亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

推薦系統能夠根據用戶的偏好生成推薦項目的列表,而最終用戶是這些傳統系統中唯一的利益相關者。但是,在幾個應用程序領域(例如電子商務、電影、音樂)可能有多個涉眾。通過平衡不同利益相關者的需求來提出建議是必要的。本教程的第一部分介紹了多涉眾推薦系統(MSRS)的幾個案例研究,并討論了MSRS中相應的方法和挑戰。MSRS中目前的工作之一是基于實用價值的多利益相關者推薦模型,該模型利用多標準評級來構建實用價值函數。但是,在任何領域或應用程序中可能并不總是提供多標準評級或首選項。評論挖掘通常用于從文本或評論中提取用戶偏好。它可能被用來推斷項目不同方面的用戶首選項。本教程的第二部分將介紹和討論神經審查挖掘的建議。電子商務平臺上的評論可以用來解決冷啟動問題并生成解釋。我們之前的教程介紹了對產品和主題模型/分布式表示的基于方面的情感分析,它們彌補了用戶評論和產品描述之間的詞匯差距。本教程第二部分的重點是介紹最近用于檢查文本挖掘的神經方法--包括用于增強產品推薦的實際代碼。每個部分將介紹各種機制(如注意力)和任務(如評論排名)視角下的主題,介紹前沿研究和使用真實數據集在Jupyter筆記上執行的程序的訓練。

目錄

  • Recommendation for Multi-Stakeholders

    • 介紹與動機
    • 問題陳述和解決方案
    • 演示和質量檢查
  • Through Neural Review Mining

    • 背景
    • 冷啟動
    • 基于方面的推薦/評論排名
    • 講義演示
    • 評論/提示生成

源碼鏈接:

//github.com/vishalkakkar/CIKM_Tutorial

付費5元查看完整內容

相關內容

狹義的情感分析(sentiment analysis)是指利用計算機實現對文本數據的觀點、情感、態度、情緒等的分析挖掘。廣義的情感分析則包括對圖像視頻、語音、文本等多模態信息的情感計算。簡單地講,情感分析研究的目標是建立一個有效的分析方法、模型和系統,對輸入信息中某個對象分析其持有的情感信息,例如觀點傾向、態度、主觀觀點或喜怒哀樂等情緒表達。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

書名: Mining of Massive Datasets

前言

這本書是由Jure Leskovec和Anand Rajaraman幾年來為斯坦福大學四分之一課程開發的材料發展而來的。名為《網絡挖掘》的CS345A課程被設計成一門高級研究生課程,盡管它已經成為高級本科生的必修課和興趣所在。當Jure Leskovec加入斯坦福大學時,我們對材料進行了大量的重組。他介紹了一門新的網絡分析課程CS224W,并在CS345A中加入了新的材料,重新編號為CS246。三位作者還介紹了一個大型數據挖掘項目課程CS341。這本書現在包含了所有三門課程的內容。

主要內容:

在最高級別的描述中,這本書是關于數據挖掘的。但是,它側重于對非常大的數據進行數據挖掘,也就是說,數據大到無法裝入主內存。由于對大小的強調,我們的許多示例都是關于Web或來自Web的數據的。此外,該書采用了算法的觀點:數據挖掘是將算法應用于數據,而不是使用數據來訓練某種機器學習引擎。主要議題包括:

  1. 分布式文件系統和map-reduce作為創建并行算法的工具,可以成功地處理大量數據。
  2. 相似度搜索,包括minhashing和localitysensitive hashing的關鍵技術。
  3. 數據流處理和專門的算法,用于處理快速到達的數據,這些數據必須立即處理,否則就會丟失。
  4. 搜索引擎的技術,包括谷歌的PageRank,鏈接垃圾郵件檢測,以及hubs-and-authorities的方法。
  5. 頻繁項集挖掘,包括關聯規則、市場籃子、a -先驗算法及其改進。
  6. 算法聚類非常大,高維數據集。
  7. Web應用程序的兩個關鍵問題:管理廣告和推薦系統。
  8. 用于分析和挖掘非常大的圖的結構的算法,特別是社會網絡圖。
  9. 通過降維獲得大數據集重要屬性的技術,包括奇值分解和潛在語義索引。
  10. 機器學習算法,可以應用于非常大的數據,如感知機,支持向量機,梯度下降。
付費5元查看完整內容

