亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要——近年來,視覺-語言預訓練(Vision-Language Pretraining)作為一項融合視覺與文本模態優勢的變革性技術,催生了強大的視覺-語言模型(VLMs)。依托于網絡規模的預訓練數據,這些模型展現出卓越的零樣本推理能力。然而,在面對特定領域或專業任務時,其性能常常出現顯著下降。為解決該問題,研究社區日益關注如何將 VLM 中蘊含的豐富知識遷移或泛化到多樣的下游應用中。 本文旨在全面梳理 VLM 泛化的研究設定、方法體系、評測基準與實驗結果。我們首先分析典型的 VLM 架構,并依據遷移模塊的不同,將現有文獻劃分為基于 Prompt(提示)、基于參數、以及基于特征的方法三大類。隨后,結合經典遷移學習(Transfer Learning, TL)設定,進一步總結與探討各類方法的差異與特點,提出 VLM 時代下遷移學習的新解讀。此外,本文還系統介紹了主流 VLM 泛化評測基準,并對各類方法在不同任務中的表現進行了詳盡對比。

隨著大規模通用預訓練的不斷演進,本文也探討了視覺-語言模型與最新多模態大語言模型(Multimodal Large Language Models, MLLMs,如 DeepSeek-VL)之間的關聯與差異。通過從“泛化”這一全新且實用的視角系統梳理視覺-語言研究的快速進展,本文有助于清晰描繪當前與未來多模態研究的整體格局。 關鍵詞——視覺-語言模型,遷移學習,提示調優,魯棒微調,領域泛化,測試時自適應,無監督領域適應,多模態大語言模型

1 引言

深度神經網絡已在眾多實際應用中取得顯著成果。以視覺模型為例,從 AlexNet【1】到 ResNet【2】再到 Vision Transformer【3】,模型規模與表示能力都得到了極大提升。然而,高效訓練這些大規模模型往往需要大量標注數據與巨大的計算資源。為了解決這一問題,“基礎模型”(foundation model)的概念應運而生——即在大規模數據集上預訓練通用模型,以便將其知識遷移到各種下游任務中【4】。例如,預訓練于 ImageNet【5】上的 ResNet 系列已成為圖像分類【2】、目標識別【6】等視覺任務的重要基石。 自然語言處理領域也經歷了類似的發展,從 Transformer【7】、BERT【8】到 GPT-2【9】與 GPT-3【10】,均在各自的單模態任務中取得卓越表現,但它們本質上缺乏對多模態信息的感知與推理能力。 如圖 1 所示,對比式語言-圖像預訓練(contrastive language-image pretraining)范式的出現【11】徹底重塑了視覺-語言學習格局。Radford 等人提出的 CLIP【11】模型利用 4 億網頁爬取的圖文對進行對比學習:將語義匹配的圖文拉近、不匹配的拉遠,從而實現了跨任務的強大零樣本泛化能力,覆蓋圖像分類【11】、目標檢測【12】、視頻檢索【13】等任務。后續研究通過擴大與去噪預訓練數據集【14】【15】【16】、探索多樣的預訓練策略【17】【18】、引入多語言數據【19】【20】【21】,進一步增強了 VLM 的能力。 盡管 VLM 在通用任務上表現出色,但其預訓練知識在特定領域的下游任務上泛化能力有限。若無合適的遷移方式,預訓練的 VLM 往往難以處理分布外(OOD)數據,如遙感圖像【22】或精細類別圖像【23】【24】。傳統的“預訓練-微調”范式仍適用,但在 VLM 中直接微調可能破壞其對齊的視覺-語言表示,導致性能下降【25】【26】【27】。 因此,如何以盡可能低的計算與標注成本將 VLM 中的知識優雅地泛化至下游任務,已成為研究熱點。考慮到 VLM 的多模態特性,研究者們嘗試將單模態領域成熟的遷移策略,如 Prompt Tuning【28】、Adapter 插件【29】、知識蒸餾【30】,擴展應用于 VLM【26】【31】【32】【33】。借助其龐大的通識知識,VLM 正逐步成為“任務無關型”求解器,在無監督領域適應(UDA)【34】【35】【36】、領域泛化(DG)【37】【38】【39】、測試時自適應(TTA)【40】【41】【42】等遷移學習場景中設立了新基線。 面對這種趨勢,我們提出了關鍵問題:在 VLM 時代,知識遷移有何不同?

為此,本文對 VLM 的泛化能力展開系統文獻綜述。


研究動機與貢獻

現有綜述多聚焦于 VLM 的預訓練階段,如模型結構、預訓練目標與數據集【43】【44】【45】。雖然部分工作提及了遷移學習【43】,但其覆蓋面有限,尤其缺乏對不同遷移設定之間差異的探討。本文是首個專注于 VLM 遷移與泛化能力 的系統綜述。我們以主流的雙分支架構(如 CLIP【11】)為基礎,識別并歸類遷移的關鍵模塊,具體如下: 1. Prompt-based 方法:僅調節文本提示嵌入以控制模型行為【31】【32】【40】; 1. Parameter-based 方法:有策略地更新預訓練參數【46】【47】【48】,或通過知識蒸餾引入新參數【33】【38】【39】; 1. Feature-based 方法:對提取到的特征進行后處理,如引入可學習模塊【26】【35】或構建免訓練緩存機制【27】【41】【49】。

我們結合遷移學習研究中的經典設定【4】【50】【51】,重新審視這些 VLM 方法,并分析其在不同遷移設定中的特性差異。隨后,我們系統匯總了適用于各類遷移任務的主流基準數據集,并提供基于模型結構與方法設計的性能比較。


同時,本文還涵蓋了 VLM 與多模態大語言模型(MLLM)之間的融合。近年來,大語言模型(LLM)取得突破性進展【52】【53】【54】【55】,將對齊語言的視覺編碼器(如 CLIP)與 LLM 相連接,并以大規模多模態指令數據進行訓練,構建出視覺-語言大模型(MLLM)。這些模型在視頻理解、視覺問答、圖像字幕、分割與識別等任務中展現出強大的泛化能力【18】【56】【57】【58】。 作為另一類通用視覺-語言模型,本文對 MLLM 的基本構建框架、模型類型、使用的預訓練數據與目標,以及其在多任務中的表現進行全面總結,并呈現當前該領域的研究圖譜(如圖 3 所示)。


綜述貢獻總結如下:

系統回顧 VLM 泛化研究進展:涵蓋無監督領域適應、領域泛化、小樣本適應、測試時自適應等遷移學習任務;據我們所知,這是首個專注于 VLM 泛化的綜述工作。 1. 提出三類關鍵遷移方法分類:Prompt-based、Parameter-based 與 Feature-based,并在各類遷移設定下深入分析其技術細節與適用場景。 1. 收集主流評測基準并對比方法性能:從泛化設定、模型結構與設計角度出發,提供公平、系統的性能評估。 1. 引入并分析 MLLM 的發展與代表模型:總結其結構、組成模塊、泛化能力、訓練數據與目標,為理解視覺-語言研究的前沿進展提供參考。 1. 提出當前挑戰與未來方向:識別現階段研究瓶頸,并展望可行的研究路徑與潛力。


文章結構如下:

第 2 節介紹 VLM 相關基礎知識及所涉及的遷移學習設定; * 第 3 節討論 Prompt-based 方法,分為訓練時提示(3.1)與測試時提示(3.2); * 第 4 節介紹 Parameter-based 方法,包括參數微調(4.1)與知識蒸餾(4.2); * 第 5 節探討 Feature-based 方法,包括可學習適配器(5.1)與免訓練緩存機制(5.2); * 第 6 節總結主流基準與方法性能評估; * 第 7 節介紹現代 LLM 如何增強與泛化 VLM,構成 MLLM; * 第 8 節總結當前進展并討論未來的研究方向。

付費5元查看完整內容

相關內容

摘要—— 作為機器人學和具身智能的關鍵前沿,機器人操作需要精確的運動控制,以及在動態環境中對視覺與語義線索的綜合理解。傳統方法依賴預定義的任務規范和僵化的控制策略,往往難以在非結構化、全新場景下擴展或泛化。近年來,基于大規模視覺-語言模型(VLMs)的視覺-語言-動作(VLA)模型逐漸成為一種變革性的范式。這類模型利用大規模 VLMs 在開放世界泛化、層級任務規劃、知識增強推理以及多模態融合方面的能力,使機器人能夠理解高層指令、識別未知環境并執行復雜的操作任務。本綜述首次從系統化、面向分類法的角度,對用于機器人操作的大規模 VLM 驅動 VLA 模型進行全面回顧。我們首先明確界定大規模 VLM 驅動的 VLA 模型,并劃分出兩類核心體系結構范式:(1)單體式模型,涵蓋單系統與雙系統設計,二者在集成程度上有所差異;(2)分層式模型,顯式地通過可解釋的中間表示將規劃與執行解耦。在此基礎上,我們深入探討大規模 VLM 驅動的 VLA 模型:(1)其與強化學習、免訓練優化、人類視頻學習以及世界模型集成等前沿領域的結合;(2)其獨特特征的綜合,包括體系結構特點、操作優勢,以及支撐其發展的數據集和基準;(3)未來的研究方向,包括記憶機制、四維感知、高效適應、多智能體協作以及其他新興能力。本綜述整合了近期進展,旨在彌合現有分類法的不一致性,緩解研究碎片化,并通過系統性地整合大規模 VLM 與機器人操作交叉領域的研究,填補關鍵空白。我們提供了一個定期更新的項目主頁以記錄最新進展://github.com/JiuTian-VL/Large VLM-based VLA for Robotic Manipulation。 關鍵詞—— 視覺-語言-動作模型,機器人操作,具身智能,大規模視覺-語言模型

1 引言

機器人操作(Robotic Manipulation)處于機器人學與具身人工智能交匯處的關鍵挑戰 [1]–[5]。其實現不僅需要精確的運動控制,還需要對復雜動態環境中的多樣化視覺與語義線索具備深刻理解。機器人操作在諸多領域展現出廣泛應用價值,包括先進制造、高效物流、精準醫療和多樣化的家庭服務 [6]–[8]。傳統的操作方法 [9]–[16] 主要依賴精心設計的控制策略和嚴格預定義的任務規范。然而,這些方法在非結構化的真實世界場景中往往表現不佳——尤其是在面對新穎物體、模糊的自然語言指令或此前未見的環境配置時,暴露出其在可擴展性與泛化能力方面的固有限制。 近年來,大規模視覺-語言模型(Vision-Language Models, VLMs)[17]–[25] 崛起為一種變革性范式。基于大規模網頁級圖文數據集的預訓練,大規模 VLM 展現出卓越的能力,能夠彌合視覺感知與自然語言理解之間的語義鴻溝。這種創新能力使 VLM 不僅能結合文本描述理解復雜視覺場景,還能超越單純的目標識別,形成整體的上下文理解。大規模 VLM 與機器人系統的結合催生了一類新模型:基于大規模 VLM 的視覺-語言-動作(Vision-Language-Action, VLA)模型 [26]–[32]。如圖 1 所示,這一新興范式展現出克服傳統機器人流水線根本局限的巨大潛力。它使機器人能夠理解高層次的人類指令、泛化至未知物體與場景、推理復雜的空間關系,并在動態、非結構化環境中執行復雜的操作任務。例如,一個 VLA 模型可以完成如下指令:“把紅色的杯子從筆記本電腦旁邊放到最上層的架子上”,這一任務需要視覺定位、空間推理與序列動作規劃的復雜融合。 在本研究中,基于對近期工作的廣泛回顧 [26]–[37] 及對該領域的深入理解 [38]–[43],我們提出了一個一致性的定義:大規模 VLM 驅動的 VLA 模型是指能夠(1)利用大規模 VLM 理解視覺觀測和自然語言指令;并且(2)通過推理過程直接或間接地服務于機器人動作生成的模型。我們進一步將其劃分為兩大類(見圖 2 與圖 3): * 單體式模型(Monolithic Models)(圖 3 左):包括單系統與雙系統實現。

單系統模型 [26], [27], [44], [45] 在統一架構中集成了環境理解(包括視覺感知、語言理解與機器人狀態感知)與動作生成。 * 雙系統模型 [29]–[32] 則采用 VLM 作為場景解釋的骨干網絡,并由一個動作專家負責動作生成,二者通過潛在表示的傳播進行信息交互。 * 分層式模型(Hierarchical Models)(圖 3 右)[46]–[50] 明確將規劃與策略執行解耦。它們區別于雙系統的端到端方法,具有以下特征:

結構化的中間輸出:規劃模塊生成可解釋的表示(如關鍵點檢測、可供性圖、軌跡提案),隨后由策略模塊處理以生成可執行的動作。 1. 解耦的訓練范式:通過專門的損失函數或 API 驅動的交互,實現對層級模塊的獨立優化。

這種分類法凸顯了 VLA 模型開發中的關鍵設計維度,尤其是系統集成的粒度與認知分解的顯式程度,同時保持與現代表征學習范式的緊密聯系。 在上述定義與分類的框架下,我們的全面綜述揭示了新興 VLA 領域中的若干關鍵缺口,其整體組織結構如圖 2 所示。首先,該領域的術語與建模假設尚不一致,研究工作分散在機器人學、計算機視覺與自然語言處理等學科。其次,已有綜述往往僅聚焦于 VLMs [51]–[55] 或機器人操作 [2], [56]–[59],缺乏對二者交叉所帶來的獨特挑戰與進展的綜合分析。因此,亟需一份系統性和原則性的綜述,以闡明大規模 VLM 驅動 VLA 模型的基礎,組織相關方法的空間,并勾勒該融合范式的未來方向。本綜述旨在填補這一空白。我們提供了結構化且深入的回顧,以全景視角推動學界更深刻的理解并激發未來的突破。

本文的主要貢獻總結如下: * 縱向綜述: 我們系統回顧了 VLM 的演化軌跡、操作學習的技術進展,以及大規模 VLM 驅動 VLA 范式的興起。同時,分析了單體式模型與分層式模型的發展,識別關鍵挑戰并展望未來方向。 * 橫向綜述: 我們提供了單體式與分層式模型更精細的比較性分類法,從結構與功能兩個維度展開分析。進一步探討了大規模 VLM 驅動 VLA 模型的前沿研究方向,強調其獨特特征與支撐發展的數據集。該綜述為理解該領域的發展與結構組織提供了概念性路線圖。

