBERTa[11]來檢測用語言模型生成的文本。我們的實驗與我們的原型密切相關,它可以用來進行分析和提取感興趣的信息,而不需要終端用戶有深厚的技術知識。

圖2-1: XceptionNet圖像檢測器的訓練。當從訓練數據集中獲得標記的樣本時,該檢測器學會了區分真實和生成的人臉圖像。在實踐中,該檢測器作為一個分類器工作,為每個輸入樣本輸出一個標簽(真實或生成)
付費5元查看完整內容

摘要

混合戰爭為沖突推波助瀾,以削弱對手的實力。相關的行動既發生在物理世界,也發生在媒體空間(通常被稱為 "信息空間")。防御混合戰爭需要全面的態勢感知,這需要在兩個領域,即物理和媒體領域的情報。為此,開源情報(OSInt)的任務是分析來自媒體空間的公開信息。由于媒體空間非常大且不斷增長,OSInt需要技術支持。在本文中,我們將描述對物理世界的事件以及媒體事件的自動檢測和提取。我們將討論不同類型的事件表征如何相互關聯,以及事件表征的網絡如何促進情景意識

引言

開源情報(OSInt)的任務是探索和分析可公開獲取的媒體空間,以收集有關(潛在)沖突的信息,以及其他主題。所謂 "媒體空間",我們指的是通過傳統媒體(如電視、廣播和報紙)以及社交媒體(包括各種網絡博客)傳播的非常龐大、快速且持續增長的多語種文本、圖像、視頻和音頻數據語料庫。社會媒體大多是平臺綁定的。平臺包括YouTube、Twitter、Facebook、Instagram和其他[1,2]。在很大程度上,媒體空間可以通過互聯網訪問。很多部分是對公眾開放的。然而,也存在一些半開放的區域,其中有潛在的有價值的信息,但并不打算讓所有人都能接觸到,例如Telegram和Facebook頁面。

媒體空間提供關于物理世界的信息:發生了什么?哪些事件目前正在進行?未來計劃或預測會發生什么?它對物理世界的事件反應非常快,也就是說,幾乎是立即提供信息[3]。因此,媒體空間似乎是物理世界中事件的一個有希望的 "傳感器"。然而,從鋪天蓋地的大量信息中檢索出特別相關的信息仍然是一個挑戰,因為到目前為止,所提供的大多數信息是完全不相關的,至少對軍隊來說是如此。此外,媒體空間并不一致--它包括真實和虛假信息,因此,事實核查是一個進一步的挑戰。

除了作為物理世界的傳感器,媒體空間還是意識形態、意見和價值觀的論壇。它是一個重要的空間,用于協商一個社會認為是允許的、規定的或禁止的東西,并用于表現情緒和偏見。因此,它已成為混合戰爭的戰場,即以 "通過暴力、控制、顛覆、操縱和傳播(錯誤的)信息"([4],第2頁)為目的進行的行動。(錯誤的)信息行動導致我們稱之為 "媒體事件"。媒體事件可以被觸發,以影響情緒、意識形態和公眾對物質世界的看法。

可能的圖表實例
付費5元查看完整內容

摘要

越來越多的網絡安全專家、公司和業余愛好者形成了一個社區,他們傾向于公開分享他們從惡意軟件和攻擊分析中獲得的關于網絡威脅的知識。在網絡安全方面,這種類型的知識通常被稱為網絡威脅情報(CTI)。不幸的是,它通常以自然語言文本的形式提供,例如博客文章或PDF報告。為了使其可用于自動化安全措施或信息共享平臺,必須將其轉換為機器可讀的格式,最好是通過一個基本自動化的過程。已經發表了不同的方法來解決這個問題。然而,它們都不是真正面向用戶的,這在CTI領域是至關重要的,因為信息對情報狀態的宣告在很大程度上取決于它在具體行動中的應用。考慮到這一差距,我們提供了一個基于理論的問題模型,它反映了由個別情報定義所產生的特定領域的用戶需求。然后,我們使用這個模型來實現一個技術解決方案,利用一套強有力的定制技術,以及用戶友好的界面進行直接互動。

應用于2000份自然語言威脅報告,我們的示范性實施方案提供了超過150,000個CTI對象和關系,包含33,389個獨特的破壞性指標(IoCs)。我們的解決方案的總召回率被測量為0.81,而精度為0.93。這些結果顯示了隱藏在前面提到的公開來源中的巨大潛力,并證明有自動化的措施可以可靠地發現它,并使它可以被計算機輔助措施所利用。

引言

越來越多的設備和關鍵基礎設施的全球聯網為敵對國家或APT集團提供了大量的可能性,通過網絡攻擊損害經濟、社會和政治。然而,與此同時,IT安全專家越來越多地使用類似的技術來應對這些威脅。一個由專家、公司和個人組成的日益壯大的社區已經出現,他們專門報告網絡威脅,提供惡意軟件的分析結果,并討論有關攻擊和攻擊者的趨勢和預測。這些信息通常被稱為網絡威脅情報(CTI),對網絡安全分析師和安全運營中心(SOCs)來說是非常有趣的。然而,由于這些來源的大量信息是以自然語言文本的形式提供的,專家們必須花大力氣提取相關信息,使其可用于自動安全解決方案、可視化工具或標準化的共享平臺。快速增長的數據量與持續短缺的熟練分析師相結合(例如在[1]和[2]中提到的),使得這項工作越來越難。

在本文中,我們提出了一種廣泛支持人工分析過程的方法,使用信息提取(IE)的概念以及自然語言處理(NLP)領域的技術。為了保證密切關注網絡安全分析的實際情況,我們首先對該領域的一些基本要求進行了展望。在接下來的步驟中,我們從IE話語的角度描述問題,并推導出一個問題模型。由于CTI的領域非常具體,所以要提取的實體類型也基本上是具體的。我們將展示,這種對問題的看法是如何通過使用各種定制的NLP技術來高精度地解決所產生的子問題的。我們對從自然語言文本中提取CTI的科學和技術討論的貢獻如下:

  • C1:基于信息提取(IE)的概念,為CTI的提取提供一個抽象的問題模型,該模型對具體用戶環境的具體要求是開放的。
  • C2:將用戶需求和知識整合到CTI提取過程中。
  • C3:按照所提供的問題模型實施和評估一個解決方案,以提取各種各樣的CTI實體。

論文組織:在第2節中,我們對本文范圍內的研究進行了概述,以便在科學和技術論述中對其進行定位,并將我們的方法與現有的解決方案進行區分。第3節記錄了我們的CTI提取問題的模型,第4節介紹了該方法的實施。第5節對所產生的解決方案進行了評估,并在第6節進行了討論。在最后一節中,我們得出了結論。

圖1:提取CTI的問題模型
付費5元查看完整內容

摘要

有效的項目管理有賴于對風險的細致和精確的量化。根據Kaplan和Garrick(1981)的說法,風險是概率和影響。然而,影響往往是多維的,包括進度維度、安全維度、財務維度或技術維度等。本文打算介紹利用統計科學將多個風險維度合并為一個數值。在美國國家航空航天局(NASA)的許多項目中都使用了一種叫做MRISK的多維風險工具來評估和確定風險和緩解措施的優先次序。此外,本文將總結北約盟軍司令部轉型(ACT)目前的風險管理準則,并將告知北約ACT在風險評估和管理方面可以從統計科學中獲益的潛在方式。

MRISK工具是由博思艾倫咨詢公司在NASA蘭利研究中心開發的。我曾作為MRISK的開發者,通過這篇論文,我旨在提高對定量風險評估的認識,并介紹其在北約ACT的潛在應用。博思艾倫咨詢公司撰寫的MRISK原始論文是美國國家航空航天局的專利,并存放在美國國家航空航天局科學和技術信息(STI)庫中。本文所表達的觀點僅代表我個人,不代表我以前或現在的雇主的觀點或意見。

引言

所有的項目,無論其組織、復雜性、時間框架或目標如何,都會有風險。項目管理協會將風險定義為 "一個不確定的事件或條件,如果它發生,會對一個或多個目標產生積極或消極影響"。一個積極的風險被認為是一個機會,而一個消極的風險被認為是一個威脅。大多數情況下,風險管理意味著威脅管理。鑒于,不可能避免項目威脅,有效的項目管理必須包括成功管理它的方法。特別是考慮到減輕風險的缺陷最終會給聯盟帶來大量的資金,以及戰爭能力發展和進展的潛在滯后,它被證明是項目管理的一個重要組成部分。