題目: A Survey on Knowledge Graph-Based Recommender Systems

摘要:

為了解決信息爆炸問題,提高用戶在各種在線應用中的體驗,人們開發了推薦系統來模擬用戶的偏好。盡管人們已經為更個性化的推薦做了很多努力,但是推薦系統仍然面臨著一些挑戰,如數據稀疏和冷啟動。近年來,以知識圖為輔助信息的推薦生成引起了人們的極大興趣。這種方法不僅可以緩解上述問題,使推薦更加準確,而且可以為推薦項目提供解釋。本文對基于知識圖的推薦系統進行了系統的研究。我們收集了最近在這一領域發表的論文,并從兩個角度對其進行了總結。一方面,我們通過研究論文如何利用知識圖進行精確和可解釋的推薦來研究所提出的算法。另一方面,我們介紹了這些工作中使用的數據集。最后,提出了該領域的幾個潛在研究方向。

付費5元查看完整內容

臺灣交通大學的Jen-Tzung Chien教授在WSDN 2020會議上通過教程《Deep Bayesian Data Mining》介紹了深度貝葉斯數據挖掘的相關知識,涵蓋了貝葉斯學習、深度序列學習、深度貝葉斯挖掘和學習等內容。

Jen-Tzung Chien教授在WSDM 2020的教程《Deep Bayesian Data Mining》(《深度貝葉斯數據挖掘》)介紹了面向自然語言的深度貝葉斯挖掘和學習,包括了它的基礎知識和進展,以及它無處不在的應用,這些應用包括語音識別、文檔摘要、文本分類、文本分割、信息抽取、圖像描述生成、句子生成、對話控制、情感分類、推薦系統、自動問答和機器翻譯等。

從傳統上,“深度學習”被認為是一個學習過程,過程中的推斷和優化都使用基于實數的判別模型。然而,從大量語料中提取出的詞匯、句子、實體、行為和文檔的“語義結構”在數學邏輯或計算機程序中可能不能很好地被這種方式表達或正確地優化。自然語言的離散或連續潛在變量模型中的“分布函數”可能不能被正確分解或估計。

該教程介紹了統計模型和神經網絡的基礎,并聚焦于一系列先進的貝葉斯模型和深度模型,包括層次狄利克雷過程、中國餐館過程、遞歸神經網絡、長短期記憶網絡、序列到序列模型、變分自編碼器、生成式對抗網絡、策略神經網絡等。教程還介紹了增強的先驗/后驗表示。教程展示了這些模型是如何連接的,以及它們為什么適用于自然語言中面向符號和復雜模式的各種應用程序。

變分推斷和采樣被提出解決解決復雜模型的優化問題。詞和句子的嵌入、聚類和聯合聚類被語言和語義約束合并。針對深度貝葉斯挖掘、搜索、學習和理解中的不同問題,一系列的案例研究、任務和應用被提出。最后,教程指出一些未來研究的方向和展望。教程旨在向初學者介紹深度貝葉斯學習中的主要主題,激發和解釋它對數據挖掘和自然語言理解正在浮現的重要性,并提出一種結合不同的機器學習工作的新的綜合方法。

教程的內容大致如下:

  • 簡介
    • 動機和背景
    • 概率模型
    • 神經網絡
  • 貝葉斯學習
    • 推斷和優化
    • 變分貝葉斯推斷
    • 蒙特卡羅馬爾科夫鏈推斷
  • 深度序列學習
    • 深度非展開主題模型
    • 門遞歸神經網絡
    • 貝葉斯遞歸神經網絡
    • 記憶增強神經網絡
    • 序列到序列學習
    • 卷積神經網絡
    • 擴增神經網絡
    • 基于Transformer的注意力網絡
  • 深度貝葉斯挖掘和學習
    • 變分自編碼器
    • 變分遞歸自編碼器
    • 層次變分自編碼器
    • 隨機遞歸神經網絡
    • 正則遞歸神經網絡
    • 跳躍遞歸神經網絡
    • 馬爾科夫遞歸神經網絡
    • 時間差分變分自編碼器
    • 未來挑戰和發展
  • 總結和未來趨勢