本文余下部分的組織結構如圖 2 所示:第二節介紹 VLM 演化與機器人操作基礎知識;第三節分析單體式模型,包括單系統與雙系統架構的優劣與權衡;第四節探討分層式模型,將其分為僅規劃器與規劃-策略框架,并進一步根據中間表示類型(子任務、關鍵點、程序等)細分;第五節討論其他前沿方法,包括基于強化學習的優化、免訓練方法、從人類視頻學習以及基于世界模型的方法;第六節分析大規模 VLM 驅動 VLA 模型的核心特征,涵蓋多模態融合、指令跟隨和多維泛化;第七節分類與分析相關數據集與基準,涵蓋模擬、真實世界與人類交互數據;第八節探討關鍵開放挑戰與未來研究方向;第九節給出結論。

付費5元查看完整內容

摘要——從視覺觀測中重建四維空間智能長期以來一直是計算機視覺領域中的核心難題之一,并具有廣泛的現實應用場景。這些應用涵蓋從電影等娛樂領域(側重于基礎視覺要素的重建)到具身智能(強調交互建模與物理現實性)。得益于三維表示和深度學習架構的迅猛發展,該研究方向迅速演進,已遠超以往綜述的覆蓋范圍。此外,現有綜述往往缺乏對四維場景重建中層次結構的系統分析。為填補這一空白,本文提出一種新的視角,將現有方法按照五個逐級遞進的四維空間智能層級進行組織: (1) 第一層級:低層三維屬性的重建(如深度、姿態和點云圖); (2) 第二層級:三維場景組成要素的重建(如物體、人類、結構體); (3) 第三層級:四維動態場景的重建; (4) 第四層級:場景組件之間交互的建模; (5) 第五層級:物理規律與約束的融合建模。 本文最后討論了各層級所面臨的關鍵挑戰,并指出了邁向更高層次四維空間智能的潛在研究方向。為了追蹤該領域的最新進展,我們維護了一個實時更新的項目頁面: //github.com/yukangcao/Awesome-4D-Spatial-Intelligence。 關鍵詞——四維空間智能、低層線索、場景重建、動態建模、交互建模、物理建模、視頻

1 引言

利用機器學習或深度學習技術自動重建四維空間智能,長期以來一直是計算機視覺領域中的關鍵難題。通過同時捕捉靜態構型與隨時間變化的動態過程,四維空間智能能夠提供對空間環境的全面表示與理解,將三維幾何結構與其時間演化整合在一起。該研究方向因其廣泛的應用場景而受到高度關注,包括視頻游戲 [1]、電影 [2] 和沉浸式體驗(如 AR/VR)[3], [4],其中高保真度的四維場景是實現真實用戶體驗的基礎。 除了這些側重于四維空間智能基本組成部分的應用場景——如深度、相機姿態、點云圖、三維跟蹤等低層線索,以及場景組成要素和動態之外,空間智能還在推動具身智能(Embodied AI)[5], [6], [7] 和世界模型(World Models)[8] 的發展中發揮著核心作用。這些后者的任務更加注重場景中各組成部分之間的交互以及重建環境的物理合理性。 近年來,四維空間智能的重建技術取得了飛速進展。已有若干綜述工作 [9], [10] 從不同角度提供了有價值的視角,并總結了該領域中持續存在的挑戰。例如,[11]–[13] 綜述了通過深度立體匹配獲取低層場景信息的最新進展;[14]–[16] 系統梳理了三維場景重建方面的研究,涵蓋多種輸入模態和多樣的三維表示方式;[9], [10] 則從核心架構出發對動態四維場景重建方法進行了分類。 然而,隨著新型三維表示方法的提出 [17]–[19]、高質量視頻生成技術的發展 [20]–[22]、以及更高效重建模型的出現,該領域已取得顯著進展。盡管如此,現有綜述尚未系統分析動態四維場景的不同組成層級,也未深入探討各層級的發展現狀與關鍵挑戰,導致人們對四維空間智能的理解仍存在碎片化傾向,容易忽略其中的關鍵組成部分。因此,亟需一份全面、系統、與時俱進的綜述來將四維空間智能劃分為不同層級,梳理最新進展,并描繪該研究領域不斷演化的全貌。 基于這一緊迫需求,本文將現有的四維空間智能重建方法劃分為以下五個層級,并分別對其最新進展進行系統梳理: * 第一層級:低層三維線索的重建。

該層級聚焦于深度、相機姿態、點云圖和三維跟蹤等基礎三維線索的重建,這些要素構成了三維場景的基本結構。傳統上,這一任務常被劃分為多個子領域,如關鍵點檢測 [23]–[25] 與匹配 [26]–[29]、魯棒估計 [28], [30]、SfM(結構自運動)[31]–[34]、BA(Bundle Adjustment)[35]–[38]、以及稠密多視圖立體重建(MVS)[39]–[43]。近期方法如 DUSt3R [44] 及其系列擴展 [45]–[48] 致力于聯合求解上述子任務,實現更協同的一體化推理。而 VGGT [54] 則在 Transformer 架構 [49]–[53] 的基礎上,提出了一個端到端系統,能在數秒內高效估計這些低層三維線索。 * 第二層級:三維場景組成要素的重建。

在第一層級的基礎上,第二層級進一步重建場景中的獨立要素,如人類、物體和建筑等。雖然某些方法涉及要素間的組合與空間布局,但通常不對它們之間的交互進行建模或約束。近期方法結合了 NeRF [55]、3D Gaussians [56] 和 Mesh 表示(如 DMTET [18] 和 FlexiCube [57])等創新型三維表示方式,提升了重建細節的真實性、渲染效率以及整體結構一致性,為照片級真實感場景重建和沉浸式虛擬體驗奠定基礎。 * 第三層級:四維動態場景的重建。

本層級引入場景動態,是實現“子彈時間”式四維空間體驗和沉浸式視覺內容的關鍵步驟。現有方法主要分為兩類:一類方法 [58]–[62] 先重建一個靜態的標準輻射場,再通過學習得到的時序變形建模動態過程;另一類方法 [63]–[69] 則將時間作為額外參數直接編碼進三維表示,實現連續動態建模。 * 第四層級:場景組件之間交互的建模。

該層級標志著空間智能研究進入更成熟階段,著眼于不同場景組成部分之間的交互建模。考慮到人類通常是交互的核心主體,早期工作 [70]–[74] 主要聚焦于捕捉人類與可操控物體的動作。隨著三維表示的進步,近期方法 [75]–[80] 可更精確地重建人類與物體外觀,而人-場景交互建模 [81]–[85] 也逐漸成為研究熱點,為構建完整世界模型提供基礎支撐。 * 第五層級:物理規律與約束的融合建模。

盡管第四層級能夠建模場景組件之間的交互,但通常忽略了如重力、摩擦力、壓力等底層物理規律。因此,在如具身智能 [5]–[7] 等任務中,這類方法常難以支持機器人在現實世界中模仿視頻中的動作與交互。第五層級的系統旨在通過引入物理可行性約束來彌補上述不足。近期研究 [86]–[88] 借助如 IsaacGym [89] 等平臺及強化學習方法 [90]–[92],展示了從視頻中直接學習并復現類人技能的能力,標志著向物理一致性空間智能邁出重要一步。此外,對一般三維物體(如變形、碰撞與動力學)和物理場景的建模 [93]–[95] 也成為活躍研究方向,進一步拓展了第五層級的適用范圍。

綜述范圍: 本文主要聚焦于從視頻輸入中進行四維場景重建的方法,具體圍繞上述五個層級梳理關鍵技術進展與代表性工作。所選論文大多來自計算機視覺與圖形學的頂級會議和期刊,并補充了部分 2025 年發布的 arXiv 預印本。我們的選擇標準強調與本綜述主題的相關性,旨在提供該領域近期快速進展的全面概覽。 本綜述不涵蓋純三維生成方法 [96]–[98] 及基于生成式視頻擴散模型 [20]–[22] 的四維生成方法 [99]–[104],因為它們通常只生成單一類型輸入,與四維重建關系較弱。此外,我們也未深入探討各類三維表示方法,相關讀者可參考已有的綜述文獻 [10], [15], [105]–[110]。 組織結構: 圖 1 展示了四維空間智能各層級的整體概覽。接下來的章節中,我們按照從視頻輸入重建五個關鍵層級的流程,構建一個系統的研究分類體系:第 2 節介紹低層三維線索,第 3 節討論三維場景要素,第 4 節聚焦動態場景建模,第 5 節涉及場景交互,第 6 節探討物理規律建模。最后在第 7 節中,我們將對當前方法進行批判性反思,指出各層級仍面臨的開放挑戰,并展望超越現有五層級的四維空間智能未來發展方向。

付費5元查看完整內容

摘要 —— 強化學習(Reinforcement Learning, RL)已成為對齊與增強大語言模型(Large Language Models, LLMs)的一種變革性方法,能夠應對指令遵循、倫理對齊以及推理能力等方面的關鍵挑戰。本文綜述了強化學習與語言模型結合的全面基礎,重點介紹了如近端策略優化(Proximal Policy Optimization, PPO)、Q學習(Q-Learning)和演員-評論家(Actor-Critic)等主流算法。此外,文章系統回顧了專為LLM定制的強化學習技術,包括基于人類反饋的強化學習(Reinforcement Learning from Human Feedback, RLHF)和基于AI反饋的強化學習(Reinforcement Learning from AI Feedback, RLAIF)等基礎方法,以及偏好直接優化(Direct Preference Optimization, DPO)和群體相對策略優化(Group Relative Policy Optimization, GRPO)等先進策略。我們系統性地分析了這些技術在各領域的應用,從代碼生成到工具增強推理不等。本文還基于獎勵建模、反饋機制與優化策略提出了一套對比性分類體系。評估結果揭示了一些關鍵趨勢:RLHF 仍然是主導性的對齊技術,而基于結果的強化學習(如 RL with Verified Rewards, RLVR)顯著提升了逐步推理能力。然而,獎勵欺騙、計算成本高昂以及反饋收集的可擴展性等持續性挑戰,凸顯了持續創新的必要性。我們進一步探討了若干新興方向,包括混合RL算法、驗證器引導訓練,以及多目標對齊框架。本綜述可為研究人員提供一份關于RL驅動的大語言模型開發的路線圖,致力于在提升能力的同時兼

性與可擴展性。

關鍵詞 —— 強化學習、大語言模型、RLHF、對齊、推理、自然語言處理、人工智能 **

**

一、引言

大語言模型(Large Language Models, LLMs)已成為人工智能領域的變革性技術,在理解和生成自然語言方面展現出卓越能力。從 GPT-3 擁有的 1750 億參數 [1],到近年來如 LLaMA 3.1 的 4050 億參數 [2],以及 DeepSeek-V3 的 6710 億參數 [3],這些模型在規模和能力上持續擴展。盡管它們在多種任務中表現出色,LLMs 仍然面臨“對齊”(alignment)問題,即確保模型輸出始終反映人類的價值觀、偏好與意圖,仍是一項重大挑戰。LLMs 往往會產生“幻覺”(hallucination)[4],存在生成有害內容的風險 [5]–[7],并且在執行復雜指令方面常常表現不佳 [8]。

強化學習(Reinforcement Learning, RL)是一種智能體通過與環境交互中的試錯過程進行學習的范式,近年來成為應對對齊挑戰的強有力框架。與傳統依賴標注樣本的監督學習方法不同,強化學習能夠引入不可微分的反饋信號,并優化多目標的復雜任務。在 LLM 中引入強化學習,標志著人工智能對齊研究的一項重大進展,使模型能夠學習人類偏好、提升推理能力,并更好地遵循倫理規范。本文旨在全面審視應用于 LLM 的強化學習技術,聚焦于模型在“對齊人類價值”與“增強推理能力”兩方面的提升。

將強化學習應用于 LLM 面臨一系列區別于傳統 RL 場景的獨特挑戰。在 LLM 中,狀態空間通常由輸入提示或對話歷史構成,而動作空間則涵蓋模型完整的詞匯表,形成了一個極其龐大且離散的動作集合。這種高維動作空間對算法設計提出了更高要求,與機器人控制或游戲等傳統 RL 應用場景有顯著不同。此外,LLM 中的獎勵信號通常來自于人類對文本質量、有用性、無害性和誠實性等復雜維度的主觀判斷,這些屬性本質上難以量化。

基于人類反饋的強化學習(Reinforcement Learning from Human Feedback, RLHF)[9] 已成為對齊 LLM 與人類偏好的事實標準。該方法通常包含三個階段:首先基于高質量示范數據進行有監督微調,其次利用人類偏好數據訓練獎勵模型,最后使用如近端策略優化(PPO)[10]等算法對策略進行優化。RLHF 在提升指令遵循能力、減少有害輸出方面取得了顯著成效,OpenAI 的 InstructGPT 即為代表性成果 [9]。

然而,人類標注的可擴展性問題推動了替代方案的發展。基于 AI 反饋的強化學習(Reinforcement Learning from AI Feedback, RLAIF)[11] 用其他 AI 系統的評估結果來替代或增強人類反饋,在維持相近性能的同時大幅降低了標注成本。憲法 AI(Constitutional AI)[12] 是 RLAIF 的一種特化形式,模型根據預定義的原則對自身輸出進行批判與修正,尤其適用于無害性對齊。近期的研究進一步致力于簡化 RLHF 流程,例如偏好直接優化(Direct Preference Optimization, DPO)[13],跳過顯式獎勵建模,直接通過偏好對進行策略優化,在計算效率和訓練穩定性方面具有優勢。實證研究顯示,DPO 在情感控制與摘要等任務中的表現可與基于 PPO 的 RLHF 相媲美甚至超越,同時大大降低了系統復雜度。