風險管理包括風險識別、風險評估和風險應對。風險評估階段的目標是定性和/或定量地評估風險的概率和影響。傳統上,風險評估是定性進行的,這意味著它依賴于對單個風險的概率和影響的判斷。判斷可以基于過去的經驗、可比較的項目、或項目主題領域的專業知識。以這種方式進行的風險評估可以由一個人完成,也可以在一個有不同利益相關者和專家的團隊環境中完成。然而,僅僅是定性的風險評估并不總是充分的。

如果風險評估的主要目的是對風險進行優先排序,以確定哪些風險需要進一步研究和應對,那么定性評估就可能是足夠的。相反,如果風險評估需要高度的精確性和更多的結論性評價,那么定量評估與定性評估一起進行將對項目有益。

付費5元查看完整內容

摘要

在使用模擬的訓練過程中,所有信息都會被記錄下來,用于回放、可視化和詳細分析。經典的事后審查 (AAR) 工具提供了許多功能來放大特定時刻或對受訓者的選擇提供一般反饋。培訓師一般使用的素材是分數、視頻和截圖,需要自己手動豐富。

STRATEGIC研究項目提出了基于人工智能和建模與仿真的創新自動化分析工具。我們的工作側重于三個戰略支柱:

  • 使用圖模型對事件因果關系的敘述性重構。這有助于了解學員選擇的后果,并突出課程中的關鍵事件,從而促進匯報會議期間的溝通。
  • 自動生成豐富的作戰圖表,提供戰術形勢及其歷史的智能綜合:局部軍力比例、戰術路線、任務的主要影響、上下文單位的能力……
  • 用于探索替代解決方案的交互式圖片

早期的結果非常有希望,以至于法國陸軍訂購了許多智能圖表;不僅用于3A和培訓課程的監督,還用于情報評估。將來它還可以用作總部的決策支持和警報系統。

付費5元查看完整內容

摘要

北約正在進行一項名為聯邦任務網絡(FMN)的重大舉措,旨在在北約成員國和伙伴國家之間建立一個共同的技術和培訓基礎,以便在聯盟行動需要時,他們的部隊能夠對關鍵信息系統進行互操作。FMN不是網絡;它是一套互操作的標準和實踐。作者正在領導MSG-193專家團隊的工作,該團隊一直致力于支持在FMN中納入適當的建模和仿真 (M&S) 標準和實踐。本文總結了FMN規范是如何制定的,包括MSG-193作為“M&S辛迪加”在過程中的作用。然后,該論文強調了NMSG的科學技術與FMN支持的軍事行動之間的文化差距,以及如何有效彌合這種差距。FMN開發的第5和第6螺旋(階段)將是建模和仿真的主要重點,包括任務演練、培訓和決策支持。本文最后總結了當前針對這些螺旋的建議中的M&S技術。

付費5元查看完整內容

摘要

北約和各國迫切需要進行團結和聯合集體訓練,以確保任務準備就緒:目前和未來的行動是多國性質的,任務和系統慢慢變得更加復雜,需要詳細準備和迅速適應不斷變化的情況。由于可用資源少、訓練范圍有限、避免對手關注第五代戰術和系統能力的挑戰以及政治決策和部署之間準備時間有限,多國背景下的現場訓練和任務準備的機會減少了。模擬已經成為解決我們軍隊訓練需求的重要工具,各國正朝著通過分布式模擬(MTDS)能力采用國家任務訓練的方向發展。聯合部隊正在尋找實況和模擬訓練與演習之間的新平衡,以提供兩全其美的效果。

北約建模和仿真組(NMSG)的若干倡議為北約MTDS愿景和行動概念的發展貢獻了寶貴的投入(MSG-106 NETN, MSG-128 MTDS, MSG-169 LVC-T)。基于這些結果,當前/最近的NMSG活動(MSG-163北約標準演變、MSG-165 MTDS- ii、MSG-180 LVC-T)致力于為聯合和聯合作戰開發一個通用MTDS參考體系結構(MTDS RA)。最近完成的MTDS RA版本以構建模塊、互操作性標準和模式的形式定義了指導方針,用于實現和執行分布式模擬支持的綜合集體訓練和演習,獨立于應用領域(陸地、空中、海上)。此外,MSG-164 (M&S作為服務II)開發了一種技術參考體系結構(MSaaS TRA),其中包含用于實現所謂MSaaS能力的構建塊。這些構建模塊可以與MTDS RA相結合,以包括作為服務執行綜合集體訓練和演習的指導方針。

MTDS RA的當前版本提供了一個基線,以詳細說明和確定應進行進一步需求/技術開發的領域。未來更新的主題包括網絡作戰和影響、危機管理、實時系統集成、多域或混合作戰等。

聯合MTDS對北約和國家戰備至關重要。本文提供了MTDS RA的背景、目標和原則,以及實現持久的北約范圍內綜合性集體訓練能力的前進方向。聯合MTDS RA的維護和繼續發展將是幾個北約國家、伙伴國家和組織在NMSG主持下的合作努力。

付費5元查看完整內容

摘要

這項工作的目的是深入了解人工智能 (AI) 工具以及如何將它們應用于空中目標威脅評估。人工智能工具是包含人工智能元素的軟件產品。關于人工智能有多種不同的思想流派,并且可以在同一個工具中使用不同的方法。許多現代人工智能方法都涉及機器學習 (ML)。本參考文檔將涵蓋不同類型的 AI 和 ML 以及如何將它們應用于威脅評估。這項工作將介紹所有 ML 模型共有的元素,例如數據收集、數據準備和數據清理。該報告還將討論選擇適合不同問題的最佳人工智能類型

此外,這項工作將描述處理缺失數據或數據不確定性的方法。將提出實用的解決方案,包括通過數據插補填充缺失數據或修改人工智能工具的架構

最后,該報告將檢查人工智能工具的輸出與現有基礎設施的集成。將結合威脅評估過程及其可以改進的元素來描述 AI 工具。還將討論 AI 工具系統的通用架構

國防與安全的意義

威脅評估對于維護國家安全利益和維護各國主權具有重要意義。空中威脅評估對于一個有大片國土需要保護的國家(例如加拿大)很有價值。人工智能和機器學習都可以應用于威脅評估的研究領域。通過學習構建人工智能驅動的工具,加拿大的國防和安全將通過獲得持續的前沿研究得到改善。無論哪個國家開發出最有效和最可靠的威脅評估工具,在決策和威脅反應方面都將獲得優勢。通過利用前面提到的快速擴張的領域,加拿大可以獲得決定性的優勢

1 簡介

評估所有領域(如空中、網絡、陸地、海洋、太空)的威脅是維護任何國家安全的一個重要方面。威脅分析包括查看敵人過去、現在和預期的行動,以及這些行動對友軍資產或單位的影響。威脅評估還考慮了為減少、避免或消除風險而可能采取的任何防御措施[1]。在防空的背景下,空中目標威脅評估的任務需要識別、確定空中目標和優先排序,并管理任何必要的資源以應對威脅[2,3]。

當前的空中目標威脅評估任務由操作室中的一組高技能和經驗豐富的人員執行[3,4]。該任務涉及考慮先驗信息(例如,情報報告和評估標準)和獲取的信息(例如,從傳感器系統動態收集的運動學信息),以確定目標對某個感興趣點/區域(POI/AOI)。此信息(運動學和非運動學)稱為提示。這些信息的心理整合需要相當水平的戰術專業知識,包括有關威脅類型、軍事條令和基于經驗的評估啟發式的知識[4]。人工智能(AI)將允許根據防空作戰員(ADO)可用的線索以及他們的威脅評估決策[5]或專業知識來創建工具。

本報告全面概述了AI工具及其構建。這些方法是尖端的并且非常有效。本報告將清晰地展示人工智能工具的開發方式。它將展示哪些組件是必要的,如何獲取數據并使其對機器學習(ML)模型有用,以及AI工具如何與更廣泛的威脅評估環境進行交互