完整教程下載

請關注專知公眾號(點擊上方藍色專知關注) 后臺回復“DBDM20” 就可以獲取完整教程PDF的下載鏈接~

教程部分內容如下所示:

參考鏈接:

//chien.cm.nctu.edu.tw/home/wsdm-tutorial/

-END- 專 · 知

專知,專業可信的人工智能知識分發,讓認知協作更快更好!歡迎注冊登錄專知www.zhuanzhi.ai,獲取更多AI知識資料!

歡迎微信掃一掃加入專知人工智能知識星球群,獲取最新AI專業干貨知識教程視頻資料和與專家交流咨詢!

請加專知小助手微信(掃一掃如下二維碼添加),獲取專知VIP會員碼,加入專知人工智能主題群,咨詢技術商務合作~

點擊“閱讀原文”,了解注冊使用專知

付費5元查看完整內容

** 簡介:**

推薦方法構造了預測模型,以估計用戶與項目交互的可能性。先前的模型在很大程度上遵循一般的監督學習范式-將每個交互視為一個單獨的數據實例,并基于“信息孤島”進行預測。但是,此類方法忽略了數據實例之間的關系,這可能導致性能欠佳,尤其是對于稀疏場景。此外,建立在單獨數據實例上的模型幾乎無法顯示出推薦背后的原因,從而使過程難以理解。

在本教程中,我們將從圖學習的角度重新審視推薦問題。可以將用于推薦的通用數據源組織成圖形,例如用戶-項目交互(二分圖),社交網絡,項目知識圖(異構圖)等。這種基于圖的組織將孤立的數據實例連接起來,從而為利用高階連通性帶來了好處,這些高階連通性對有意義的模式進行了編碼,以進行協作過濾,基于內容的過濾,社會影響力建模和知識感知推理。結合圖神經網絡(GNN)的最新成功,基于圖的模型已展現出成為下一代推薦系統技術的潛力。本教程對基于圖的學??習方法進行了回顧,以提出建議,特別關注GNN的最新發展和知識圖譜增強的建議。通過在本教程中介紹這個新興而有前途的領域,我們希望觀眾可以對空間有深入的了解和準確的見解,激發更多的想法和討論,并促進技術的發展。

目錄:

作者簡介:

王翔是新加坡國立大學(NUS)計算機學院的研究員。 他獲得了博士學位。 他于2019年獲得國大計算機科學博士學位。他的研究興趣包括推薦系統,信息檢索和數據挖掘。 在SIGIR,KDD,WWW和AAAI等頂級會議上,他擁有20多種出版物,包括TOIS和TKDE等期刊。 他曾擔任CCIS 2019的本地主席,包括SIGIR,CIKM和MM在內的頂級會議的PC成員以及TKDE和TOIS等著名期刊的定期審稿人。

付費5元查看完整內容

The chronological order of user-item interactions can reveal time-evolving and sequential user behaviors in many recommender systems. The items that users will interact with may depend on the items accessed in the past. However, the substantial increase of users and items makes sequential recommender systems still face non-trivial challenges: (1) the hardness of modeling the short-term user interests; (2) the difficulty of capturing the long-term user interests; (3) the effective modeling of item co-occurrence patterns. To tackle these challenges, we propose a memory augmented graph neural network (MA-GNN) to capture both the long- and short-term user interests. Specifically, we apply a graph neural network to model the item contextual information within a short-term period and utilize a shared memory network to capture the long-range dependencies between items. In addition to the modeling of user interests, we employ a bilinear function to capture the co-occurrence patterns of related items. We extensively evaluate our model on five real-world datasets, comparing with several state-of-the-art methods and using a variety of performance metrics. The experimental results demonstrate the effectiveness of our model for the task of Top-K sequential recommendation.