除了人類偏好對齊之外,RL 技術也越來越多地用于提升 LLM 的推理能力。基于結果的強化學習(Outcome-Based Reinforcement Learning)[14] 關注最終答案的正確性,即使中間推理步驟未被監督也可進行優化。更先進的方法如帶可驗證獎勵的強化學習(Reinforcement Learning with Verifiable Rewards, RLVR)[15],能為推理過程中的每一步提供反饋,顯著提升模型在數學與邏輯推理任務上的表現。例如,RLVR 將 GPT-3.5 在數學推理基準 GSM8K 上的準確率從 56.8% 提升至 72.5%,且僅需少量訓練樣本。盡管已有顯著進展,將 RL 應用于 LLM 仍存在諸多挑戰,例如獎勵函數被模型“鉆空子”的獎勵欺騙現象(reward hacking)[16], [17];以及 RL 訓練所需的龐大計算成本,尤其是在參數量級為數十億的模型上,給實際部署帶來困難。此外,不論是來自人類還是 AI 系統,確保反饋的質量與代表性 [18], [19] 仍是一個復雜難解的問題。

本文在該領域的貢獻包括以下幾點:第一,我們提供了一份關于 RL 技術在 LLM 中應用的全面技術綜述,涵蓋了如 RLHF 與 RLAIF 等基礎方法,以及 DPO 和群體相對策略優化(Group Relative Policy Optimization, GRPO)等前沿方法。第二,我們系統分析了 RL 技術在多個領域的應用,如代碼生成與工具增強推理,展現其廣泛適應性與有效性。第三,我們提出了一個基于獎勵建模、反饋機制與優化策略的對比分類體系,為理解 RL 在 LLM 中的技術生態提供結構化框架。最后,我們還討論了若干新興研究方向,包括混合 RL 算法、驗證器引導訓練,以及多目標對齊框架。

本文其余部分安排如下:第二節介紹 LLM 與強化學習的基礎概念;第三節詳細講解為 LLM 改編的具體 RL 算法;第四節探討用于對齊與推理增強的 RL 技術;第五節展示 RL 在各類應用場景中的實踐;第六節提供一套比較分析與評估;第七節討論現有挑戰與局限;第八節展望未來研究方向;第九節總結全文。我們希望通過本綜述為研究者與實踐者提供一份推動 RL 驅動 LLM 發展的技術路線圖,在提升模型能力的同時兼顧安全性與可擴展性。

付費5元查看完整內容

摘要——隨著生成式人工智能(Generative AI)的快速發展,尤其是大語言模型的不斷突破,推薦系統正朝著更具通用性的方向演進。與傳統方法不同,生成式人工智能不僅能夠從復雜數據中學習模式和表示,還具備內容生成、數據合成和個性化體驗等能力。這種生成能力在推薦系統中發揮著關鍵作用,能夠緩解數據稀疏問題,并提升系統的整體性能。當前,基于生成式 AI 的推薦系統研究已取得了豐富成果。與此同時,推薦系統的目標也已超越單一的準確性要求,催生了大量面向多目標優化的研究,試圖在推薦中綜合考慮多種目標。然而,據我們所知,目前尚缺乏基于生成式 AI 技術的多目標推薦系統的系統性綜述研究,相關文獻仍存在明顯空白。為填補這一研究空缺,本文對融合生成式 AI 的多目標推薦系統研究進行了系統梳理,按照優化目標對現有工作進行分類整理。同時,我們總結了相關的評估指標和常用數據集,并進一步分析了該領域面臨的挑戰與未來發展方向。 關鍵詞——多目標優化,推薦系統,生成式人工智能,大語言模型

1 引言 在大數據時代,推薦系統已成為應對信息過載問題的關鍵工具,幫助用戶高效地發現有價值的內容。它們被廣泛應用于音樂、新聞、職位推薦等多個領域 [1]–[3],通過過濾海量信息流,顯著提升用戶體驗。推薦系統的發展已歷經數十年,從最初的協同過濾方法 [4]–[7] 和內容推薦方法 [8], [9],到后來的混合模型 [10]、基于圖神經網絡的方法 [11],以及深度學習方法 [12], [13],不斷演進以滿足日益增長的個性化和可擴展性需求。

近年來,生成式人工智能(Generative AI)的突破顯著改變了推薦系統的格局。正如文獻 [14] 所指出的,基于生成技術的推薦系統已成為該領域的新興研究方向。生成對抗網絡(GANs)[15]、變分自編碼器(VAEs)[16]、擴散模型 [17] 和大語言模型(LLMs)[18] 等技術,使得推薦系統能夠更豐富地進行數據合成并實現更深層次的上下文理解。其中,大語言模型在處理多模態數據(文本、圖像、視頻)和生成上下文感知的推薦內容方面展現出強大能力,帶來了前所未有的靈活性。與傳統模型依賴歷史數據預測用戶偏好不同,生成模型可以模擬用戶交互、增強稀疏數據集,并生成個性化內容,從而為推薦范式的創新開辟了新路徑。

生成模型在推薦系統領域展現出巨大潛力。目前的研究主要集中在單一目標任務,例如通過合成數據提升準確性,或利用大語言模型增強可解釋性。然而,對準確性的過度關注可能導致“過濾泡沫”(filter bubble)現象 [19],使用戶被限制在重復或同質化的內容中,抑制探索行為并削弱長期參與度。考慮到生成式人工智能在推理和理解方面的先進能力,其在多目標推薦中的應用也極具前景。 研究社區已廣泛探索在傳統推薦系統框架下平衡多種目標的多目標推薦系統(MORS)[20]–[23],但在融合生成式 AI 技術方面,相關研究仍屬稀缺。因此,將多目標優化整合進生成式推薦系統,是一個亟待深入研究的方向。

為填補這一空白,本文系統調研了使用生成技術實現多目標推薦的現有研究。我們特別強調,任何關于推薦系統附加目標(如多樣性、偶然性或公平性)的討論,都隱含地將準確性作為基礎性前提。因此,我們將多目標推薦系統(MORS)定義為:優化準確性之外其他目標的推薦系統。 本綜述識別出當前生成式推薦系統中除準確性外的主要目標包括:多樣性、偶然性、公平性與安全性;此外還涉及新穎性、可控性、效率與魯棒性等附加目標。我們聚焦于推薦系統中廣泛應用的四類生成技術:GANs、擴散模型、VAEs 與大語言模型。針對每一類目標,我們深入回顧了主流的模型架構與評估指標,并總結相關發展挑戰,旨在為未來的多目標生成式推薦研究提供基礎性見解。

本文的主要貢獻如下:

本文為首個將生成式人工智能(包括 GANs、VAEs、擴散模型和大語言模型)與多目標推薦系統(MORS)結合的全面綜述,提出了一個面向目標的分類框架,系統回顧了四類關鍵目標(多樣性、偶然性、公平性、安全性)下模型架構、優化策略和評估指標的發展與局限性。 * 我們系統總結了不同目標領域(如公平性與偶然性)下的專用評估指標對應基準數據集,為實驗設計提供標準化參考。 * 我們還討論了生成式 MORS 研究中的核心挑戰,并展望了未來的發展方向,包括改進評估指標、設計適用于 LLM 的高級策略、融合多種生成技術以提升推薦質量等。此外,我們強調跨學科合作(如倫理學、社會學)的重要性,以構建更加公平透明的推薦系統。這些見解為學術界與工業界的進一步探索與創新奠定了基礎。

文章結構概覽:

第 2 節綜述推薦系統、生成式推薦系統和多目標推薦系統的相關文獻,構建研究背景。 第 3 節介紹本文涵蓋的四類主要生成技術。 第 4 節作為核心部分,系統梳理基于生成技術的多目標推薦系統,按超越準確性的目標進行分類,介紹相關定義、模型與評估指標。 第 5 節總結各類目標下常用的推薦數據集。 第 6 節探討每類關鍵目標面臨的主要挑戰。 最后在第 7 節對全文進行總結。

付費5元查看完整內容

摘要

近年來,我們見證了通用模型在自然語言處理領域的巨大成功。通用模型是一種以海量數據進行訓練的通用框架,能夠同時處理多種下游任務。在其卓越性能的激勵下,越來越多的研究者開始探索將這類模型應用于計算機視覺任務。然而,視覺任務的輸入與輸出形式更加多樣化,難以將其歸納為統一的表示形式。本文對視覺通用模型進行了全面綜述,深入探討了其在該領域中的特性與能力。我們首先回顧了相關背景,包括數據集、任務類型以及評測基準。隨后,我們梳理了現有研究中提出的模型框架設計,并介紹了用于提升模型性能的關鍵技術。為了幫助研究者更好地理解該領域,我們還簡要探討了相關研究方向,揭示了它們之間的關聯性與潛在協同作用。最后,我們列舉了一些真實世界的應用場景,深入分析了當前尚存的挑戰,并對未來的研究方向提出了有益的見解。

關鍵詞:基礎模型 · 計算機視覺 · 多任務學習 · 多模態數據 1 引言

作為一種智能系統,人類大腦能夠從不同的輸入模態中感知信息,并能同時處理多種任務。類似于人類,在深度學習領域中,通用模型(generalist model)【Bae et al. (2022); Huang et al. (2023b); Jaegle et al. (2021a); Shukor et al. (2023)】是一種能夠在無需為特定任務進行定制設計的前提下處理多種任務的通用框架。近年來,得益于大數據的強大驅動,大語言模型(LLMs)【Devlin et al. (2018); Ouyang et al. (2022); Peters et al. (2018)】在自然語言處理(NLP)領域中展現了通用模型的巨大成功。 然而,與 NLP 不同,視覺任務的輸出格式更加多樣且復雜。例如,傳統的分類方法【He et al. (2016a); Russakovsky et al. (2015)】只需輸出圖像或點云的類別,而目標檢測模型則需進一步定位目標,其輸出為邊界框(bounding boxes)。分割模型則需生成像素級的語義掩碼。因此,對于視覺通用模型(Vision Generalist Models, VGM)【Hu and Singh (2021); Zhang et al. (2023c); Zhu et al. (2022c)】而言,設計一個能夠適配廣泛視覺下游任務的系統至關重要。 與傳統神經網絡相比,通用模型通常擁有數十億個參數,并以海量數據進行訓練,因而具備傳統方法所不具備的諸多優秀特性。具體而言,視覺通用模型具備以下優勢: 1)零樣本多任務遷移能力(Zero-shot Multi-task Transfer)

傳統方法往往為不同任務采用各自的任務特定框架,而多任務學習方法【Sener and Koltun (2018); Yu et al. (2020); Zhang and Yang (2021)】雖能同時處理多個任務,卻難以在未經微調的情況下泛化到新的數據集。而通用模型在以任務無關的大規模數據預訓練后,能夠學習到通用表征,可直接擴展至多種下游任務,并具備零樣本遷移能力,無需額外適配器進行微調,從而實現真正的通用感知(general perception)2)多模態輸入(Multimodality Inputs)

通用模型的一大特性是能夠接收來自不同模態的數據作為輸入。由于各模態間存在巨大差異,統一編碼為特征表示極具挑戰。例如,圖像為規則的二維矩陣,而點云則是無序的三維向量。這兩類數據所使用的編碼器也不同:分別為二維卷積與三維稀疏卷積【Graham et al. (2018); Yan et al. (2018)】。除了視覺信號,還需考慮文本、音頻等其他模態,這進一步增加了處理難度。得益于 Transformer 架構【Vaswani et al. (2017b)】,部分工作將多模態輸入統一為一系列 token 表示。 3)強大的表征能力(Great Representation Ability)

現有的通用模型往往擁有數十億個參數。盡管計算代價高昂,但龐大的參數規模顯著提升了模型的表征能力。多任務和多模態輸入之間能夠相互促進,進一步增強模型性能。 4)大數據的賦能(Power of Big Data)

大數據為模型訓練提供了豐富的知識。例如,ChatGPT【Ouyang et al. (2022)】使用約 45TB 的文本數據進行訓練。從不同模態和領域采集的大規模數據提升了樣本多樣性,從而增強了模型的泛化能力。大規模數據集【Chen et al. (2015); Krizhevsky et al. (2012)】涵蓋了眾多極端情況,有助于模型在復雜場景中穩定工作。 盡管視覺通用模型優勢顯著,但仍面臨若干挑戰: 1)框架設計(Framework Design)

通用模型的核心技術在于如何設計一個能夠統一處理多種下游任務的框架。雖然已有一些工作【Hu and Singh (2021); Zhang et al. (2023c); Zhu et al. (2022c)】嘗試解決這一問題,但目前尚未形成標準化的流程。因此,建立統一的視覺通用模型范式仍是當前最亟需解決的挑戰。 2)數據獲取(Data Acquisition)

通用模型的訓練依賴于海量數據。在 NLP 領域,大量帶標簽的文本數據可從網頁中獲取;而在計算機視覺中,網絡上的大多數視覺數據并未標注,獲取標簽代價高昂且耗時。有些研究【Kirillov et al. (2023b); Ouyang et al. (2022)】提出了針對特定任務的數據自動標注方法,但如何針對不同任務與模態實現自動化標注仍是一個尚未深入探索的問題。 3)倫理風險(Ethical Risks)

與大語言模型類似,視覺通用模型也面臨倫理風險。在生成任務中,模型可能產生包含個人或敏感信息的內容,例如深度偽造視頻【Güera and Delp (2018); Westerlund (2019)】;在判別任務中,訓練數據中的無意識偏見可能會影響模型判斷;此外,不當或非法數據的使用還可能引發法律問題。 在過去兩年中,我們已見證通用模型在多個深度學習方向中的成功。隨著神經網絡架構的不斷發展,越來越多的研究致力于構建能夠實現通用感知的模型。盡管通用模型已引發廣泛關注,但尚缺乏一篇系統性綜述來全面總結這一熱門方向,因此我們撰寫了本文。 本綜述的主要目的包括: 1. 對相關研究文獻進行系統梳理,幫助研究者快速入門; 1. 總結現有方法的局限與挑戰,并指出未來可能的研究方向; 1. 理清視覺通用模型與其他相關領域的聯系與差異

在相關工作方面,Awais 等人(2023)提供了一份關于視覺基礎模型的綜述。盡管視覺基礎模型與通用模型同樣是在大規模數據上進行訓練,并能接收多模態輸入,但通用模型還具備處理多任務的強泛化能力,而基礎模型在適應下游任務時通常需要針對特定數據集進行微調,限制了其實用性。因此,我們的綜述與 Awais 等人的工作在概念上存在顯著差異,我們更加專注于總結通用模態感知與通用任務處理能力。 相比之下,另一篇綜述【Li et al. (2023b)】從更宏觀的視角出發,探討了多模態基礎模型的分類與演進,包括統一視覺模型、大語言模型及其在多模態智能體中的應用。而本文則更聚焦于視覺通用模型(VGM)這一子領域,深入剖析其框架設計與關鍵技術。 我們將本文組織為六個部分,以系統梳理視覺通用模型的發展,如圖 1 所示: * 第2節:介紹 VGM 常用的任務類型、數據集與評測基準; * 第3節:深入分析 VGM 的框架設計,包括編碼器驅動方法與序列到序列框架; * 第4節:總結應對多領域輸入、模型設計和多任務輸出的關鍵技術; * 第5節:探討 VGM 與相關領域的聯系,尤其是多任務學習、視覺-語言學習與開放詞表學習; * 第6節:展示 VGM 的真實應用場景,并討論其面臨的挑戰與未來發展方向。