2 人工智能

本節將介紹人工智能的概念和許多現代人工智能算法。它將包含有關AI和ML主要主題的背景知識。它還將描述AI工具中經常出現的組件。

2.1 概述

從一個非常廣泛的角度來看,人工智能是人工系統“執行與智能生物相關的任務”的能力[6]。然而,這是一個非常寬泛的術語,涵蓋了許多系統。例如,它不區分人工智能系統、智能系統和自動化系統。關于什么構成人工智能,文獻和文化中有許多定義。本報告中使用的“人工智能系統”的定義是文獻和文化中各種來源的觀點的結合。

人工智能系統是一種具有以下能力的人工系統:

1.執行“有趣的”[7]任務,這些任務“通常與智能生物相關”[6]

2.“自學成才”[7,8]

早期的AI開發人員研究的問題在智力上對我們來說很困難,但對計算機來說卻相對簡單。這些問題可以用一組形式和數學規則來描述[9]。例如,國際象棋游戲由一組有限且嚴格的規則定義,這些規則可以編程到人工智能中。然而,人工智能很難處理使用人類直覺而不是使用一組正式的規則來處理的任務,例如圖像識別。人工智能的一種方法是基于知識的方法,它涉及嘗試設計形式語言和手工制作的邏輯推理規則,以使機器能夠推理和解決問題。另一種方法是讓計算機從經驗中收集知識,而不是讓人類對程序的行為進行硬編碼。

機器學習是通過從數據中發現模式來獲取知識的能力。因此,這些數據的表示會顯著影響機器學習算法的性能。換句話說,提供給機器的信息(即特征)會影響它解決問題的能力。然而,手工設計的特征受到人類知識的限制。讓機器發現哪種表示最好稱為表示學習。學習到的表示通常比手工設計的表現要好得多。本報告在2.3小節中探討了人工智能的機器學習方法。

2.2 AI 工具的組成部分

AI 工具的最終目標是通過減少操作員的認知和體力工作量來改善操作員的決策過程。為此,人工智能工具通過提供協作環境來補充操作員的角色。人工智能工具處理可用信息,從數據中獲得洞察力,并以有利于操作員體驗的方式呈現信息和洞察力。圖1顯示了AI工具流程的概覽。該模型基于[3]中提出的決策支持系統(DSS)架構。

1.操作員是與工具交互和監控工具、根據工具輸出做出決策并根據這些決策向相關個人報告的人。輸入工具的信息可以是靜態的或動態的。靜態信息(例如配置文件和靜態操作員首選項)在操作期間不會更改。動態信息,例如數據輸入和設備操作,在整個操作過程中不一定保持不變[3]。將操作員與咨詢能力聯系起來的箭頭強調了該工具的協作方面。

2.咨詢能力負責管理操作員和系統之間的交互。這包括管理操作員輸入(即靜態和動態信息),管理環境輸入(例如,約束和環境信息),促進操作員交互(例如,人機交互,人機界面)和顯示信息。要顯示的關鍵信息包括算法的結果和當前的操作限制。

3.領域知識由用于評估的規則和關系組成。例如,領域知識可能包括操作員對信息變化影響的意見。

4.算法組負責處理數據和執行評估或預測任務。可以考慮許多不同的算法和功能來實現算法組。該組將提供應用程序中的大部分AI功能,并且可以選擇或組合不同的AI或ML應用程序。

5.環境為人工智能工具提供操作約束。更具體地說,環境由檢測和測量目標的傳感器系統以及來自更高級別個人的任務概覽和命令組成。

雖然[3]對圖1中的大多數組件進行了詳細解釋,重點是咨詢能力部分,但本報告側重于架構的算法部分。

圖1:操作員、環境和人工智能工具的交互

上面介紹的AI工具被認為是基于第 2.1 節中介紹的定義的AI系統。評估的復雜性和重要性使其成為一項不容易解決的任務。人工智能工具的學習和適應方面可以通過機器學習方法來完成,這將在2.3小節中進行描述。

2.3 AI 中的機器學習

本節將討論機器學習和人工智能的結合。有許多不同類型的AI算法,ML是這些算法的一個子集。本節將描述使用ML從數據中學習的算法類型,以及這對AI工具有何用處。作者還在他們之前的工作中定義了機器學習中的許多基本概念[5]。

2.3.1 概述

根據柯林斯詞典,機器是“使用電力或發動機來完成特定工作的設備”[10]。在機器學習的背景下,機器就是計算機。更具體地說,是計算機中的程序完成了這項工作。正如[11]中所定義的那樣,“如果計算機程序在T中的任務(由P衡量)上的性能隨著經驗E提高,則可以說計算機程序從經驗E中學習某類任務T和性能度量P。”這個定義提出了機器學習問題的三個主要組成部分:任務T、性能度量P和經驗E。

1.任務是要解決的問題。例如,分類任務涉及確定某個輸入屬于哪個類別(例如,對象分類)。其他任務示例是回歸(例如,成本預測)、異常檢測(例如,欺詐檢測)和去噪(例如,信號處理)。

2.性能度量是用于評估ML算法性能的指標。例如,準確度是一種可用于分類任務的性能度量。準確率是模型正確分類的示例的分數。“示例”被定義為特征的集合,通常表示為向量,其中n為特征個數,每個元素為一個特征[9]。數據集是一組例子的集合。

3.經驗是指模型在學習過程中所接受的訓練類型。在無監督學習中,模型所體驗的數據集僅包含特征,并且由模型來學習數據的特征。例如,學習描述數據的概率分布可能很有用。聚類也可以使用無監督學習算法來執行。在監督學習中,模型體驗的數據集不僅包含特征,還包含與每個示例相關聯的標簽。無監督學習模型觀察幾個例子,而監督學習模型觀察幾個例子及其標簽。但是,在某些情況下,有監督和無監督之間沒有明確的區別。例如,半監督學習涉及從包含標記和未標記數據的數據集中學習。在強化學習中,模型不是從固定的數據集中體驗,而是模型與環境交互并從交互中學習。

為了了解模型在處理現實世界中的新數據時的表現如何,通常會分離出一部分數據集,以便僅在完成所有訓練后才能使用。這被稱為測試集,由于模型之前沒有看到測試集中的數據,因此測試集上的性能可以作為模型真實性能的指標。文獻提供了機器學習算法和模型的許多不同分類(例如,[12]提出了機器學習的五種范式:連接主義(例如,神經網絡、象征主義、進化論、貝葉斯和類比)。本報告并不是對機器學習中在空中目標威脅評估領域有用的不同方法的詳盡回顧。本報告重點關注三類特定的方法:監督機器學習、無監督機器學習和強化學習。

2.3.2 監督學習

在監督機器學習中,可以使用一組標記的訓練示例(即訓練集)。該模型的目標是能夠為示例分配正確的標簽,其中正確的標簽是與特定示例對應的標簽。通過基于一組標記的訓練數據最小化某個損失函數來調整模型。具體來說,迭代調整模型的參數,以減少訓練誤差。

1.模型:模型是根據樣本特征輸出標簽的算法。

2.參數:模型的參數根據選擇的模型而有所不同。例如,在神經網絡中,參數包括神經元的權重和偏差。

3.誤差:也稱為損失,誤差用于衡量模型的執行情況。可以針對特定應用設計和修改損失函數。

4.迭代調整:在訓練過程中,采用一定的方案來改變每次迭代的參數。具體來說,迭代調整模型的參數,以減少訓練誤差。一個例子是普通梯度下降法[13]:

其中θ是模型的參數,α是學習率(決定每次迭代調整多少參數的超參數),J(θ) 是模型在整個訓練集上的損失函數, 是相對于θ的梯度。可以使用各種修改來改進普通梯度下降算法,例如動量[13]。這種改進產生的算法包括Adagrad[14]和Adam[15]。