題目: Neural Machine Translation: A Review

簡介: 機器翻譯(MT)是將書面文本從一種自然語言自動翻譯成另一種自然語言,近年來,機器翻譯領域經歷了一次重大的范式轉變。統計機器翻譯主要依賴于各種基于計數的模型,在過去幾十年中一直主導機器翻譯的研究,但現在它已在很大程度上被神經機器翻譯(NMT)所取代。在這項工作中,我們將追溯現代NMT架構的起源到詞和句子嵌入和早期的例子的編碼器-解碼器網絡家族。最后,我們將對該領域的最新趨勢進行調查。

付費5元查看完整內容

主題: Building Useful Recommender Systems for Tourists

簡介: 推薦系統是信息搜索和過濾工具,應為要使用的項目提供建議。 最先進的推薦系統利用數據挖掘和信息檢索技術來預測商品在多大程度上適合用戶的需求和需求,但是通常它們最終會提出明顯而無趣的建議,尤其是在復雜領域(例如旅游業)。 在演講中,將介紹典推薦器系統的思想和技術。 我們將討論為游客建立有用的推薦系統所需的一些關鍵要素。 因此,我們將指出推薦系統研究的一些局限性和挑戰。 然后,我們將介紹一些新穎的技術,這些技術利用從觀察到的游客行為中收集的數據來生成更有用的個人和團體推薦。

嘉賓介紹: Francesco Ricci博士是Bozen-Bolzano自由大學(意大利)的正教授兼計算機科學學院院長。他與他人共同編輯了《推薦系統手冊》(Springer,2011年,2015年),并作為ACM推薦系統會議(2007年至2010年)指導委員會主席在社區中積極工作。他(2000年至2006年)曾是ITC-irst(意大利特倫托)的電子商務和旅游業研究實驗室(eCTRL)的高級研究員和技術總監。從1998年到2000年,他是Sodalia s.p.a.的研究和技術部門的系統架構師。

付費5元查看完整內容

題目: Combating Fake News: A Data Management and Mining Perspective

簡介: 假新聞是對全球人民的主要威脅,導致人民對政府,新聞和公民社會的信任度下降。社交媒體和社交網絡在公眾中的流行引起了假新聞的蔓延,其中陰謀論,虛假信息和極端觀點盛行。發現假新聞并進行緩解是當今時代的基本問題之一,已引起廣泛關注。盡管事實調查網站(政府網站和大型公司,例如Google,Facebook和Twitter)已經采取了初步措施來解決假新聞,但仍有許多工作要做。本教程的目標是雙重的。首先,我們希望使數據庫社區熟悉其他社區在打擊假新聞方面的工作。我們提供相關領域的最新研究成果,包括檢測,傳播,緩解和干預假新聞。接下來,我們提供數據庫社區研究內容的摘要,并討論如何將其用于抵制假新聞。

嘉賓介紹:

Laks V.S. Lakshmanan是不列顛哥倫比亞大學計算機科學系的教授。 他是BC Advanced Systems Institute的研究員,并于2016年11月被任命為ACM杰出科學家。他的研究興趣涵蓋數據庫系統及相關領域的廣泛主題,包括:關系數據庫和面向對象的數據庫,OLAP和數據倉庫,數據庫挖掘,數據集成,半結構化數據和XML,信息和社交網絡及社交媒體,推薦系統和個性化。

Michael Simpson是不列顛哥倫比亞大學計算機科學系的博士后研究員。 他從維多利亞大學獲得博士學位。 他的研究興趣包括數據挖掘,社交網絡分析以及圖形問題的可伸縮算法設計。

Saravanan(Sara)Thirumuruganathan是HBKU QCRI數據分析小組的科學家。 他在德克薩斯大學阿靈頓分校獲得博士學位。 他對數據集成/清理和用于數據管理的機器學習廣泛感興趣。 Saravanan的工作已入選VLDB 2018/2012最佳論文,并獲得SIGMOD 2018研究重點獎。

付費5元查看完整內容
北京阿比特科技有限公司