我們希望本綜述能為研究者和從業者提供一份關于視覺通用模型的系統性參考資料,助力其在這一快速發展的研究領域中取得突破。

付費5元查看完整內容

**摘要

近年來,隨著多模態大型語言模型(MLLMs, Multimodal Large Language Models)的快速發展,人工智能領域取得了顯著進展。然而,將靜態的、預訓練的 MLLM 適配于動態數據分布及多種任務,同時保證高效性和準確性,仍然是一項重大挑戰。在針對特定任務對預訓練 MLLM 進行微調(fine-tuning)時,模型在其原有知識領域中往往會出現明顯的性能下降——這一現象被稱為“災難性遺忘(Catastrophic Forgetting)”。盡管該問題在持續學習(Continual Learning, CL)領域已被廣泛研究,但在 MLLM 背景下仍然面臨新的挑戰。 作為首篇關于多模態大型模型持續學習的綜述論文,本文對MLLM 持續學習的 440 篇相關研究進行了全面梳理與深入分析。在介紹基本概念的基礎上,本文的綜述結構分為四個主要部分:

  1. 多模態大型語言模型的最新研究進展涵蓋各類模型創新策略、基準測試(benchmark)以及在不同領域的應用;
  2. 持續學習的最新研究進展分類及綜述按研究對象劃分為三大方向:
  • 非大型語言模型(Non-LLM)單模態持續學習(Unimodal CL)
  • 非大型語言模型多模態持續學習(Multimodal CL)
  • 大型語言模型中的持續學習(CL in LLM)
  1. MLLM 持續學習的現狀分析涵蓋主流基準測試、模型架構和方法的創新改進,并系統性地總結和回顧已有的理論與實證研究;
  2. 未來發展方向對 MLLM 持續學習領域的挑戰與前景展開前瞻性討論,旨在啟發研究人員,并推動相關技術的進步。

本綜述旨在系統性地連接基礎設置、理論基礎、方法創新和實際應用,全面展現多模態大型模型持續學習的研究進展和挑戰,為該領域的研究人員提供有價值的參考,并促進相關技術的發展。

近年來,多模態大型語言模型(MLLM, Multimodal Large Language Models) 的研究取得了快速進展,并成為人工智能領域的重要研究方向之一 [1]-[10]。MLLM 通過融合語言、視覺、音頻等多模態信息,展現出強大的跨模態理解與生成能力,為解決復雜的現實世界問題提供了創新性方案 [11]-[15]。 為了提升 MLLM 的性能,研究者提出了多種改進策略。首先,在跨模態信息融合方面,引入了更高效的架構設計 [16]-[18],例如基于 Transformer 的多模態聯合編碼器和解碼器,以及輕量級跨模態注意力模塊 [19]-[21]。其次,在預訓練技術方面,進一步發展了多模態對比學習、跨模態一致性約束、自監督學習(self-supervised learning)等方法,大幅提升了模型的泛化能力和魯棒性 [22]-[25]。此外,微調(fine-tuning)技術也不斷優化,例如引入了參數高效調整方法(如 LoRA [27])和任務特定適配層設計,使得 MLLM 能夠在較低計算成本下適應多樣化的任務場景 [26]-[31]。 MLLM 的性能評估主要依賴于多模態基準測試(benchmark),這些測試涵蓋多個任務類別(見圖 1)。例如,在視覺-語言任務領域,主流基準包括視覺問答(VQA, Visual Question Answering) [32]-[36]、圖像描述(Image Captioning) [37]-[42]、視覺指引(Visual Grounding) [43]-[46];在音頻-語言任務領域,基準測試涵蓋音頻-文本對齊音頻生成 [47]-[49];此外,還有更復雜的跨模態推理任務等 [50]-[51]。MLLM 在醫療、教育、機器人、自主駕駛等實際應用中也展現出巨大潛力,并發揮著日益重要的作用 [52]-[54]。

1.1 持續學習與多模態大型模型的結合

持續學習(Continual Learning, CL) 旨在解決模型在面對動態變化的數據流時,如何在學習新任務的同時有效保留已有知識,從而緩解災難性遺忘(Catastrophic Forgetting)問題 [55]-[57]。近年來,持續學習的研究不斷深入,特別是在不同規模的模型及多模態學習場景下取得了顯著進展 [58]-[63]。 在單模態持續學習(Unimodal CL) 研究中,主要關注緩解災難性遺忘的算法設計,使模型在學習新任務的同時仍能保持對已有任務的良好性能 [64]-[69]。相比之下,多模態持續學習(Multimodal CL) 面臨更大挑戰,因為模型需要同時處理不同模態的特性及其跨模態交互 [61], [70]-[72]。研究者主要致力于跨模態特征提取、對齊和處理,以減少跨模態干擾、增強模態間一致性,并提升模型的泛化能力 [73]-[76]。 隨著大型語言模型(LLM) 在自然語言處理(NLP)領域的廣泛應用,其持續學習研究也成為新興熱點 [77]-[82]。由于 LLM 具有龐大的參數規模,并依賴于大規模預訓練數據,傳統的持續學習策略在應用于 LLM 時面臨計算成本高、適應性受限等挑戰。為此,研究者提出了一些優化方向,包括參數高效微調(PEFT, Parameter-Efficient Fine-Tuning) 方法(如 LoRA、Prefix Tuning 等)[27]-[31],以及基于提示學習(prompt learning)的方法。這些技術在開放領域問答、持續對話系統、跨領域文本生成等任務中展現出極大潛力 [83]-[85]。

1.2 研究挑戰與綜述目標

MLLM 的快速發展與持續學習研究的深入結合,為探索人工智能前沿方向提供了新的視角 [9], [14], [17], [24], [52], [65], [69], [79], [86]。該領域的關鍵挑戰在于:如何在學習新任務的同時高效保持已有知識,并維持跨模態協同能力 [87]-[89]。這是目前持續學習與 MLLM 結合研究的核心問題之一。 基于現有研究,本文對多模態大型模型持續學習的研究進行系統性綜述和總結,重點探討模型架構與方法的創新,包括不同模型框架的設計、動態參數調整機制,以及支持任務適配的模塊 [90]-[93]。這些技術不僅能有效緩解災難性遺忘問題,還能顯著提升 MLLM 的任務適應能力和泛化能力。 此外,本文還介紹了現有的多模態大型模型持續學習評測基準,這些基準測試對評估 MLLM 在持續學習任務中的表現起到重要支持作用 [94]-[97]。多模態大型模型的持續學習研究,不僅為跨模態任務的動態適應提供了新的技術手段,還能為智能教育、醫療、機器人交互等實際應用中的復雜任務提供創新性解決方案 [89], [98]-[100]。 最后,本文對多模態大型模型持續學習的挑戰與未來發展趨勢進行前瞻性討論,包括災難性遺忘問題、評測基準的改進與標準化、多模態持續學習的可解釋性與透明度提升等方面。通過這些討論,本文旨在為該領域的研究者提供有價值的研究洞見,并推動多模態大型模型持續學習技術的進一步發展與應用。

付費5元查看完整內容

 摘要—生成性人工智能(AI)通過使機器能夠以空前的復雜性創建和解釋視覺數據,迅速推動了計算機視覺領域的發展。這一變革建立在生成模型的基礎上,能夠生成逼真的圖像、視頻以及3D/4D內容。傳統上,生成模型主要關注視覺逼真度,而往往忽視了生成內容的物理合理性。這一差距限制了其在需要遵守現實世界物理法則的應用中的效果,如機器人技術、自動化系統和科學模擬。隨著生成性人工智能不斷融入物理現實和動態仿真,其作為“世界模擬器”的潛力不斷擴大——能夠模擬由物理法則主導的交互,架起虛擬與物理現實之間的橋梁。本綜述系統地回顧了這一新興領域——計算機視覺中的物理感知生成性AI,按其如何融入物理知識對方法進行了分類——無論是通過顯式仿真還是隱式學習。我們分析了關鍵范式,討論了評估協議,并指出了未來的研究方向。通過提供全面的概述,本綜述旨在幫助未來在視覺領域的物理基礎生成方面的發展。綜述中提到的論文匯總在

//github.com/BestJunYu/Awesome-Physics-aware-Generation

1 引言生成學習一直是現代計算機視覺的基礎支柱,解決了理解、合成和操作視覺數據中的關鍵挑戰。在過去的十年里,該領域見證了多種生成模型的快速發展,包括變分自編碼器(VAE)[1]、生成對抗網絡(GAN)[3]、擴散模型(DM)[4]、[5]、[6]、神經輻射場(NeRF)[7]、高斯濺射(GS)[8] 和視覺自回歸模型(VAR)[9]。這些模型不斷推動生成學習的邊界,利用越來越強大的架構來捕捉視覺數據的潛在分布。其目標是使機器能夠以類似人類的創造性和理解方式推理視覺世界,通過在未見過的場景中想象新的視覺內容實例。在這些進展中,擴散模型因其能夠生成高度逼真的輸出而成為特別值得注意的技術。通過通過學習到的去噪過程迭代地精煉隨機噪聲,擴散模型展現出卓越的魯棒性和多功能性,成為近期生成方法學的基石。生成模型的應用跨越了多種視覺內容的模態,包括具有語義理解的圖像生成、具有動態時間理解的視頻生成、具有增強空間理解的3D內容生成[10]、[11]、[12]以及具有更復雜和綜合理解的4D內容[13]、[14]、[15]、[16]、[17]、[18]、[19]。這些進展突顯了生成學習在日益復雜的視覺任務中的巨大潛力。在這些不同的視覺模態中,視頻生成最近在生成學習領域獲得了顯著關注,它為擴展大型生成模型處理更高維數據提供了一個更加具有挑戰性的試驗平臺。這一復雜性不僅源于單個幀的空間復雜性,還來自于跨序列所需的時間一致性。許多商業視頻生成模型已被開發并引起了廣泛的公眾關注,如OpenAI的Sora [20]、Google的Veo2 [21]、騰訊的Hunyuan [22]和快手的Kling [23]。視頻生成已在多種形式和設置中得到深入研究,從最基本的無條件生成[24]、[25]到圖像到視頻生成[26]、[27]、[28]、[29]、[30]、[31]、[32]、[33]、文本到視頻生成[24]、[25]、[26]、[29]、[30]、[30]、[34]、[35]、[36]、[37]、視頻到視頻生成[38]、[39]、以及視頻編輯或定制[40]、[41]、[42]、[43]。這些設置各自解決了獨特的挑戰,從保持時間連續性到結合來自文本或視覺輸入的語義引導。更重要的是,視頻在生成AI視覺的未來中占據了關鍵地位。互聯網上可用的大量視頻數據封裝了關于現實世界的豐富信息,使視頻成為生成AI可以學習建模復雜現實世界現象的媒介。在這個背景下,視頻可以被視為現實世界決策的“語言”,具有彌合數字和物理領域的潛力[44]。視頻生成有望提供一個統一的接口作為“世界模型”[45],處理物理知識,類似于文本大語言模型(LLM)處理抽象知識的方式。這種模型可以促進大量下游任務的執行,包括自動駕駛、科學仿真、機器人[46]、[47]、[48]、[49]、[50]以及其他形式的具身智能。為了實現這一潛力,生成過程應能夠與人類或其他系統的外部控制進行交互。這種互動性促進了動態決策制定和基于互動優化結果的能力,催生了可以描述為生成交互環境的概念[44]、[51]、[52]、[53]。視頻生成已經與多種交互控制信號相結合,如運動向量或軌跡[54]、[55]、[56]、[57]、[58]、手部掩碼[59]、潛在動作[53]、[60]、機器人操作[47]、相機運動[61]、演示[62]和自然語言描述[63]、[64]、[65]。這些互動元素突顯了生成視頻模型的多功能性和適應性,為其演變為世界模型鋪平了道路。然而,從生成到穩健世界建模的過渡仍然存在一個關鍵差距:真實世界物理的忠實理解和復制能力[66](見圖1)。當前的最先進模型主要針對像素空間中的視覺真實感進行優化,而非在實體或概念空間中的物理合理性。為了使生成模型能夠作為物理世界的模擬器,它們必須融入對物理法則的深刻理解,如動力學、因果關系和材料屬性。這種物理意識對于超越僅生成視覺上吸引人的輸出至關重要,以確保內容與物理世界的約束和行為一致。因此,我們提供本綜述,作為對現有文獻的及時而全面的回顧,旨在將物理感知嵌入生成模型。通過審視這些努力,我們希望突出至今所取得的進展,提供清晰的范式結構,并識別未來的潛在研究方向。綜述范圍:本綜述的范圍是關于增強生成輸出物理感知的計算機視覺生成模型。因此,我們不包括將物理原理作為先驗知識或歸納偏置融入模型或神經架構設計的文獻,例如物理信息神經網絡(PINN)[67]、[68],即使任務與生成學習相關,例如[69]、[70]、[71]。我們專注于生成任務,因此不包括圖像處理任務,如去模糊、去霧和增強,盡管我們注意到這些工作中有大量的物理相關內容。為了專注于計算機視覺,我們還排除了純圖形和渲染研究與物理仿真相結合的文獻。與其他綜述的比較:如同在我們的范圍中所述,本綜述與現有的關于物理信息機器學習[72]、物理信息計算機視覺[73]和物理信息人工智能[74]的綜述不同,因為它們強調的是在物理先驗知識下的模型設計方面。我們的綜述專注于具有物理感知的生成,因此與現有的關于生成模型[75]、擴散模型[76]、[77]、視頻擴散模型[78]、基于擴散的視頻編輯[79]的綜述有所不同。與專注于特定領域的綜述,如人類視頻或運動生成[80]、[81]、[82]相比,我們的綜述也有不同的范圍。