2.3.3 無監督學習

由于機器學習,許多研究和應用領域都取得了許多成功。圖像理解(例如,檢測[16]、分類[17])和自動化物理系統(例如,自動駕駛汽車[18])只是成功的兩個例子。這些成功的很大一部分歸功于監督學習和強化學習的使用。然而,這兩種范式都僅限于人類輸入和經驗:監督學習的訓練信號是目標標簽,而在強化學習中,信號是期望行為的獎勵[19]。使用人類設計的標簽和獎勵的一個弱點是由于訓練信號的稀疏性而導致的信息丟失。例如,盡管用于訓練監督學習和強化學習模型的數據通常具有豐富的特征(例如,圖像),但目標和獎勵通常非常稀疏(例如,表示圖片標簽的單個向量)[19]。無監督學習的動機是更好地利用可用數據來更好地理解數據。因此,無監督學習范式“旨在通過獎勵智能體(即計算機程序)來創建自主智能,以學習他們在不考慮特定任務的情況下觀察到的數據。換句話說,智能體“為了學習而學習”[19]。無監督學習算法的強大之處在于它能夠發現標簽無法完全表達的數據的潛在模式和結構。

2.3.4 強化學習

強化學習(RL)的思想是學習采取什么行動來獲得最大的回報。這種范式背后的一個共同動機是智能體與環境之間的交互(圖2)。根據對環境的觀察,智能體執行影響環境的動作。作為響應,會生成新的觀察結果,并且智能體會收到獎勵或懲罰。

圖 2:智能體-環境交互

RL的兩個重要區別特征是試錯搜索和延遲獎勵。與程序員指定輸出應該是什么的監督學習不同,RL智能體必須進行實驗以發現導致最高獎勵的動作。此外,行動可能會產生長期影響。因此,較早采取的行動可能會導致稍后的獎勵或懲罰。

在監督學習中,該模型嘗試從訓練示例中學習以泛化并在新示例上表現良好。雖然功能強大,但在處理涉及交互的問題時,監督學習是不夠的。例如,在未知環境中學習時,獲得包含代表智能體在所有可能情況下應采取的行動方式的示例的訓練集可能是不切實際的。在這些情況下,智能體必須使用自己的經驗和與環境的交互來學習。

RL系統[20]有四個主要組成部分:

1.策略:策略根據智能體的感知狀態定義智能體的行為。換句話說,它決定了當智能體處于當前狀態時要采取什么行動(或行動的什么分布)。

2.獎勵信號:獎勵信號表明智能體在某個時刻的表現如何。獎勵的概念是RL問題的核心概念,因為從長遠來看最大化獎勵數量是智能體的最終目標。獎勵的類型是特定于問題的。例如,在訓練RL智能體玩游戲時,它可能會因獲勝而獲得正獎勵,而因失敗而獲得負獎勵。結果,通過監控獎勵信號來學習策略。例如,如果當前策略給出的某個動作導致了懲罰,那么該策略可能會以某種方式改變,以便在情況再次出現時避免該動作。

3.價值函數:價值函數表示如果遵循當前策略,智能體在未來的預期表現如何。雖然獎勵被視為即時指標,但價值函數是長期指標。例如,在當前狀態下投資獲得負回報可能會導致總回報為正。價值函數引入了延遲獎勵的方面:某個狀態的價值是預期在長期內獲得的總折扣獎勵,其中每個收到的獎勵都根據最近收到的時間進行折扣。

4.環境模型:環境模型存在于基于模型的RL問題中。它指示環境如何根據智能體在特定狀態下的行為做出反應。然而,環境模型并不總是可用的。無模型方法解決了這一挑戰。

正式表示完全可觀察的環境(即智能體的觀察完全描述當前環境狀態的環境)以進行強化學習的流行方法之一是使用馬爾可夫決策過程(MDPs)。馬爾可夫過程是服從馬爾可夫性質的一系列隨機狀態S:在給定當前狀態的情況下,未來狀態獨立于過去狀態。

其中是第時間步的狀態,t是當前時間步,發生的概率。MDPs是馬爾可夫過程的擴展:除了表征馬爾可夫過程的狀態集S和狀態轉換集P之外,還有可能的動作集A和獎勵集R。

3 空中威脅評估——人工智能工具

本節將把空中威脅評估的任務與人工智能工具的能力聯系起來。 AI 能力將映射到威脅評估的每個階段,并將展示如何將其集成到現有能力中或改進現有能力

3.1 AI 工具在威脅評估中的優勢

如第 1 節所述,ADOs等操作人員面臨認知和身體挑戰,這些挑戰不利于其做出可靠決策的能力。人工智能工具將通過提供以下兩個主要好處來應對這些挑戰:

1.減少認知和身體負荷量:人工智能工具為操作員提供的支持和顯示將緩解導致操作員總壓力的眾多因素。這種好處是通過使用決策支持系統(DSS)的設計原則來提供的。

2.利用最先進的方法:人工智能的機器學習方法是一個非常受歡迎的研究領域,因此在方法的開發和改進方面做了大量工作。通過使用AI支持空中目標決策,該系統可以使用和利用最先進的方法。

3.2 威脅評估中的 AI 工具組件

如2.2小節所述,通用AI工具中有多個組件可以專門用于評估。威脅評估AI工具中的組件及其專業化如下:

1.操作員(Operator)是評估過程中的ADO。操作員將負責確保提供給AI工具的信息盡可能準確。然后,ADO將與該工具交互,以充分了解威脅情況,并獲得AI生成的威脅評估。

2.咨詢能力(Advisory?Capability)負責與ADO以及各種傳感器和數據庫系統進行交互。這將涉及從雷達和其他傳感器收集數據,以及解釋從情報報告中獲得的數據。咨詢能力還負責確保ADO可以有效地與計算機界面一起工作。更新界面可能涉及一個可以結合機器學習的動態過程。

3.領域知識(Domain Knowledge)將包括ADO的經驗以及他們用來進行準確評估的任何規則。在空中威脅評估中,這可能包括常見的高度、異常的飛行模式或敵軍作戰節奏的變化。

4.算法組(Algorithms)負責目標數據的處理和威脅評估。這將包括處理軌跡數據以獲得提示數據,并使用提示數據和領域知識來評估目標的威脅。可能的評估算法包括基于規則的方法[3、4]、貝葉斯方法[3]和本報告[5]中提供的AI技術。

5.環境(Environment)為人工智能工具提供操作限制和目標數據。更具體地說,環境包括檢測和測量目標的傳感器系統以及來自更高軍事指揮鏈的任務概覽和命令。

3.3 機器學習在威脅評估中的應用

由于機器學習方法的種類和成功率眾多且不斷增加,機器學習在威脅評估中的應用數量僅限于研究人員的知識和經驗。本報告將概述如何將三種主要機器學習范式應用于人工智能工具進行威脅評估的示例

3.3.1 監督學習

通過一組標記的過去目標示例,其中每個示例包含有關歷史目標及其相應威脅值標簽的信息,監督機器學習可用于將威脅值分配給目標。在[21]中,監督學習被用于構建多標準決策(MCDM)方法(EMCDM)的集成,以根據當時的線索值推斷目標在某個時間點的威脅值。EMCDM技術由各種MCDM方法組成,它們的輸出組合成一個單一的威脅值。MCDM方法的輸出基于作為輸入的提示值。用于訓練EMCDM技術的監督學習技術取決于集成技術的類型。例如,在加權組合EMCDM技術中,MCDM方法是使用監督學習調整的組合權重。在所有的EMCDM訓練中,示例集由標記的目標實例組成,其中目標實例被定義為目標在某個時間點的提示數據。

3.3.2 無監督學習

可以從目標中提取各種信息。因此,對于某個目標,可以為系統提供關于目標的大量線索,作為威脅評估的基礎。無監督學習可用于分析提示數據,以深入了解底層結構和模式。例如,無監督學習的一種用法是降維。通過降低提示數據的維數,系統可以處理更緊湊和簡潔的目標描述。換句話說,目標是以數據可以提供關于目標的大致相同信息但使用較少資源的方式轉換數據(例如,使用10個提示而不是50個提示)。

實現降維的一種方法是主成分分析(PCA)[23]。PCA旨在通過學習最大化新子空間中數據方差的線性變換,來表達低維子空間中的數據。最大化數據方差背后的直覺是假設更高的方差意味著更多的信息量。數據原本會有一定量的方差/信息。PCA嘗試使用低維子空間來近似數據,同時盡可能多地保留原始方差。PCA的結果之一是檢測和去除數據中的冗余,從而在沒有不必要的線索的情況下描述目標。然后可以將這些PCA生成的線索視為要使用的新的各種線索。然而,在應用過程中需要考慮基于PCA的假設(例如,方差足以描述信息量,主成分是正交的)。

自動編碼器[9]是經過訓練以將輸入重新創建為其輸出的神經網絡。自動編碼器通常由兩部分組成:編碼器和解碼器。編碼器網絡生成低維潛在特征。然后將潛在特征輸入到解碼器網絡中,該解碼器網絡嘗試輸出最初輸入到編碼器中的內容。通常存在約束和限制,以防止自動編碼器能夠完美地重新創建輸出(即,它只能提供近似值)。結果,模型被訓練為優先使用最有用的數據特征。因此,與PCA類似,自動編碼器可用于使目標提示數據更加簡潔,并且僅包含足以描述目標的提示數據。自動編碼器的其他用法也存在。例如,自動編碼器可用于去噪[24]應用程序。這在威脅評估中特別有用,因為目標數據(例如,傳感器數據、提示)本質上是含噪的。

除了降維之外,無監督學習的另一個用途是聚類。文獻中有大量關于用于聚類的無監督學習算法的工作,所有這些算法都用于威脅評估。在不關注特定算法的情況下,聚類的一種用途是將感興趣的目標與歷史目標進行聚類。這樣做的目的是發現感興趣的目標是否與歷史目標相似。如果有關于如何處理過去目標的知識,操作員可以在決定對當前感興趣的目標采取何種行動時考慮這些信息。

3.3.3 強化學習

可以將威脅評估過程建模為強化學習問題。例如,咨詢能力可以在操作期間使用RL來了解操作員希望如何顯示信息。這類似于社交網站知道在首頁上顯示哪些項目的方式。例如,如果RL模型有一個獎勵處理速度的策略,它可以測量從ADO開始評估到ADO提交威脅評估所花費的時間。這將允許模型因導致更短的威脅評估過程的行動而獲得獎勵,從而鼓勵更有效的交互選擇。如果某個深度為兩級的菜單項(即,它需要兩次單擊才能訪問)被頻繁使用,則模型可以將該菜單項放置為第一級深度項。如果該項目被非常頻繁地使用,則該項目應該在主屏幕上被賦予一個突出的按鈕位置。在空中威脅評估應用程序界面上工作的強化學習算法將能夠進行這些和其他更改,以檢查威脅評估的時間是否正在減少,在這種情況下,它將獲得獎勵。

有大量研究和許多資源可用于解決MDPs,這使得使用MDPs解決RL問題成為一個不錯的選擇[25]。

3.4 結構與流程

人工智能工具的結構需要考慮多種因素。該工具將在流程管道中運行,從數據收集和準備開始,到模型訓練,然后到模型預測,最后為用戶顯示結果。在AI工作流程中,可以更容易地將結構視為流程工作流[26]。一旦AI工具經過訓練,它就會不斷返回到周期的第一階段,并使用新數據和新見解進行重新訓練。這個過程使人工智能工具非常強大,可以隨著時間的推移保持準確性和有效性。

人工智能工具開發的第一階段是收集高質量數據。這些數據將存放在一個或多個可供AI工具訪問的數據庫中。人工智能工具將首先在數據庫中的現有數據上進行訓練,然后在生產時,它將主動監控任何操作數據庫中的最新數據,以便提供威脅評估。

除了收集數據,還必須確定最有效的機器學習或人工智能模型。該決定需要考慮可用數據的類型、數據的數量及其質量。與最終用戶面談也很重要,以確保所選模型將以對他們有用的格式輸出信息。這可能是一個要求,例如最終威脅評估值必須呈現為分類問題(例如,高、中、低)或回歸問題(例如,1.4、2.9、9.0)。要求也可能更嚴格,例如人工智能工具的推理必須能夠被人類操作員解釋。像這樣的要求可能會使現代機器學習研究的整個分支沒有吸引力,而是需要不同的模型。由于所選AI模型對整個工具的影響很大,因此必須在模型開發之前的早期階段收集最終用戶的需求。

一旦選擇了一個或多個模型類型,就必須對其進行訓練。在這個階段,由于上一步的需求分析,一些AI模型可能已經被淘汰。在此步驟中,將淘汰更多模型。在對數據進行訓練之前,通常很難判斷哪個機器學習平臺最有效。這意味著應該對多個模型進行數據訓練,并使用某種準確度指標進行比較。一旦確定了最準確的模型,該模型將被完全訓練并準備好在生產中使用。

下一階段是將模型部署到生產應用中。ADO獲得了一個功能性AI工具,可以連接到操作數據庫并協助威脅評估過程。輸出到ADO的最終值都將被處理和清理,最終格式將被確定。然后,隨著所有ADO將其威脅評估以及可用的線索提交給訓練數據庫,該工具將得到持續訓練。這將使該工具能夠與新出現的威脅和新情況保持同步。ADO還可以就AI工具提供的評估進行反饋。例如,如果AI工具提供“高”威脅評估,而ADO認為它應該是“中”,則ADO可以提供反饋信號,表明該工具不正確并且威脅等級太高。這將存儲在數據中并用于在線訓練,使其能夠不斷地向經驗豐富的ADO學習,也可以自學成型。

AI工具流程的最后階段是將工具轉移到精度維護。在這個階段,需要對工具進行監控,以確保準確性不會下降。該工具也將在此階段接收反饋并從ADO評估中學習。最后,人工智能工具的開發并沒有停留在這個最后階段;相反,它必須隨著威脅的演變、環境和要求的變化以及新的和更相關的數據變得可用,而相應地更新和改進。

圖3: AI工具中的模塊及其交互

圖 3 提供了AI工具中以下模塊的可視化表示:

1.數據庫組件

  • 存儲傳感器數據、操作員情報和來自歷史數據的人為威脅評估。

2.數據訪問和存儲模塊

  • 與數據庫交互以不斷地保存和讀取來自傳感器或人工操作員的數據。
  • 查詢數據庫以提供關于1個目標的完整信息集,用于預測威脅評估。

3.數據預處理模塊

  • 清理數據,處理缺失值,并正確格式化數據以用于訓練或訓練模型的推理。

4.ML 模型組件

  • 實現機器學習模型的AI組件。這就是將整個工具定義為AI工具的原因。所有其他組件都用于支持該組件。
  • 在訓練管道中,模型仍在開發中,可能會同時測試多個模型。
  • 在推理管道中,已經選擇了一個模型,并由數據預處理模塊提供數據,以便它可以進行預測。

5.數據后處理模塊

  • 在將推理步驟的結果顯示給用戶之前對其進行清理。
  • 可以從零到一之間的預測值映射到更易讀的值或類別評級(例如,低、中、高)。

6.可視化/操作員交互模塊

  • 負責所有操作員交互。提供數據的可視化和讀數,并以最佳方式傳達模型對威脅價值的預測。
  • 獲取操作員對分配的威脅值的反饋(例如,太高、太低、非常準確)。
  • 與數據訪問和存儲模塊通信,將操作員反饋存儲為有用的數據,以供未來訓練使用

3.4.1 人工智能工具集成

將ML組件集成到更大的AI工具中需要兩條不同的管道。第一個管道將是訓練管道,這是進行模型選擇、測試和訓練的地方。一旦確定了合適的ML模型,并且該模型已經針對所有當前可用的數據進行了訓練,它將在稱為推理管道的第二個管道中使用。

圖4顯示了訓練管道的可視化。第一步需要收集歷史威脅評估數據以及ADO威脅標簽(如果所需的ML模型使用監督學習算法)。接下來,這些數據將通過數據預處理模塊合并為格式良好的數據集。然后,這個大型數據集將被分成三個不同的集合:

1.訓練數據集:該數據集將是ML模型在訓練時唯一看到的數據集。它也將是三個數據集中最大的一個。通常在本節中描述的三組之間決定百分比分配。這取決于系統設計者的判斷。常見的比率是80/20或90/10,具體取決于可用訓練點的數量。這些點將用于訓練模型,但重要的是保留一個保留數據集,以確保您的模型不會過度擬合訓練數據(即,無法泛化到新的未見數據點)。