付費5元查看完整內容

摘要—人工智能(AI)的快速發展已徹底改變了眾多領域,尤其是大規模語言模型(LLMs)和計算機視覺(CV)系統,分別推動了自然語言理解和視覺處理的進步。這些技術的融合催生了多模態人工智能,能夠實現跨文本、視覺、音頻和視頻等模態的更豐富的跨模態理解。尤其是多模態大規模語言模型(MLLMs)作為一種強大的框架,展現了在圖像-文本生成、視覺問答和跨模態檢索等任務中的卓越能力。盡管取得了這些進展,MLLMs的復雜性和規模也帶來了可解釋性和可解釋性方面的重大挑戰,而這些挑戰對于在高風險應用中建立透明性、可信度和可靠性至關重要。本文提供了關于MLLMs可解釋性和可解釋性的全面綜述,提出了一個新穎的框架,將現有研究從以下三個角度進行分類:(I) 數據,(II) 模型,(III) 訓練與推理。我們系統地分析了從詞匯級到嵌入級表示的可解釋性,評估了與架構分析和設計相關的方法,并探討了增強透明度的訓練和推理策略。通過比較各種方法論,我們識別了它們的優缺點,并提出了未來研究方向,以解決多模態可解釋性中尚未解決的挑戰。本文綜述為推動MLLMs的可解釋性和透明度提供了基礎資源,旨在引導研究人員和實踐者開發更加負責任和穩健的多模態人工智能系統。

關鍵詞—多模態大規模語言模型、可解釋性、可解釋性、綜述

引言 人工智能(AI)的快速發展已經顯著改變了眾多領域。最近,AI領域最具影響力的進展之一是大規模語言模型(LLMs)的發展,這些模型在文本生成、翻譯和對話式AI等一系列自然語言任務中表現出卓越的語言理解和生成能力[1]。同樣,計算機視覺(CV)的進展使得系統能夠有效處理和解釋復雜的視覺數據,推動了物體檢測、動作識別和語義分割等任務的高精度實現[2]。最近,這些技術的融合激發了對多模態人工智能的興趣,它旨在整合文本、視覺、音頻和視頻等多種模態,實現更加豐富和全面的多模態理解[3, 4, 5, 6, 7, 8, 9, 10, 11]。多模態大規模語言模型(MLLMs)在深度學習技術的重大進展推動下,經歷了快速的發展[12, 13, 14, 15, 16, 17]。通過整合多種數據源,MLLMs在一系列多模態任務中展示了先進的理解、推理和生成能力,包括圖像-文本生成[18, 19, 20]、視覺問答[21, 22, 23, 24, 25, 26, 27, 28]、跨模態檢索[29, 30, 31]、視頻理解[32, 33, 34, 35, 36, 37, 38]。因此,MLLMs在多個領域找到了廣泛的應用[39, 40, 41],包括自然語言處理(NLP)[42, 43]、計算機視覺(CV)[44, 45]、視頻[15, 46, 47]、自動駕駛[3, 48, 49]、醫學[50, 51, 52]和機器人技術[53, 54, 55, 56, 57, 58]。然而,隨著MLLMs的復雜性和規模的增長,出現了一個關鍵挑戰:解碼MLLMs的決策過程[6, 59, 60]。 可解釋人工智能(XAI)領域已經成為使復雜AI系統的決策過程更加透明和易于理解的關鍵[61, 62, 63]。可解釋性和可解釋性被定義為能夠以人類可理解的方式解釋或呈現[64, 65]。盡管在單模態的可解釋性和可解釋性方面已經取得了顯著進展,例如在卷積神經網絡(CNN)[66, 67]和變換器(transformers)[68]在圖像上的應用,以及LLMs[69]在文本中的應用,但多模態領域存在獨特的挑戰,如不同模態的對齊和分解。此外,MLLMs的可解釋性和可解釋性對于確保透明性和可信度至關重要,特別是在人工智能決策對人類產生重大影響的高風險應用中,這涉及如何在模型中結合不同的數據類型,以及它們的相互作用如何影響輸出。根據近期的研究[64, 70, 71],本文定義了在MLLMs中,可解釋性指的是那些本質上易于理解的內部結構,使得輸入如何轉化為輸出能夠直觀地理解。另一方面,MLLMs的可解釋性涉及提供關于模型決策背后的外部分析的后置技術。 本文提出了一種新的視角來分類MLLMs的可解釋性和可解釋性,通過整合數據、模型、訓練與推理的視角。正如圖1所示,我們從三個角度考察MLLMs的可解釋性和可解釋性:數據(第III節)、模型(第IV節)、訓練與推理(第V節)。繼數據驅動的可解釋性研究[72, 73, 74, 75]之后,我們探討了數據視角(第III節),分析輸入和輸出數據如何歸因于模型的決策。我們還分析了基準和應用,以評估各種任務中的可信度和可靠性,從而確保其在現實場景中的魯棒性和適用性[76, 77]。在模型的可解釋性和可解釋性方面[78, 79, 80, 81, 82, 83, 84],從模型視角(第IV節),我們深入分析了從詞匯級、嵌入級、神經元級、層級到架構級的各個層面。在詞匯級[85, 86, 87, 88, 89],我們研究了單個詞匯對模型輸出的影響,并探索了增強可解釋性的方法。在嵌入級[90],我們評估了多模態嵌入如何影響MLLMs的性能和可解釋性,提供了對底層表示機制的更深刻理解。對于神經元級[91, 92, 93],我們分析了單個單元和特定神經元組的作用,以理解它們對整體模型行為的貢獻。在層級級[67, 78, 94],我們研究了不同層次如何影響模型內的決策過程。在架構方面,我們區分了架構分析和架構設計[95, 96, 97, 98]的可解釋性方法,強調了促進透明性和更好理解模型操作的策略。 此外,我們還探討了增強模型透明性和可解釋性的訓練與推理策略(第V節)。在訓練階段[79],我們總結了各種訓練機制和權重調整如何影響MLLMs的可解釋性。我們討論了旨在改善對齊、減少幻覺并促進核心知識和泛化能力獲取的技術。在推理階段,我們研究了如何在不需要重新訓練的情況下,緩解諸如幻覺等問題,包括過度信任懲罰機制和鏈式推理技術。 通過整合這些視角[3, 99, 100],我們的綜述提供了對MLLMs可解釋性和可解釋性挑戰與進展的全面理解。我們相信,這一全面分析將為致力于開發更透明、可靠和可信的多模態模型的研究人員和實踐者提供寶貴的資源。本研究的主要貢獻總結如下: * 我們首次提供了對現有多模態大規模語言模型(MLLMs)可解釋性和可解釋性的深入和全面回顧。 * 我們展示了當前多模態大規模語言模型可解釋性和可解釋性方法的結構化和比較分析,提出了一種新穎的分類方法,將這些方法組織為數據、模型、訓練與推理視角。 * 我們突出顯示了可能推動該領域發展的研究方向,為研究人員進一步發展MLLMs的可解釋性和可解釋性方法提供了有價值的指導。

II. 綜述框架

A. 綜述范圍 近年來,多模態模型和可解釋人工智能(XAI)取得了顯著進展,許多研究探索了使這些復雜模型更加透明和可解釋的方法[72, 73, 74]。為了將本綜述的范圍縮小到一個可管理的范圍,我們聚焦于多模態大規模語言模型(MLLMs)的可解釋性和可解釋性。MLLMs的可解釋性指的是那些本質上易于理解的內部結構,能夠為輸入如何被處理并轉化為輸出提供直觀的洞察[78, 79]。可解釋的MLLMs使研究人員和實踐者能夠深入理解這些跨模態的動態,澄清每個模態如何影響和塑造模型的決策過程[90]。可解釋性涉及使用外部技術來闡明模型決策背后的原因,這在MLLMs中對于理解多模態間復雜的交互作用至關重要[95]。這種重點不僅增強了我們對多模態集成的理解,也回應了對復雜AI系統透明度日益增長的需求[79]。 在本綜述中,我們集中探討MLLMs中四個主要維度的可解釋性和可解釋性: * 數據可解釋性 —— 探討來自不同模態的輸入數據如何預處理、對齊和表示,以支持跨模態的可解釋性,以及如何應用因果歸因方法來增強對模型決策的理解[72, 75]。 * 模型可解釋性 —— 闡明多模態模型本身的結構和功能,提供關于神經元、層次和架構如何貢獻于可解釋性的洞察[67, 78, 79, 80, 85, 86, 87, 90, 91, 95]。 * 訓練與推理可解釋性 —— 理解MLLMs的訓練和推理過程如何影響可解釋性,這對于在學習階段和實際應用中提升透明度至關重要。

為了保持焦點,我們將單一模態的可解釋性方法排除在本綜述的主要范圍之外,如變換器(Transformer)的可解釋性、卷積神經網絡(CNN)的可解釋性或LLMs的可解釋性,僅作為簡要的背景信息進行介紹。類似地,一些不涉及多模態交互獨特挑戰的通用可解釋性方法也不在本綜述的主要范圍之內。相反,我們將重點放在那些專門設計用于解釋和闡明多模態之間交互作用的方法和模型上。 B. 綜述方法論 為了提供對MLLMs可解釋性和可解釋性的全面概述,我們進行了廣泛的文獻回顧,涵蓋了機器學習、自然語言處理(NLP)、計算機視覺(CV)和多模態系統等領域的研究論文。我們重點審查了過去十年(2010–2024)間發表的論文,特別是研究這些領域中可解釋性和可解釋性的不斷增長的文獻。我們的研究方法包括幾個關鍵步驟。首先,我們使用“多模態大模型”、“可解釋性”和“可解釋性”等關鍵詞,在Google Scholar等數據庫中搜索相關論文,具體細節見表I。為了進一步確保綜述的完整性,我們還審查了關鍵論文的參考文獻,并包括了對該領域具有影響力的早期工作。 在收集候選論文后,我們進行了多步驟的篩選過程。首先通過標題篩選潛在相關的論文,然后進行摘要篩查以確認相關性。如果標題和摘要不足以做出決策,我們會進一步查閱完整的文本。如圖2所示,最終選擇的文獻涵蓋了應用于MLLMs的各種可解釋性和可解釋性技術,包括輸入輸出分析、模型組件和訓練動態等。

結論

本綜述系統地探討了多模態大規模語言模型(MLLMs)的可解釋性和可解釋性,強調了決策過程透明性的重要性。我們將可解釋性方法分為三個主要領域——數據、模型和訓練與推理——提供了一個結構化框架來組織研究并指導未來的研究工作。盡管已經取得了顯著進展,但在可解釋性方法和確保廣泛適用性方面仍然存在挑戰。未來的努力應著眼于填補這些空白,構建對MLLMs的統一理解,推動創新,使多模態系統變得更加可靠和可信。

付費5元查看完整內容

摘要——本綜述對機器學習中多模態對齊與融合的最新進展進行了全面回顧,尤其是在文本、圖像、音頻和視頻等數據類型日益多樣化的背景下。多模態集成通過利用不同模態之間的互補信息,提高了模型的準確性并擴展了其應用范圍,同時在數據稀缺的情況下也促進了知識遷移。我們系統地對現有的對齊與融合技術進行了分類和分析,并基于對200多篇相關論文的廣泛回顧,提取了有價值的見解。此外,本綜述還討論了多模態數據集成中的挑戰,包括對齊問題、噪聲魯棒性以及特征表示的差異,并著重于社交媒體分析、醫學影像和情感識別等領域的應用。文中提供的見解旨在指導未來的研究,優化多模態學習系統,以提高其在各類應用中的可擴展性、魯棒性和泛化能力。

關鍵詞——多模態對齊、 多模態融合、多模態性、機器學習、綜述

1 引言

技術的快速發展導致了多模態數據生成的指數增長,包括圖像、文本、音頻和視頻[1]。這種數據的豐富性為計算機視覺、自然語言處理(NLP)等多個領域的研究者和從業者帶來了機遇與挑戰。通過整合來自不同模態的信息,可以顯著提升機器學習模型的性能,增強其理解復雜現實場景的能力[2]。模態的結合通常有兩個主要目標:(i)不同的數據模態可以互補,從而提高模型在特定任務上的精度和效果[3],[4],[5];(ii)某些模態的數據可能較為稀缺或收集起來具有挑戰性,因此,基于大規模語言模型(LLM)的訓練可以通過知識遷移在數據稀缺的任務中實現滿意的性能[5],[6]。

例如,在社交媒體分析中,將文本內容與相關的圖像或視頻結合,可以更全面地理解用戶情感和行為[1],[7]。除了社交網絡,多模態方法在醫療圖像自動注釋、視頻摘要和情感識別等應用中也取得了有希望的成果[8],[9],[10],[11],[12]。盡管取得了這些進展,但在有效整合和利用多模態數據方面仍然存在兩個主要的技術挑戰:對齊和融合。對齊側重于建立不同模態之間的語義關系,確保每個模態的表示在一個共同的空間內對齊;而融合則是將多模態信息整合為統一的預測,利用每個模態的優勢來提升整體模型的性能。 第一個組件是多模態對齊,涉及建立不同模態之間的關系[1],[49],[50],[51]。例如,將視頻中的動作步驟與相應的文本描述進行對齊,由于輸入輸出分布的差異以及模態間可能存在的信息沖突,這一任務需要復雜的方法[52]。多模態對齊可大致分為顯式對齊和隱式對齊[1],[53]。顯式對齊通過相似度矩陣直接度量模態間的關系,而隱式對齊則在翻譯或預測等任務中作為一個中間步驟。

第二個組件是多模態融合,涉及將不同模態的信息結合起來,進行統一的預測,同時解決模態之間噪聲變異性和可靠性差異等挑戰[1],[54],[55]。傳統上,融合方法根據其在數據處理流程中的階段進行分類[53],[56]。例如,早期融合在特征提取階段將多個模態的數據整合在一起,盡早捕捉模態間的交互[56]。本綜述聚焦于當前融合技術的核心特征,以更有效地代表現代方法,并指導未來的發展。我們將融合方法分析為基于核、圖形、編碼-解碼器和注意力機制的融合框架。