2.驗證數據集:這將在訓練進行時用作測試集。這些數據不會用于訓練模型,而是在訓練的非常時期結束時,將在這個小集合上測試模型。這對于確定模型何時得到充分訓練很有用。即使模型在訓練數據集上的損失可能會繼續減少,但如果驗證集上的損失已經趨于穩定,那么模型可能會過度擬合訓練數據集,應該停止訓練。

3.測試數據集:該數據集將為所有候選 ML 模型提供最終評估指標。它不會用于訓練,并且模型設計者也必須不要檢查此數據集。這將確保模型超參數不會根據此測試數據集進行調整。測試數據集的價值在于發現ML模型是否可以泛化到來自類似于訓練示例分布的看不見的數據點。如果測試數據集的損失遠高于訓練集和驗證集,則模型很可能對其訓練數據進行過擬合。如果有多個候選ML模型,則可以使用測試數據集上的損失和準確率來確定選擇哪個模型。

在模型訓練期間將使用訓練和驗證數據集,在模型評估期間將使用測試數據集。

圖4 :ML 模型訓練管道

一旦最佳候選ML模型經過訓練和選擇,它將用于AI工具的生產版本。該模型將用于實時提供在線推理/預測。候選模型的訓練和測試可以繼續進行,也可以納入新模型或研究。這將確保AI工具始終使用性能最佳的ML模型。

一旦經過訓練的模型展示了所需水平的能力,就該使用推理管道了。推理管道是ML組件,將在操作中使用的實際AI工具中使用。該管道的示意圖如圖5所示。

圖5:ML 模型推理管道

人工智能工具將被要求不斷監控傳感器和操作員的情報,以獲得最準確的現實畫面。該數據將組合成與每個空中目標相關的提示數據集。一旦一組提示數據可用,它將被提供給ML模型,以便進行預測。然后,該預測將通過本工作前面討論的AI工具的其他組件提供給ADO。一旦投入生產,該模型還將通過運行來自新威脅評估情況的示例和迄今為止ADO對預測的反饋來保持最新狀態。這種訓練可以以在線方式(即連續)完成,也可以通過批量訓練(即以設定的時間間隔一次對所有示例進行訓練)完成。該模型還將對其性能進行監控,以確保準確性和損失不會隨著操作現實的變化而隨著時間的推移而降低。如果檢測到性能下降,則人工干預和糾正可以使系統恢復到以前的性能水平。

3.5 威脅評估和人工智能流程

本小節將解釋威脅評估過程的背景以及傳統上它是如何完成的。它還將標志著傳統流程中的挑戰和通過智能決策支持系統(DSS)改進的機會。還將介紹AI工具及其與傳統DSS威脅評估的關系。

3.5.1 用于威脅評估的因素和結構

有關因素信息和分類的描述,請參見[21]。出于 AI 目的,因素數據應構造為包含m個因素的向量,其中m是觀察中的因素數量,每個條目是一個因素值。每個完整的向量都是一個樣本,如果有足夠大的樣本訓練數據集,就可以進行機器學習。

對于空中威脅評估,已經確定了16個因素來構成關于目標的最有價值的信息[4]。這些見表 1。

表 1:用于目標威脅評估的因素。

3.5.2 挑戰和機遇

威脅評估過程絕非易事。這是一項壓力極大的任務,需要做出復雜的決策。該過程的認知和物理性質是由于各種原因造成的,當它們結合起來時,會對操作員的決策過程產生不利影響。

操作員不僅必須處理來自各種來源的大量和類型的信息,而且還要同時管理多個任務。例如,操作員管理可能來自眾多媒體、顯示器和人員的音頻、口頭和視覺信息[4]。除此之外,他們還必須執行其他任務,例如監控指定監視區域內的空中目標、了解可用資源以及準備情況報告[4]。這種高度的多任務處理和信息過載給威脅評估任務帶來了認知復雜性和身體壓力。

除了大量數據之外,運營商還面臨著信息中固有的不確定性。運營商必須考慮到數據源的不完善性以及人類行為的不可預測性[3]。不確定性量化和感知在威脅評估過程(和戰術軍事行動一般[3],因為運營商依賴決策過程中的數據來獲取環境(和對手)的感知。

在時間限制下操作人員的工作也造成了相當大的壓力。需要時間來收集信息、處理信息并最大限度地減少不確定性。但是,空中目標正在高速移動,因此必須根據可用的融合做出決策此外,用于信息收集/處理和不確定性最小化的時間越多,制定后續決策和行動的時間就越少,對手收集/處理信息和行動的時間就越多。最后,錯誤決定的后果是嚴重的,甚至可能是災難性的。飛機的錯誤分類1988年造成290名平民死亡的事件[27]就是決策失誤的一個例子。操作員工作的重要性和不正確執行的后果增加了任務的壓力。

運營商在威脅評估過程中面臨的挑戰促使人們研究如何在不影響威脅評估可靠性的情況下減輕認知和物理工作量。更具體地說,有機會開發用于空中目標威脅評估的決策支持系統(DSS)[4]。圍繞DSS的設計原則(即DSS 所包含的內容)有許多著作。

DSS的關鍵要求之一是它不能取代運營商;相反,DSS是對運營商的補充。[3]將此要求描述為DSS充當“決策支持而非決策自動化”。這方面允許在威脅評估過程中操作員和系統之間的協作。讓人參與決策過程是至關重要的:人在環方面確保每個決策都有責任。軍事行動的合法性要求問責是其行動的組成部分,問責包括明確的合法性和道德標準。如果在這個過程中沒有操作者,那么誰應該為錯誤決策的后果負責的模糊性就會帶來法律和道德上的分歧。

除了確保操作員始終參與決策之外,文獻中還介紹了其他設計原則。[2]根據文獻及其實地工作,詳細列出了設計威脅評估系統的規則。顯著的設計特點包括:

1.透明度:DSS應該能夠證明其計算和后續建議的合理性[3,4]。因此,DSS應向操作員提供導致最終值[2]的中間計算以及每個提示對最終威脅值[4]的影響。消除DSS的黑盒特性的重要性在于建立對系統的信心和信任[3]。如果不知道決策/建議是如何生成的,人類不太可能接受自動化系統的決策/建議[29]。理解上的不透明為誤用和錯誤創造了機會[12]。由于使用機器學習方法來構建AI工具,因此這是這項工作的一個重要考慮因素。機器學習方法不限于人類定義的決策規則,因此可以表現出黑盒性質。因此,與傳統DSS相比,AI工具的透明度更為重要。

2.處理不確定性:DSS決策所依據的數據中有許多不確定性來源(例如,傳感器數據、威脅值計算中的參數)[2]。處理不確定性也是DSS的一個重要設計特征,因為它允許運營商調整他們對系統的信任級別。在[2]中,這個設計方面是通過使用提示數據的區間表示來實現的。

3.信息的有效和交互式顯示:使用圖形格式顯示信息很重要,因為威脅是一個模糊的概念[4]。應傳達給操作員的重要信息是威脅等級、威脅歷史、線索列表[4],以及與建議相關的不確定性[3]。除了顯示信息之外,系統還必須能夠提供操作員可以與之交互的媒介。這可確保操作員留在威脅評估過程中[3]。

本報告中提出的人工智能工具可作為空中目標威脅評估的DSS。人工智能工具的人工智能方面在于系統的運行方式。更具體地說,人工智能工具將把人工智能概念(例如,機器學習、適應)納入其操作中。

3.6 AI 工具

AI工具將能夠集成到空中威脅評估的所有階段。本小節將描述威脅評估的每個階段與AI工具的能力之間的關系。

空中威脅評估的階段如下[4]:

1.掃描并選擇提示。

2.比較、調整適合和適應。

3.計算威脅等級。

4.繼續處理。

關于1(掃描并選擇提示),AI工具將能夠使用所有可用的提示。這與人類操作員不同,后者僅審查18個可用于評估飛機的線索中的6到13個[4]。這些信息將通過各種傳感器從環境中收集,然后通過通常的情報報告或傳感器讀數方式進行報告。這些數據將被編譯到一個數據庫中,供AI工具訪問以從中進行學習和預測。

關于2(比較、調整擬合和適應),AI工具將對數據庫中可用的線索進行計算。該數據可以與ADO專家提供的感知數據(例如預期海拔)進行比較,并檢查實際數據是否一致。如果數據與預期不一致,人工智能工具會將差異與歷史示例進行比較,以提供對差異的解釋或調整。如果數據無法協調,則可能需要調整模型的擬合度,人工智能工具可以選擇將飛機作為不同類型(即軍用、民用)進行處理。

關于3(計算威脅評級),人工智能工具將使用可用的線索,如果它增強預測,可能還會使用這些線索的子集,來預測目標的威脅評級。 Liebhaber、Kobus 和 Smith 在[30]中發現威脅等級獨立于檢查的線索數量。

關于4(繼續處理),如果所有提示數據都可以充分解釋,人工智能工具將完成分析,或者它將繼續搜索和處理新的提示。這個過程將一直持續到模型通過基于解釋的輸出獲得ADO的批準,或者直到所有可用的線索都被處理并且模型擬合得到盡可能好的調整。

3.7 AI 工具在威脅評估中的挑戰

第3.5.2節概述的關于操作員對DSS的信任的關鍵點之一是用于生成威脅評估結果的模型的透明度。操作員很難對沒有提供理由和解釋的機器輔助預測有信心[4]。出于這個原因,已經創建了許多在計算和標準加權方面具有透明度的DSS方法。例如,許多MCDM方法可以為每個單獨屬性的權重以及它們如何對最終威脅評估做出貢獻提供充分的理由。這是MCDM DSS工具的優勢之一。不幸的是,這種透明性可能會導致工具缺乏復雜性和表現力。相反,機器學習工具可以同時基于所有數據點之間的非常深的聯系做出假設,這可能是以人類不會的方式。這種增加的復雜性往往會降低工具的透明度和可解釋性。

某些機器學習方法的結果仍然是透明的,并且以與自學的MCDM方法相似的方式工作。例如,線性回歸模型可以提供每個線索如何影響最終威脅評估評估的完整理由。該模型既受益于透明度,也受益于無需人類專家參與的自學。

其他一些機器學習模型并沒有從透明度中受益。最先進的機器學習模型之一是神經網絡。這是一個擁有大量研究的大領域,也是深度學習分支的新爆炸。這些方法不那么透明。在[31]中發現的2020年文獻調查探索了許多現有的試圖使神經網絡和深度神經網絡推理對最終用戶可解釋的工作,但是,局限性仍然存在。

現實世界的威脅評估變量通常包括決策過程各個級別的不確定性。對威脅評估準確性的最大影響之一來自根本沒有獲取的數據。這種丟失的數據可能是由于無法收集、傳感器故障、傳感器誤報或許多其他原因造成的。當數據完全丟失時,就很難就目標所擁有的威脅做出明智的決定。幸運的是,機器擅長執行計算,可以估計、替換或忽略丟失的數據。

在[22]中,探索了為每個決策結構預先計算不同查找表的選項。這將涉及根據每種可能的信息缺乏狀態訓練許多不同的模型,并將它們與完整狀態相關聯。這假設對于訓練有大量完整的示例可供借鑒。不幸的是,“為所有可能的輸入組合訓練網絡的天真的策略在復雜性上呈爆炸式增長,并且需要為所有相關案例提供足夠的數據”[32]。相反,[32]建議定義一個可以被認為是真實的基礎模型,然后將所有數據與該模型相關聯。

在許多可能的情況下,在訓練時沒有或只有很少的完整示例可用。在這種情況下,必須確定是僅使用完整數據進行訓練,還是以某種方式合并不完整的示例。在[32]中,發現用均值代替缺失輸入會導致比僅基于完整示例訓練網絡更差的性能。因此,尋求改變神經網絡架構或訓練方法的方法,以有效地合并(可能大量)不完整的數據示例。

使用不完整數據進行訓練的最有效方法之一來自[33]。本文證實,在訓練神經網絡中使用原始不完整數據可能是比在學習開始之前填充缺失屬性更好的方法。所采用的方法涉及對神經網絡架構的輕微改變,但應該與大多數現有架構兼容。該方法通過將第一個隱藏層中典型神經元的響應替換為其期望值來工作。高斯混合模型在每個神經元的輸出上進行訓練,以學習概率密度函數和期望值。這消除了通過單個值對任何缺失屬性進行直接插補的需要。 “隱藏層不是計算單個數據點的激活函數(對于完整的數據點),而是計算神經元的預期激活”[33]。該方法還取得了與其他現有方法可比的結果,這些方法可以從不完整的數據中進行預測,但需要完整的數據進行訓練。

另一種方法可以通過提高缺失數據插補的準確性來采取。[34]研究了文獻中許多可能的數據插補解決方案。它還指出,一些無監督學習聚類算法,如分類和回歸樹(CART)和K-means,已適用于缺失數據的問題。缺失數據插補的優點是不需要對實際的機器學習模型或平臺進行任何更改。當前存在或將來構建的任何基于完整數據提供準確預測的方法都將有效地處理通過插補生成的數據。數據插補的目標是以盡可能接近現有真實數據分布的方式填充缺失值。如果成功完成,則可以對新完成的數據使用現有的統計分析和機器學習工具。

4 AI工具的架構

在本節中,將討論AI工具的潛在架構。將涵蓋從面向操作員的界面到AI組件組合的設計。所提出的AI工具的整體架構可以在參考文獻[35]中看到,它需要三個主要組件,如圖6所示。

圖6:AI 工具的概念框架

未來的人工智能工具可能會將舊的基于模型或自上而下的方法與新的數據驅動的自下而上的方法結合起來。這種類型的系統允許人工智能工具擁有一個由數百或數千個專家派生規則以及數百萬條特定領域知識(如歷史傳感器數據)組成的知識庫[36]。一種可以結合領域專業知識和數據驅動學習的人工智能系統是回歸樹。圍繞回歸或分類樹構建用于空中威脅評估的AI工具將是一個不錯的選擇。回歸樹的另一個好處是它們的輸出可以被人類操作員解釋,并且可以解釋它的選擇。整個模型基于一系列決策或規則,這些決策或規則可以在操作員界面中作為理由提供。這使ADOs可以對AI工具提供的評估充滿信心,或者質疑為什么某個值的解釋與他們的解釋不同。

AI工具的前端組件將是所有ADO交互發生的地方。它將顯示可用信息和AI工具獲得的見解。它還將允許ADO與信息交互并形成自己的結論。此前端將需要分析ADO工作流程。在[4]中已經對美國海軍ADOs進行了采訪,并提出了許多不同的圖形顯示建議。前端應顯示計算出的軌道威脅等級,并為該評估提供證據和解釋。還應提供原始數據,以便ADOs可以確認AI工具的假設。盡可能以圖形方式呈現給用戶的概率,因為這會減少冒險行為[37]。前端還將通過使用強化學習來利用AI功能。應制定一項獎勵快速完成ADO活動的政策,例如將資源分配到目標軌道以保護資產。此RL算法將能夠決定用戶界面(UI)元素的放置位置以及UI上顯示的內容。如果將常見動作從菜單移動到主顯示屏增加了RL功能獲得的獎勵,那么ADO完成任務所用的時間將會減少。這確保了前端最終變得最優,并適合實際ADOs的工作流程。

人工智能工具后端的兩個不同元素之間存在區別。在AI中,該工具可以是正在學習的,也可以是經過全面訓練并準備好執行的。首先將檢查學習后端。無論是第一次訓練AI工具還是處于持續學習狀態,它都會利用學習后端。學習后端連接到包含歷史數據的知識數據庫,可用于提供數百萬對自下而上的人工智能技術有用的數據點。這是機器學習和決策樹將特別有效的地方。如果實施決策樹學習算法,它將能夠創建有助于根據歷史數據和決策對新目標進行分類的規則。這些規則還允許AI工具向ADOs解釋其輸出。

當工具準備好用于生產并與前端交互時,將使用正在執行的后端。這種執行就緒狀態將存儲自上而下或基于模型的人工智能的人類專家規則。該組件將是一個由學習后端輔助的專家系統。通過對ADOs的專業知識和對目標線索重要性的看法的采訪中獲得的數千條規則將使其成為AI組件。同時,通過將這些人工規則與通過機器學習在學習后端找到的規則相結合,可以優化值和預測。