圖1展示了三種典型的多模態模型結構。在(a)中,由于模態之間的交互不足,簡單的操作未能實現深入有效的融合。在(b)中,盡管設計了專門的融合網絡,但對齊問題仍然顯著。具體而言,由圖像和文本分別通過各自模態特定模型提取的特征可能在語義上沒有對齊,直接將這些特征傳遞給融合模塊可能無法產生最佳結果。在(c)中,模型使用共享編碼器或集成的編碼-解碼過程同時處理多模態輸入,這使得圖像和文本數據能夠轉化為共同的表示空間,從而更自然地結合。此類設計通常優先考慮模型的簡潔性和效率,特別是在模態間關系已被充分理解并有效建模的情況下。

本研究旨在通過對200多篇相關論文的回顧,提供現有方法、最新進展和潛在未來方向的全面概述,為該領域做出貢獻。本綜述幫助研究人員理解多模態對齊和融合的基本概念、關鍵方法及當前進展,重點討論視覺和語言模態,同時擴展到視頻和音頻等其他類型。

本綜述的組織結構如下:第二節介紹多模態學習的基礎概念,包括大規模語言模型(LLM)和視覺模型的最新進展,為對融合和對齊的討論奠定基礎;第三節探討為什么要進行對齊與融合的綜述研究;第四節審視對齊方法,重點討論顯式和隱式技術如何建立不同模態之間的關系;第五節探討融合策略,將其分為早期、晚期和混合融合,并介紹基于核、圖形和注意力機制的先進融合框架;第六節討論多模態融合和對齊中的關鍵挑戰,包括特征對齊、計算效率、數據質量和可擴展性;最后,第七節概述未來研究的潛在方向,并討論實踐意義,旨在指導該領域的進一步創新。

2 為什么需要對齊與融合

對齊與融合是多模態學習中的兩個基本概念,盡管它們各自獨立,但相互之間緊密相關,且常常相輔相成[1],[50]。對齊涉及確保不同模態的數據正確匹配和同步,從而使它們傳達的信息具有一致性,并適合進行融合。另一方面,融合是指將來自不同模態的信息結合起來,創建一個統一的表示,全面捕捉數據的本質[1],[54],[55]。此外,許多最新的方法發現,在沒有對齊過程的情況下進行融合是非常具有挑戰性的[49]。

2.1 提升全面性與魯棒性

對齊確保來自不同源的數據在時間、空間或上下文上同步,從而實現有意義的組合。如果沒有適當的對齊,融合過程可能導致誤解或關鍵信息的丟失[53]。 一旦對齊完成,融合利用對齊后的數據生成更為魯棒和全面的表示[49]。通過整合多個視角,融合能夠彌補單一模態的弱點,從而提高準確性和可靠性。 2.2 解決數據稀缺與不平衡問題

在許多現實應用中,某些模態的數據可能稀缺或難以獲取。對齊有助于即使在數據有限的情況下,也能同步可用的數據,確保其能夠有效利用[106],[107]。 隨后,融合使得模態之間能夠進行知識遷移,使模型能夠利用一種模態的優勢來彌補另一種模態的不足。這在某一模態擁有豐富數據而另一模態數據稀缺的場景中尤為有用。 2.3 改進模型的泛化能力和適應性

對齊確保了不同模態之間關系的準確理解與建模,這對于模型在不同上下文和應用中進行泛化至關重要[1],[53]。 融合通過創建一個統一的表示,能夠更有效地捕捉數據的細微差異,從而提高模型的適應性。這個統一的表示可以更容易地適應新的任務或環境,增強模型的整體靈活性[1],[53]。 2.4 支撐高級應用

對齊與融合共同推動了諸如跨模態檢索等高級應用的發展,在這些應用中,一種模態(例如,文本)中的信息被用于在另一種模態(例如,圖像)中搜索相關信息[108]。這些過程對于諸如情感識別等任務也至關重要,在這些任務中,將視覺和聽覺線索結合起來,能夠比單獨使用任何一種模態更準確地理解人類情感[109]。 3 多模態對齊

多模態對齊涉及建立兩種或更多不同模態之間的語義關系。它在多個領域得到了廣泛研究,包括網絡對齊[110]、圖像融合[50]和多模態學習中的特征對齊[111]。 為了將不同模態對齊到相同的語義表示中,需要衡量這些模態之間的相似性,同時考慮潛在的長程依賴關系和歧義。簡而言之,目標是構建一個映射,將一個模態的表示與另一個模態中共享相同語義的表示對齊。根據[1],對齊可以分為兩種類型:顯式對齊和隱式對齊。顯式對齊通常通過使用相似度矩陣直接度量相似性,而隱式對齊則通常是在翻譯或預測等任務中作為一個中間步驟進行處理。 3.1 顯式對齊

顯式對齊有著早期的基礎,通常依賴于諸如動態時間規整(DTW)[112],[113]和典型相關分析(CCA)[114]等統計方法。

DTW通過找到一個最優匹配來測量兩個序列之間的相似性,該過程涉及插入幀來對齊序列[112]。然而,原始的DTW公式需要預定義的相似性度量,因此它與典型相關分析(CCA)結合,后者由Harold Hotelling于1936年提出[114],通過線性變換將兩個不同的空間投影到一個共同的空間中。CCA的目標是通過優化投影來最大化兩個空間之間的相關性。CCA促進了對齊(通過DTW)和模態間映射的聯合學習,并且可以以無監督的方式進行,正如在視頻-文本和視頻-音頻對齊等多模態應用中所見。圖2展示了CCA方法的可視化。具體而言,CCA的目標函數可以表示為: max?ρ=corr(uTX,vTY)\max \rho = \text{corr}(u^T X, v^T Y)maxρ=corr(uTX,vTY) 其中: ? X 和 Y 是來自兩個不同空間的數據矩陣; ? u 和 v 是線性變換向量(或典型向量),它們將 X 和 Y 投影到共同空間中; ? ρ 是投影uTXu^T XuTX 和vTYv^T YvTY 之間的相關系數; ? 目標是找到 u 和 v,使得投影后的數據之間的相關性ρ最大化。 然而,CCA只能捕捉兩個模態之間的線性關系,限制了它在涉及非線性關系的復雜場景中的應用。為了解決這一限制,引入了核典型相關分析(KCCA),它通過核方法將原始數據映射到更高維的特征空間,從而處理非線性依賴[115],[116]。像多標簽KCCA和深度典型相關分析(DCCA)等擴展方法進一步改進了原始的CCA方法[115],[116],[117],[118],[119]。 此外,Verma和Jawahar展示了如何使用支持向量機(SVM)實現多模態檢索[120]。另外,像圖像對齊中基于特征模態的線性映射方法也被開發出來,旨在通過復雜的空間變換來處理多模態對齊問題[121]。 3.2 隱式對齊

隱式對齊是指在執行主要任務時作為中間步驟使用的方法,通常是以潛在方式進行。與直接對齊不同模態的數據不同,這些方法通過學習共享的潛在空間來改善主要任務的性能。隱式對齊技術可以大致分為兩類:基于圖模型的方法和基于神經網絡的方法。 3.2.1 基于圖模型的方法

圖結構的整合使得更復雜的模態間關系得以更好地建模,從而使多模態數據的處理更加準確和高效。這些方法常用于將圖像與文本或圖像與信號進行對齊。例如,某些模型通過對物體的圖表示進行對齊,實現了少樣本上下文模仿學習,從而使機器人在沒有事先訓練的情況下能夠執行新的任務[122]。基于顯式進化模型的GraphAlignment算法在識別同源頂點和解決副本問題方面表現出強大的性能,優于其他方法[123]。圖3展示了如何在對齊中使用圖結構。

這些任務中的一個主要挑戰是對齊不同模態之間的隱式信息,其中多模態信號并不總是直接對應。基于圖的模型通過將模態間的復雜關系表示為圖結構(圖中節點表示數據元素,如詞語、物體或幀,邊表示它們之間的關系,如語義、空間或時間關系)在解決這個問題上證明了其有效性。 近期的研究探索了使用圖結構進行多模態對齊的多個方面。例如,Tang等人[124]提出了一種基于圖的多模態順序嵌入方法,以提高手語翻譯。通過將多模態數據嵌入到統一的圖結構中,他們的模型更好地捕捉了復雜的關系。 另一個應用是在情感分析中,隱式多模態對齊起著至關重要的作用。Yang等人[125]提出了一種基于圖的多模態對齊模型(MGAM),該模型聯合建模了顯式方面(如物體、情感)和隱式多模態交互(如圖像-文本關系)。 在具身人工智能領域,Song等人[126]探討了如何構建基于場景的知識圖,以建模復雜多模態任務中的隱式關系。他們的工作將文本和視覺信息整合到一個知識圖中,并通過基于圖的推理進行多模態語義的對齊。對齊隱式線索(如場景中物體之間的空間和時間關系)對于提高具身人工智能系統中的決策和交互至關重要。 在命名實體識別(NER)任務中,Zhang等人[127]提出了一種基于圖的逐標記方法,該方法結合了與文本相關的圖像中的隱式視覺信息。該方法利用視覺域中的空間關系來改進命名實體的識別,這在使用孤立的文本數據時通常是模糊的。 在圖像描述生成和視覺問答(VQA)等任務中,場景圖也起著至關重要的作用。Xiong等人[128]提出了一種基于場景圖的模型,用于跨模態的語義對齊。通過將物體及其關系表示為圖中的節點和邊,該模型提高了視覺和文本模態的對齊效果。 總之,基于圖的方法為表示多樣化數據類型提供了強大的框架,并且在多模態對齊中具有巨大的潛力。然而,這種靈活性也帶來了重大的挑戰。 圖結構的稀疏性和動態性增加了優化的復雜性。與矩陣或向量不同,圖具有不規則的非結構化連接,導致計算復雜度高且內存開銷大,即使在先進的硬件平臺上也存在這些問題。此外,圖神經網絡(GNN)對超參數特別敏感。網絡架構、圖采樣和損失函數優化等選擇直接影響性能,這增加了GNN設計和實際部署的難度。 3.2.2 基于神經網絡的方法

近年來,基于神經網絡的方法已成為解決隱式對齊問題的主要方法,特別是在翻譯等任務中,將對齊作為潛在的中間步驟通常能獲得更好的結果。常見的神經網絡方法包括編碼器-解碼器模型和跨模態檢索。 當沒有隱式對齊時,翻譯過程會給編碼器帶來更大的負擔,需要它將整個圖像、句子或視頻總結為一個向量表示。 一個常見的解決方案是使用注意力機制,使解碼器能夠專注于源實例的特定子組件。這與傳統的編碼器-解碼器模型不同,后者將所有源子組件一起編碼。注意力模塊引導解碼器更多地關注被翻譯的源實例的特定子組件——例如圖像的區域、句子中的詞語、音頻的片段、視頻中的幀或指令的部分。例如,在圖像描述生成中,注意力機制允許解碼器(通常是遞歸神經網絡)在生成每個詞時專注于圖像的特定部分,而不是一次性編碼整個圖像[129]。 以前的工作通過設計特定模態的嵌入器和預測器,接口連接輸入和輸出的預訓練模型來實現這一目標。 生成對抗網絡(GAN)由于其能夠學習高維數據空間之間的復雜映射,因此已成功應用于多模態數據的合成[130],[131],[132],[133],[134]。例如,在MRI模態中,使用一個統一框架,其中單個生成器學習跨模態的映射,可以提高不同數據類型之間的對齊精度[130]。 另一種深度生成方法,C-Flow,利用標準化流進行多模態對齊,應用于3D點云重建等任務,從而對生成過程進行更細粒度的控制[135]。自編碼器及其變體,如變分自編碼器(VAE),也被用來學習潛在表示,捕捉跨模態的基礎語義結構。這種方法在組合表示學習中證明了其有效性,VAE幫助通過將圖像和文本模態映射到共享的潛在空間來對齊它們[136]。類似地,使用VAE的跨模態量化進行圖像-文本配對生成,展示了神經網絡如何通過學習量化的聯合表示對齊文本和視覺數據[137]。 此外,半監督流形對齊方法(如擴散傳輸對齊DTA)利用少量先驗知識對齊具有不同但相關結構的多模態數據域[138]。這種方法在僅能進行部分數據對齊的情況下尤為有效,因為它依賴于域之間的幾何相似性。 最近,Att-Sinkhorn方法結合了Sinkhorn度量和注意力機制,在通過解決不同模態的概率分布之間的最優傳輸問題來改進多模態特征對齊方面顯示了更高的準確性[139]。 總之,顯式和隱式對齊技術在多模態機器學習領域都至關重要。盡管顯式方法提供了一個明確的框架,用于度量相似性和建立對應關系,但隱式方法通常更靈活,并能適應更多的場景,特別是那些涉及復雜或模糊數據關系的任務。未來的研究可能會繼續探索結合兩種對齊策略優點的混合方法,以解決多模態數據中所面臨的各種挑戰[110],[111],[139]。

4 多模態融合

多模態數據涉及多種信息類型的整合,如圖像、文本和音頻,這些信息可以通過機器學習模型處理,從而提高多種任務的性能[1],[53],[140],[141],[142],[143]。通過結合不同類型的信息,多模態融合利用了每種模態的優勢,同時彌補了依賴單一數據類型時可能出現的弱點或空白[1],[53],[144]。例如,每種模態在最終預測中可能會有不同的貢獻,某些模態可能在某一時刻比其他模態更具信息量或噪聲更小。 融合方法在有效結合不同模態的信息時至關重要。早期的方法通常將圖像和文本分開處理,兩個數據類型之間僅有基本的整合。像 CLIP [13] 這樣的架構采用了雙編碼器框架,其中視覺和文本信息分別編碼,它們的交互通過簡單的操作來處理,通常涉及點積計算[145],[146]。因此,這兩種模態的融合在整體模型架構中所占的比重較小,主要由編碼器本身主導。盡管這種有限的集成策略在基于檢索的任務[147],[148]中有效,但對于更復雜的多模態挑戰(需要深度理解和模態之間的交互)則不夠充分[149],[150]。 如果通過獨立訓練每個模態的專門編碼器,然后進行表面化的集成就能實現強大的性能,那么深度多模態學習的需求就值得懷疑。然而,經驗數據表明,對于需要細致理解的任務,如視覺問答和視覺推理,必須對兩種模態進行更復雜、更深度的融合,才能充分捕捉視覺感知和語言處理之間的相互關系[152]。 傳統上,融合方法根據融合發生的數據處理管道階段進行分類。早期融合在特征級別進行數據整合,晚期融合則在決策級別進行整合,混合融合結合了兩者的特點[1],[53]。早期融合涉及在特征提取階段將來自不同模態的數據合并[56],從而讓模態之間的交互得以早期捕捉。如趙等人[93]所述,集成發生在特征級別。相比之下,晚期融合則在決策階段將各個模態模型的輸出結合起來,當預測時缺少一個或多個模態時,這種方法特別有優勢,正如 Morvant 等人[153]所展示的。混合融合則將早期融合和晚期融合的各個方面結合在一起,趙等人[93]研究了其在深度學習中的實現。 隨著技術和融合方法的演進,區分早期、晚期和混合融合變得越來越復雜。先進的方法通常超越了傳統的基于時序的分類,在特征級別和決策級別同時操作,這挑戰了僵化的分類。 為了解決這種復雜性,我們提出了一種基于當前融合技術核心特征的新分類框架,提供了對現代方法的更準確表征,并為未來的進展提供指導。特別是,盡管許多基于注意力的方法可以適配編碼器-解碼器或僅編碼器框架,但我們將它們單獨分類,因為它們在最近的顯著發展和獨特創新方面,傳統的分類方法無法充分捕捉。