一些功能性和非功能性需求可以從目前已知的用于威脅評估的AI工具中指定。更高級的要求應通過與未來ADO 客戶的面談來制定。

4.1 功能需求

1.當傳感器或智能數據更新時,人工智能工具應攝取數據并進行訓練或預測。

2.AI 工具應為 ADO 定義的感興趣區域內的所有目標提供評估預測。

3.界面應提供評估說明并允許 ADO 交互。

4.AI 工具應提供自動模型訓練或新數據的重新訓練。

5.AI 工具應與 ADO 請求時可用的任何數據子集一起使用,并在新數據可用時合并它。

4.2 非功能性要求

1.AI 工具應在數據可用后 100 毫秒內提取數據。

2.AI 工具必須處理每個實例和感興趣區域的數百個目標。

3.AI 工具應在 2 秒內提供 ADO 要求的特定威脅評估。

4.界面必須符合 ADO 偏好,并允許在 3 次點擊內訪問所有常用命令。

5.人工智能工具必須對缺失的數據做出強有力的反應,并繼續進行評估和學習。

4.3 未來步驟

本報告之后的下一步將是開發供ADOs用于空中威脅評估的AI工具。為完成此目標應采取的一系列步驟如下:

1.需求分析:人工智能工具開發人員應在威脅評估過程的每個階段與關鍵決策者坐下來。應采訪ADOs,以確保該工具滿足其工作模式和預期結果的所有要求。還應與流程早期的關鍵人員進行面談,以確保系統兼容性。這將包括傳感器和其他資產經理,他們可以確認系統輸出將如何格式化并提供給AI工具。人工智能工具完成分析后,需要以有用的格式輸出和存儲,因此依賴人工智能工具輸出的系統中的決策者應該分析他們的需求。

2.確定AI工具所需的組件:完成需求分析后,開發人員應決定哪些通用AI工具組件將需要,哪些可以省略(如果有的話)。可能還需要開發某些專門的組件來支持威脅評估和軍事環境所面臨的獨特挑戰。應該開發工具的架構,并為每個組件分配明確的職責。該架構還將受益于每個組件之間的嚴格輸入和輸出合同,以便數據可用于現有系統。

3.AI和ML組件的選擇和評估:架構和需求確定后,應該明確哪些類型的AI和ML適合該問題。每個可能涉及AI或ML的組件都需要提出和訓練多個候選人。然后將比較這些候選者,以確定哪個最有效地解決了獨特的要求。一旦選擇了最佳模型并選擇了正確的AI類型,所有模型將被移入生產環境并準備連接到AI工具中的其他組件。

4.文檔和培訓:一旦開發了最終的AI工具并通過代碼注釋和其他文檔工具正確記錄了文檔,就該開發外部文檔了。該文檔應傳達AI工具的實用性以及如何有效使用它及其功能。審查ADO要求將有助于為受眾塑造文檔。一旦開發了該工具,培訓會和從ADOs收集反饋將很有用。

5.集成到生產系統:人工智能工具將投入生產,以協助ADOs進行空中威脅評估。需要檢查智能管道中較早的系統和管道中較晚的系統之間的所有連接以確認兼容性。

6.監控和維護:隨著時間的推移,隨著新威脅或新情況的發現,人工智能工具將能夠得到更新和改進。無論是通過人工還是自動系統,持續監控AI工具以確保預測質量不會隨著時間的推移而降低,這一點很重要。通過使用新版本更新舊模型,也可以納入AI和ML研究的新改進。

5 結論

人工智能工具是執行通常由人類處理的復雜任務的最先進方法。這為提高人類操作員的效率和有效性提供了許多可能性,例如執行高腦力任務的ADOs。威脅評估就是這樣一項非常適合人工智能協助的任務。重要的是要承認,人工智能工具不會取代操作員做出關鍵決策:相反,它們將為決策者提供更準確的數據,以有效地做出關鍵和及時的決策。

將ML集成到AI工具中可以帶來許多過去只能通過人類設計才能實現的新可能性。ML可以讓AI工具在沒有人類教授或者面對不斷變化的情境要求或敵人能力的情況下,從數據中學習。它可以重新設計AI工具交互,使其對 ADOs盡可能有用。它可以幫助將新目標與歷史示例進行聚類,從而為ADOs提供更好的威脅心理模型。可以自動檢測異常數據或空中目標并向操作員報告。

熟練和經驗豐富的ADOs與AI工具的結合將實現更快、更準確和更強大的空中威脅評估。通過讓人工操作員參與進來,該工具將保持ADO的責任和專業知識,同時提高生產力和效率。結合處理不完整數據狀態的現代方法也將使該工具對數據不準確或不可用具有魯棒性。

因此,該工具應該有助于國防和威脅評估過程。

付費5元查看完整內容

美國軍方和情報界對開發和部署人工智能 (AI) 系統以支持情報分析表現出興趣,這既是利用新技術的機會,也是應對不斷激增的數據過剩的解決方案。然而,在國家安全背景下部署人工智能系統需要能夠衡量這些系統在其任務背景下的表現。

為了解決這個問題,作者首先介紹了人工智能系統在支持智能方面可以發揮的作用的分類法——即自動分析、收集支持、評估支持和信息優先級——并提供了對人工智能影響驅動因素的定性分析。每個類別的系統性能。

然后,作者挑選出信息優先系統,這些系統將情報分析師的注意力引導到有用的信息上,并允許他們忽略對他們無用的信息,以進行定量分析。作者開發了一個簡單的數學模型來捕捉此類系統的錯誤后果,表明它們的功效不僅取決于系統的屬性,還取決于系統的使用方式。通過這個練習,作者展示了人工智能系統的計算影響和用于預測它的指標如何用于描述系統的性能,以幫助決策者了解其對情報任務的實際價值。

報告指出,目前存在多種描述人工智能系統性能的標準方法,包括通常被稱為“精確度”、“召回率”和“準確率”等指標,但這些標準并未提及該系統對其所支持任務的影響。在準確率與情報任務成功之間沒有明確關聯的情況下,只能依據情報任務的完成水平對系統有效性作出臨時判斷。基于此,報告作者將人工智能系統在情報分析過程中可發揮的功能分為四大類,分別評估每項功能的錯誤輸出可能會對結果產生的影響,從而理解“人工智能系統性如何影響情報分析的有效性”。

按照情報周期的組織過程,報告將人工智能系統可在該過程中發揮的作用分為四大“系統功能模塊”,分別是提供評估支持、自動分析、優先信息和收集支持。報告為每個功能模塊設計了函數模型,以詳細推演其在情報過程中的作用。

通過對“從任務到系統”的追溯性推演評估,報告得出兩個一般性結論:首先,在部署人工智能系統前,制定與符合實際情況優先級的情報監測指標十分重要,這一工作應以評估系統部署的實際影響力為指導;其次,系統的有效性不僅取決于系統屬性,還取決于如何使用。

研究問題

  • 人工智能系統的性能衡量指標如何與情報分析的有效性相關聯?
  • 人工智能如何用于支持智能過程,既反映在真實系統的開發中,也反映在可能尚未開發的假設系統中?
  • 研究人員如何對智能過程進行建模,以確定位于該過程中的人工智能系統如何影響它?
  • 存在哪些衡量 AI 系統性能的指標?

主要發現

使用與實際優先級不匹配的指標會掩蓋系統性能并阻礙對最佳系統的明智選擇

  • 度量選擇應該在系統構建之前進行,并以估計系統部署的實際影響為指導。

有效性,以及衡量它的指標,不僅取決于系統屬性,還取決于系統的使用方式

  • 決策者需要考慮的一個關鍵因素是,除了用于構建系統的資源之外,還有多少資源用于任務。

建議

  • 從正確的指標開始。這需要詳細了解 AI 系統的使用方式,并選擇反映該使用成功的指標。
  • 定期重新評估(和重新調整)。由于系統周圍的世界在部署后繼續發展,因此系統評估必須繼續作為定期維護的一部分。
  • 系統設計人員擁有一套完善的衡量 AI 系統性能的指標,熟悉這些傳統指標將在設計新系統或維護現有系統的過程中簡化與專家的溝通。
  • 進一步研究評估人工智能系統有效性的方法。
付費5元查看完整內容
北京阿比特科技有限公司