4.1 編碼器-解碼器融合

編碼器-解碼器融合架構涉及一個編碼器,該編碼器從輸入數據中提取關鍵特征并將其壓縮成緊湊的形式,而解碼器則基于這種壓縮的表示重建輸出[26]。在該架構中,系統主要由兩個主要組件組成:編碼器和解碼器。編碼器通常作為一個高級特征提取器,將輸入數據轉換為一個潛在空間,其中包含重要特征[26],[37]。換句話說,編碼過程在減少冗余的同時保留了重要的語義信息。一旦編碼步驟完成,解碼器就會基于潛在表示生成相應的“重建”輸出[26],[31]。在像語義分割這樣的任務中,解碼器的輸出通常是一個語義標簽圖,它與輸入大小相匹配。 編碼器-解碼器融合通常有三種形式:(1)數據級融合,將來自不同模態的原始數據拼接在一起,并送入共享的編碼器;(2)特征級融合,分別從每個模態提取特征,可能包括中間層,然后將它們組合后再輸入到解碼器;(3)模型級融合,在處理后將各個模態特定模型的輸出進行拼接。圖4展示了這三種類型的編碼器-解碼器融合結構。特征級融合通常最為有效,因為它考慮了不同模態之間的關系,從而實現了更深層次的集成,而非表面上的組合。

4.1.1 數據級融合

在這種方法中,來自每個模態的數據或每個模態獨特預處理步驟后的處理數據在輸入級別進行合并[27]。在這種集成之后,來自所有模態的統一輸入將通過一個編碼器來提取更高層次的特征。換句話說,來自不同模態的數據在輸入階段被合并,并通過單一編碼器提取綜合特征。 最近的研究聚焦于數據級融合,以提高自動駕駛中物體檢測和感知的性能。一些研究探索了在神經網絡架構的早期階段融合相機和LiDAR數據,展示了在稀疏點云中,特別是對騎行者的三維物體檢測精度有所提升[35]。一個基于Yolo框架的聯合處理相機和LiDAR原始數據的系統比傳統的決策級融合提高了5%的車輛檢測精度[27]。此外,還開發了一個面向低級傳感器融合的開放硬件和軟件平臺,特別是利用原始雷達數據,推動了這一領域的研究[36]。這些研究突出了原始數據級融合在利用傳感器間協同作用并提高整體系統性能方面的潛力。

4.1.2 特征級融合

這種融合技術的核心思想是將來自多個抽象層次的數據進行組合,從而利用從深度網絡不同層次提取的特征,最終增強模型的性能。許多應用都實施了這一融合策略[32],[163]。 特征級融合已成為多種計算機視覺任務中的一種強大方法。它涉及在不同的抽象層次上融合特征以提升性能。例如,在性別分類中,融合局部補丁的兩層層次結構證明是有效的[163]。在顯著性物體檢測中,融合來自不同VGG層次的特征的網絡能夠保留語義信息和邊緣信息[30]。在多模態情感計算中,一種“分而治之,合而為一”的策略探索了局部和全局交互,達到了最先進的性能[32]。對于自適應視覺跟蹤,開發了一種層次模型融合框架,通過層次更新對象模型,引導參數空間的搜索并減少計算復雜性[33]。 這些方法展示了層次特征融合在多個領域中的多樣性,展現了它在捕捉細粒度和高級信息方面的能力,從而在復雜的視覺任務中實現更好的性能。

4.1.3 模型級融合

模型級融合是一種通過集成多個模型的輸出提高準確性的技術。例如,在使用地面穿透雷達(GPR)進行地雷檢測時,Missaoui等人[34]證明了通過多流連續隱馬爾可夫模型(HMM)融合邊緣直方圖描述符和Gabor小波的方式,優于單一特征和等權重組合。 在多模態物體檢測中,Guo和Zhang[28]應用了平均、加權、級聯和堆疊等融合方法,將圖像、語音和視頻的模型結果結合起來,從而提高了在復雜環境中的性能。對于面部動作單元(AU)檢測,Jaiswal等人[29]發現,使用人工神經網絡(ANN)的模型級融合比簡單的特征級方法更有效。此外,對于涉及多保真度計算機模型的物理系統,Allaire和Willcox[25]開發了一種融合方法,利用模型不適配信息和合成數據,得到了比單獨模型更好的估計結果。在質量控制和預測性維護中,一種新穎的模型級融合方法優于傳統方法,減少了預測方差30%,并提高了45%的準確性[38]。這些研究證明了模型級融合在多個領域中的有效性。 本節回顧了基于編碼器-解碼器架構的融合模型。編碼器-解碼器融合架構在多模態任務中被廣泛應用,展示了不同融合技術的多樣性,包括數據級融合、特征級融合和模型級融合。這些方法在提高多模態學習模型的準確性和魯棒性方面起到了重要作用,為未來的研究和應用提供了有益的參考。

4.2 基于注意力機制的融合

基于注意力機制的融合方法近年來得到了廣泛應用,特別是在多模態學習任務中。注意力機制的核心思想是根據輸入數據的重要性動態調整其對模型的影響,而不是對所有輸入特征進行等權處理[154]。這種方式通過引導模型關注最相關的模態和特征,從而提高了模型的表現和魯棒性。 在多模態學習中,基于注意力的融合可以通過多種方式實現。最常見的方法包括加權融合、交互式融合以及跨模態注意力機制的應用。通過引入自注意力機制(Self-Attention)和跨模態注意力機制,模型能夠自動學習不同模態之間的相互關系,并在處理復雜任務時做出適當的決策[155]。 例如,在視覺問答(VQA)任務中,通過引入跨模態注意力機制,模型可以根據問題的內容自動選擇與之相關的圖像區域,從而提高了任務的精確度和準確性[156]。類似的,在多模態情感分析中,基于注意力的機制能夠幫助模型理解不同模態(如語音、文本和面部表情)之間的相互作用,從而對情感狀態進行更為精準的預測[157]。 此外,近年來,許多研究還將多頭注意力(Multi-Head Attention)擴展到多模態融合中,允許模型并行處理多個模態的不同子空間,從而增強了多模態交互的表達能力[158]。這種方法尤其適用于需要多方面信息整合的復雜任務,如視頻內容分析和跨模態檢索等。 總之,基于注意力機制的融合方法通過動態調整不同模態的貢獻,能夠有效提升模型在多模態學習中的表現,特別是在處理多層次、多類型信息時,能夠顯著改善性能。

4.3 圖神經網絡(GNN)在多模態融合中的應用

圖神經網絡(GNN)在處理具有復雜關系和結構的數據時,表現出極大的潛力,因此被廣泛應用于多模態融合任務中。GNN通過圖的節點和邊之間的傳播機制,能夠捕捉到數據的結構信息,在圖像、文本和其他模態數據之間建立有效的聯系。 在多模態融合的背景下,GNN可以將不同模態的特征表示作為圖的節點,并通過圖卷積操作(Graph Convolution)來學習模態間的關系。例如,在圖像和文本融合的任務中,可以將圖像中的不同區域和文本中的不同詞匯視為圖的節點,節點之間通過邊連接,表示它們之間的關系。通過圖卷積操作,模型能夠學習到圖像和文本之間的深層次關聯,從而在視覺問答、圖像描述等任務中取得更好的效果[159]。 GNN還可以應用于多模態信息的關聯學習和跨模態信息檢索等任務中。在這些任務中,GNN能夠通過圖結構有效地捕捉模態間的復雜交互,幫助模型從不同模態中提取有用的信息并進行融合。這種方法尤其適合處理帶有結構關系的多模態數據,如社交媒體上的多模態情感分析和醫學圖像分析中的跨模態信息融合。 隨著圖神經網絡在多模態學習中的不斷發展,越來越多的研究表明,圖結構能夠為不同模態間的交互提供一種自然且高效的表示方式,為多模態融合方法提供了新的思路。

4.4 自監督學習與多模態融合

自監督學習是一種無監督學習方法,它通過自我生成標簽來訓練模型,尤其在沒有大量標注數據的情況下表現出了強大的潛力[160]。這種方法通過構造輔助任務,使模型學習數據的深層次結構,并為多模態融合提供了新的思路。

在多模態學習中,自監督學習能夠通過從單一模態的輸入中生成任務相關的信息,并促進模態間的對齊和互補。通過構建自監督任務(例如圖像-文本對比學習),模型可以在無監督的情況下學習到不同模態之間的語義一致性,進而提高多模態融合的效果[161]。

例如,在圖像-文本對比學習中,模型可以通過構造圖像與文本之間的相關性任務,來學習它們之間的聯合表示。這樣,盡管模型不需要大量標注數據,它仍然能夠學習到跨模態的有效表示,并在多模態任務中進行更準確的預測。這種自監督學習方法在減少對標注數據依賴的同時,能夠顯著提高模型的泛化能力和跨模態表現。

4.5 持續學習與多模態融合

持續學習(Continual Learning)是指模型在不斷接收新數據時,能夠保持已有知識的同時,學習新知識,而不會遭遇災難性遺忘[162]。在多模態學習中,持續學習能夠有效處理隨時間變化的多模態數據,特別是當模型需要根據實時輸入調整其學習策略時。

在多模態融合任務中,持續學習能夠使模型隨著新模態或新領域的到來,靈活地調整其參數和融合策略,從而適應新的數據分布[163]。例如,自動駕駛系統中的傳感器數據(如雷達、相機、激光雷達等)可能隨著環境變化而發生變化,持續學習可以幫助模型保持對不同傳感器數據的有效融合,同時應對新的駕駛環境。 持續學習還能夠促進多模態模型的可擴展性和自適應性,使其能夠在新的多模態數據出現時,進行快速有效的調整,避免災難性遺忘的問題。這為多模態學習提供了更為強大的能力,特別是在需要處理動態變化的復雜數據環境時。

付費5元查看完整內容

摘要——大型語言模型(LLMs)的快速進展有潛力革新各個領域,但其迅猛發展在監督、倫理開發和建立用戶信任方面帶來了顯著挑戰。本綜述全面調研了LLMs中的關鍵信任問題,重點關注意外傷害、缺乏透明性、易受攻擊、人類價值觀對齊和環境影響等問題。我們強調了可能破壞用戶信任的諸多障礙,包括社會偏見、決策過程中的不透明性、潛在的濫用以及技術快速演變帶來的挑戰。隨著LLMs在金融、醫療、教育和政策等敏感領域的普及,解決這些信任差距至關重要。 為了解決這些問題,我們建議采用綜合方法,包括倫理監督、行業問責、監管和公眾參與。我們主張重塑AI開發規范、對齊激勵措施,并在整個機器學習過程中整合倫理考量,這需要技術、倫理、法律和政策等不同領域專業人士的密切合作。我們的綜述通過提供一個評估LLMs信任的強大框架和對復雜信任動態的深入分析,為該領域作出了貢獻。我們提供了上下文化的指南和標準,旨在負責任地開發和部署這些強大的AI系統。 本綜述識別了在開發可信AI過程中面臨的關鍵限制和挑戰。通過應對這些問題,我們的目標是創建一個透明、負責的AI生態系統,在帶來社會利益的同時將風險降至最低。我們的研究成果為研究人員、政策制定者和行業領導者提供了寶貴的指導,幫助他們在各類應用中建立對LLMs的信任,并確保其負責任地使用造福社會。 關鍵詞——AI治理、算法偏見、可解釋的AI、大型語言模型、可信的AI。

人工智能(AI)的發展顯著受到了作出基礎性貢獻的關鍵人物的影響。AI的創始人約翰·麥卡錫提出了“人工智能”一詞,并倡導使用數學邏輯來表示知識,開創了知識表示領域。他還開發了LISP,這是一種對AI進展至關重要的編程語言[1]。麻省理工學院計算機科學與人工智能實驗室的聯合創始人馬文·明斯基通過理論AI研究推動了對機器智能和推理的理解[2]。由麥卡錫、明斯基、內森尼爾·羅切斯特和克勞德·香農提出的1956年達特茅斯會議是AI歷史上的一個關鍵時刻,將該領域從理論概念轉向實際應用[3]。這一時期見證了啟發式搜索技術和早期機器學習模型的進步,展示了AI向實際應用的轉變。

1970年代后期,AI進展放緩,被稱為“第一次AI寒冬”。這是由于未能達到預期和計算能力有限導致資金和興趣的減少。1980年代見證了向實際AI應用的轉變,如專家系統和自然語言處理,為大型語言模型(LLMs)奠定了基礎,推進了AI對語言理解和生成的能力。盡管在AI寒冬期間面臨挑戰,早期的專家系統在AI商業化方面起到了關鍵作用[4]。

最近的AI進展歸因于廣泛的數據集和日益增加的計算能力,特別是GPU的使用。這些因素在推動深度學習技術的發展中起到了關鍵作用,顯著影響了計算機視覺和語音識別[5],[6]。另一個重要的里程碑是語言模型的創建,這些模型能夠處理和生成類人文本,從而擴展了AI的能力。深度神經網絡(DNNs)和LLMs的有效性導致了AI在醫療、金融、交通和零售等各個行業的廣泛采用,提高了效率和數據處理能力[8]-[10]。神經網絡(NNs)用于分析大量數據集并識別模式,而LLMs則用于為自動化客戶服務的聊天機器人提供動力[11]-[14]。這些技術革新了不同領域的技術互動,凸顯了深度學習和語言模型對AI進展的重大影響[9]。 DNN架構,包括LLMs,導致了“黑箱”問題,使得理解其工作原理及其結果變得困難[15]。雖然像決策樹這樣的簡單AI模型是透明的,但LLMs缺乏透明性,這在用于決策時引發了倫理問題。挑戰在于使這些系統更透明和可理解,同時考慮到潛在的偏見和錯誤。解決這些問題的努力包括開發使算法過程更透明的方法,但這在AI倫理和治理中仍然是一個重大挑戰[16]。要更好地理解這一點,請參見圖1,它展示了AI的演變和信任挑戰。

時間軸展示了AI在醫療、金融、交通、零售和電子商務領域的日益擴大影響。LLMs在利用先進的語言生成技術變革內容創建方面處于領先地位。時間軸強調了AI中的信任和監督挑戰以及建立信任策略的重要性[17],[18]。它揭示了AI進展與政策和治理發展之間的差距。

LLMs的最新進展改善了其語言生成能力,但其復雜性阻礙了我們對其決策過程的理解。黃和王在2023年的調查[19]強調了解釋性對LLMs的重要性,特別是在需要透明度和信任的關鍵行業。主要發現包括:a)用于基于神經網絡的NLP模型的事后解釋工具如InSeq工具包;b)模型校準和不確定性估計技術;c)用于擴展和推理的指令微調LLMs研究,問題回答中的元推理;d)LLMs的數學推理能力,語義解析魯棒性研究,減少LLM使用危害的舉措,Aug-imodels等框架[19]用于高效和可解釋的模型,評估代碼訓練的LLMs,以及e)改進LLM推理性能的Chain-of-Thought樞紐措施。他們的研究強調了解釋性對LLMs的倫理和實際重要性。在LLMs被集成到多種應用中時,提供可理解和可解釋的響應是重要的。增強模型設計和交互、提高魯棒性和效率、指導訓練技術都是理解LLM操作的好處。他們的調查是揭開LLM復雜性的一個重要貢獻,為在醫療、金融和法律領域透明和倫理部署LLM奠定了基礎。它為未來研究奠定了基礎,以彌合原始LLM輸出與人類可理解解釋之間的差距。持續開發LLM解釋性對推進AI技術的可信性和可及性至關重要。

A. 構建大型語言模型的信任

黃和王的調查工作[19]及更廣泛的解決“黑箱”問題的努力指明了清晰的前進方向。然而,我們需要一種綜合方法,考慮倫理、技術和政策,以構建AI系統的信任,尤其是像LLMs這樣復雜的模型。 1)LLMs的倫理問題:LLMs在醫療、金融、政策制定和法律系統等領域的日益使用引發了關于隱私、偏見、公平和問責的倫理問題,原因是它們具有先進的自然語言能力。 LLMs可能會因為訓練文本數據中包含敏感信息而損害隱私。這可能導致隱私泄露,例如暴露醫療保健中的機密患者數據或在數據分析中泄露敏感的客戶記錄。為減少這些風險,有必要避免將個人可識別信息納入模型,并評估其隱私影響。確保LLM系統中的透明性和用戶對其數據的控制至關重要。明確的數據隱私指南和法規對于與用戶建立信任至關重要[20]-[30]。 偏見是LLMs的另一個倫理問題。它指的是LLMs在訓練數據中反映和延續的偏見,這可能導致偏見輸出或決策,損害邊緣化群體。性別、種族或文化偏見可能影響LLM模型,導致不公平或刻板印象的輸出和歧視性決策。例如,一個以人力資源為重點的LLM助手可能會對某些群體不利。為解決這一問題,公司應建立多元化的審查委員會,并定期使用偏見檢測工具審核LLM輸出[31]-[33]。 LLMs的另一個倫理問題是公平性,指的是公正待遇。LLM系統必須避免偏見并確保公平,通過公正對待每個人來實現。不公平的LLM模型可能會加劇不平等并造成傷害。例如,在公共政策中使用LLMs評估貸款或抵押申請可能會加劇經濟不平等。實現LLMs的公平性需要防止數據和算法中的偏見,使用對抗性去偏技術,并使用明確定義的指標持續評估公平性[34]-[37]。 問責在LLM系統中至關重要[38]-[40]。由于其復雜的推理過程,LLMs在醫療、司法和就業等影響人們生活的領域中尤其難以追究責任。用戶和利益相關者應知道誰對開發、部署和維護負責。他們應有錯誤、偏見或傷害的申訴機制。組織應建立明確的責任制和透明的治理,包括AI倫理委員會、模型性能的詳細記錄和跟蹤,以及關于LLM系統開發和部署的全面報告。 訓練和運行如GPT-3之類的LLMs需要大量的計算資源,導致高能耗和碳排放[41]。例如,GPT-3的訓練消耗了大約1287 MWh的電力,產生了502公噸的CO2排放,相當于112輛燃油車一年的排放。推理過程可能比訓練消耗更多的能量,估計約60%的AI能量用于推理,40%用于訓練[42]。一次ChatGPT請求的能耗可能是一次谷歌搜索的100倍。盡管LLMs目前對整個ICT行業的排放貢獻不到0.5%,對全球總排放的貢獻不到0.01%,但其影響正在迅速增加[43],[44]。為了促進AI的可持續性,行業應優先透明測量能耗和排放,利用可再生能源數據中心,開發更高效的AI硬件和算法,啟用排放跟蹤功能,并考慮轉向較小的專用模型而非大型通用LLMs。盡管LLMs目前對全球排放的貢獻很小,但其日益廣泛的使用需要積極努力減輕其環境影響,確保AI發展惠及世界而不加劇氣候變化。AI社區、政府和科技公司之間的合作對于實現更可持續的AI未來至關重要[45],[46]。

2)信任基礎上的LLMs技術進步:LLM系統需要解決技術挑戰以建立信任,例如解釋性。解釋性指的是理解和解釋LLM系統的決策過程。透明性通過使用戶理解系統的推理并識別潛在的偏見或錯誤來建立信任。可解釋的LLM系統可以幫助識別倫理問題并提供決策見解[20],[47],[48]。 可解釋AI(XAI)技術對于理解LLMs及建立其復雜系統的信任至關重要。注意力機制提供了對模型預測的見解[49],但其解釋可能存在爭議[50]。更可靠的方法如綜合梯度[51]和代理模型[52]提供了特征相關性的量化指標,增強了我們對模型決策的理解。最新進展應用電路分析[53]來分解復雜的黑箱LLMs為可解釋的元素,提供了模型操作的詳細見解。使用提示技術生成的模型解釋允許全面的因果敘述[54]。然而,重要的是嚴格評估這些解釋的準確性和有用性[55]。使用各種XAI方法對于LLM的負責任使用至關重要。清晰的解釋通過描述模型的能力、局限性和風險來幫助建立終端用戶的信任[56]。它們對于調試[57]、識別偏見[58]和促進倫理使用至關重要。隨著LLMs的進步,開發可解釋的LLMs至關重要。這在技術上具有挑戰性,但在倫理和研究上必不可少。定制的XAI技術需要在各個層次提供解釋,反映模型的邏輯以增強用戶信心、確保安全并指導AI的倫理使用。

另一個技術挑戰是數據偏見。數據偏見指的是LLM訓練數據中的不公平偏向或歧視。它可能導致有偏見的結果并延續社會不平等。解決數據偏見需要采取措施,如數據審計、預處理以減輕偏見以及多樣化訓練數據集以實現代表性和包容性。明確定義的指標可以幫助評估LLM系統的公平性、準確性、可靠性和透明性,提供其倫理表現的量化指標[20],[37],[47],[48]。

最新研究探索了通過解決幻覺和缺乏可解釋性等問題來提高LLMs可信度的技術[59]。他們提出了一種稱為圖上的推理(RoG)的方法,通過知識圖譜與LLMs協同進行真實和可解釋的推理。在其檢索-推理優化方法中,RoG使用知識圖譜檢索推理路徑,以便LLMs生成答案。RoG中的推理模塊使LLMs能夠識別重要的推理路徑并提供可解釋的解釋,增強了AI系統的可信度。通過專注于知識圖譜中的推理過程并提供透明的解釋,像RoG這樣的方法展示了建立LLMs信任的有希望的方向[59]。

具有可靠日志記錄的可解釋系統增強了透明性、審計和問責制[60]。文檔和日志記錄提供了對決策過程的見解,支持錯誤解決,并確保遵守倫理和法規標準,從而建立用戶信任。這些機制使技術和非技術利益相關者能夠理解AI系統的內部運作,并確定影響其輸出的因素。

3)用戶信任的心理因素:用戶對LLMs的信任在很大程度上取決于心理因素,而不僅僅是技術的可靠性[61]-[65]。用戶必須對LLM系統的可靠性、準確性和可信度有信心。通過有效的溝通和透明性可以實現這一點。組織應清楚地傳達LLM系統的能力和局限性,提供有關系統工作原理和決策方式的信息。此外,組織應對其數據收集和使用實踐保持透明,讓用戶了解他們的數據如何被使用和保護。

4)信任基礎上的LLMs政策與治理:有效的治理對于管理部署LLM系統相關的倫理、技術和問責問題至關重要[36],[40],[47],[61],[66]-[69]。應建立結構和流程,以確保LLM系統的倫理和負責任開發、部署和監控。涉及關鍵利益相關者,如AI倫理委員會、監管機構和行業專家,可以提供指導和監督。為了確保公平和無偏見的決策,必須包括用戶反饋和多樣化的觀點。為了建立對LLMs的信任,我們必須解決解釋性和數據偏見等技術問題,同時建立強有力的治理框架。

5)社會經濟影響:必須評估LLMs的社會經濟影響,以了解其對勞動力和社會的影響。LLMs可能會取代人類工人,導致失業和社會動蕩。需要投資于技能發展,以幫助工人適應變化。再培訓計劃和其他培訓可以使工人能夠與LLMs協同工作或從事新角色。應實施優先考慮工作保障和社會支持的政策,以減輕影響。探索LLMs的潛在社會福利,如增加信息獲取,可以促進更包容的社會。在設計和實施LLMs時,倫理考量和負責任的部署至關重要。應建立促進透明、問責和公平的政策和法規。對LLMs影響的仔細考慮、技能發展的投資和負責任的部署對于對社會產生積極影響至關重要[70]-[72]。

B. 本綜述的主要貢獻

本綜述對AI系統的信任進行了全面分析,重點關注LLMs。通過審查倫理、技術和社會因素,我們為負責任的AI開發討論作出了貢獻。我們的綜述提供了應對構建AI系統信任挑戰的見解和建議,特別是LLMs。主要貢獻如下所述。

? 綜合評估框架:本綜述提供了一個用于分析高級AI系統,特別是LLMs中的算法偏見和漏洞的分類法。該框架由八個視角組成,涵蓋透明性、魯棒性、人類價值對齊和環境影響等方面。此方法使得能夠對LLMs的信任進行徹底評估,解決其開發和部署中的問題。通過整合多種視角,該框架提供了LLM可信度的全貌,對負責任的AI作出了重要貢獻。 ?** 綜合信任動態分析**:本綜述審查了影響用戶對AI系統信任的因素,包括心理、倫理、技術和政策方面。通過分析AI能力、法規和社會接受度的交叉點,識別了實現可信AI的障礙。此研究揭示了信任動態,為從事負責任的AI開發和實施的研究人員、政策制定者和行業專業人士提供了指導。 ? 針對LLMs的上下文化指南和標準:本綜述審查了現代AI系統,特別是不透明模型如LLMs的倫理指南和政策標準的應用。倫理指南在確保AI使用的責任方面發揮重要作用。然而,LLMs由于其類人文本生成和缺乏透明性,面臨獨特的挑戰,這使得理解和解釋其行為變得困難。本綜述探討了在實際LLM部署中實施倫理原則的實際意義,考慮了技術限制、社會影響和潛在風險。它識別了局限性并提供了解釋和操作化LLM開發和部署倫理指南的見解。目標是通過突出差距并倡導完善LLM特定指南來促進AI治理,促進AI使用的透明性、公平性和問責制。

C. 本綜述的局限性

本綜述對AI信任進行了全面審查,特別關注LLMs。然而,重要的是要承認我們研究的局限性。我們的分析基于現有的AI倫理和信任領域的文獻和研究,包括專門針對LLMs的相關工作。因此,本綜述可能無法完全捕捉這些快速發展的領域中最新的想法或進展。

我們的分析范圍限于學術出版物和行業報告,這限制了所考慮的觀點范圍。對于LLMs,這尤為相關,因為本綜述可能未包括未出版的研究或不太知名的觀點,這些觀點可能提供寶貴的見解。此外,鑒于AI技術發展和LLMs倫理考慮不斷演變的速度,本綜述中提出的一些討論和結論可能會隨著時間的推移而變得不再相關。盡管我們的綜述旨在涵蓋AI,包括LLMs,越來越多部署在高風險領域中的情況,但它并未詳盡地解決所有與LLMs相關的信任方面或行業特定挑戰。本綜述中提出的解釋和分析基于撰寫時可獲得的最佳數據和研究。讀者在評估這些發現和建議時應考慮這些局限性。

需要強調的是,本綜述的目標是對AI和LLMs的信任進行全面審查,同時保持對分析范圍的透明度。我們旨在通過探索現有的指南和框架、討論構建LLMs信任的方法和挑戰以及提出未來研究方向,為AI信任和倫理的持續對話作出貢獻。我們鼓勵在可能探索較少或快速發展的領域進行進一步研究和對話,因為這些討論對于AI系統負責任的開發和部署至關重要。在本綜述中,我們創建了一個敘述,捕捉了AI信任的當前狀態及其領域中的潛在發展。然而,AI倫理和信任的領域是復雜和多面的,我們的綜述可能未涵蓋每一個細微差別或觀點。盡管如此,我們希望這項工作能為研究人員、政策制定者和從業人員在應對與AI和LLMs信任相關的挑戰和機遇時,提供有價值的資源。

付費5元查看完整內容
北京阿比特科技有限公司