摘要—生成性人工智能(AI)通過使機器能夠以空前的復雜性創建和解釋視覺數據,迅速推動了計算機視覺領域的發展。這一變革建立在生成模型的基礎上,能夠生成逼真的圖像、視頻以及3D/4D內容。傳統上,生成模型主要關注視覺逼真度,而往往忽視了生成內容的物理合理性。這一差距限制了其在需要遵守現實世界物理法則的應用中的效果,如機器人技術、自動化系統和科學模擬。隨著生成性人工智能不斷融入物理現實和動態仿真,其作為“世界模擬器”的潛力不斷擴大——能夠模擬由物理法則主導的交互,架起虛擬與物理現實之間的橋梁。本綜述系統地回顧了這一新興領域——計算機視覺中的物理感知生成性AI,按其如何融入物理知識對方法進行了分類——無論是通過顯式仿真還是隱式學習。我們分析了關鍵范式,討論了評估協議,并指出了未來的研究方向。通過提供全面的概述,本綜述旨在幫助未來在視覺領域的物理基礎生成方面的發展。綜述中提到的論文匯總在
//github.com/BestJunYu/Awesome-Physics-aware-Generation
1 引言生成學習一直是現代計算機視覺的基礎支柱,解決了理解、合成和操作視覺數據中的關鍵挑戰。在過去的十年里,該領域見證了多種生成模型的快速發展,包括變分自編碼器(VAE)[1]、生成對抗網絡(GAN)[3]、擴散模型(DM)[4]、[5]、[6]、神經輻射場(NeRF)[7]、高斯濺射(GS)[8] 和視覺自回歸模型(VAR)[9]。這些模型不斷推動生成學習的邊界,利用越來越強大的架構來捕捉視覺數據的潛在分布。其目標是使機器能夠以類似人類的創造性和理解方式推理視覺世界,通過在未見過的場景中想象新的視覺內容實例。在這些進展中,擴散模型因其能夠生成高度逼真的輸出而成為特別值得注意的技術。通過通過學習到的去噪過程迭代地精煉隨機噪聲,擴散模型展現出卓越的魯棒性和多功能性,成為近期生成方法學的基石。生成模型的應用跨越了多種視覺內容的模態,包括具有語義理解的圖像生成、具有動態時間理解的視頻生成、具有增強空間理解的3D內容生成[10]、[11]、[12]以及具有更復雜和綜合理解的4D內容[13]、[14]、[15]、[16]、[17]、[18]、[19]。這些進展突顯了生成學習在日益復雜的視覺任務中的巨大潛力。在這些不同的視覺模態中,視頻生成最近在生成學習領域獲得了顯著關注,它為擴展大型生成模型處理更高維數據提供了一個更加具有挑戰性的試驗平臺。這一復雜性不僅源于單個幀的空間復雜性,還來自于跨序列所需的時間一致性。許多商業視頻生成模型已被開發并引起了廣泛的公眾關注,如OpenAI的Sora [20]、Google的Veo2 [21]、騰訊的Hunyuan [22]和快手的Kling [23]。視頻生成已在多種形式和設置中得到深入研究,從最基本的無條件生成[24]、[25]到圖像到視頻生成[26]、[27]、[28]、[29]、[30]、[31]、[32]、[33]、文本到視頻生成[24]、[25]、[26]、[29]、[30]、[30]、[34]、[35]、[36]、[37]、視頻到視頻生成[38]、[39]、以及視頻編輯或定制[40]、[41]、[42]、[43]。這些設置各自解決了獨特的挑戰,從保持時間連續性到結合來自文本或視覺輸入的語義引導。更重要的是,視頻在生成AI視覺的未來中占據了關鍵地位。互聯網上可用的大量視頻數據封裝了關于現實世界的豐富信息,使視頻成為生成AI可以學習建模復雜現實世界現象的媒介。在這個背景下,視頻可以被視為現實世界決策的“語言”,具有彌合數字和物理領域的潛力[44]。視頻生成有望提供一個統一的接口作為“世界模型”[45],處理物理知識,類似于文本大語言模型(LLM)處理抽象知識的方式。這種模型可以促進大量下游任務的執行,包括自動駕駛、科學仿真、機器人[46]、[47]、[48]、[49]、[50]以及其他形式的具身智能。為了實現這一潛力,生成過程應能夠與人類或其他系統的外部控制進行交互。這種互動性促進了動態決策制定和基于互動優化結果的能力,催生了可以描述為生成交互環境的概念[44]、[51]、[52]、[53]。視頻生成已經與多種交互控制信號相結合,如運動向量或軌跡[54]、[55]、[56]、[57]、[58]、手部掩碼[59]、潛在動作[53]、[60]、機器人操作[47]、相機運動[61]、演示[62]和自然語言描述[63]、[64]、[65]。這些互動元素突顯了生成視頻模型的多功能性和適應性,為其演變為世界模型鋪平了道路。然而,從生成到穩健世界建模的過渡仍然存在一個關鍵差距:真實世界物理的忠實理解和復制能力[66](見圖1)。當前的最先進模型主要針對像素空間中的視覺真實感進行優化,而非在實體或概念空間中的物理合理性。為了使生成模型能夠作為物理世界的模擬器,它們必須融入對物理法則的深刻理解,如動力學、因果關系和材料屬性。這種物理意識對于超越僅生成視覺上吸引人的輸出至關重要,以確保內容與物理世界的約束和行為一致。因此,我們提供本綜述,作為對現有文獻的及時而全面的回顧,旨在將物理感知嵌入生成模型。通過審視這些努力,我們希望突出至今所取得的進展,提供清晰的范式結構,并識別未來的潛在研究方向。綜述范圍:本綜述的范圍是關于增強生成輸出物理感知的計算機視覺生成模型。因此,我們不包括將物理原理作為先驗知識或歸納偏置融入模型或神經架構設計的文獻,例如物理信息神經網絡(PINN)[67]、[68],即使任務與生成學習相關,例如[69]、[70]、[71]。我們專注于生成任務,因此不包括圖像處理任務,如去模糊、去霧和增強,盡管我們注意到這些工作中有大量的物理相關內容。為了專注于計算機視覺,我們還排除了純圖形和渲染研究與物理仿真相結合的文獻。與其他綜述的比較:如同在我們的范圍中所述,本綜述與現有的關于物理信息機器學習[72]、物理信息計算機視覺[73]和物理信息人工智能[74]的綜述不同,因為它們強調的是在物理先驗知識下的模型設計方面。我們的綜述專注于具有物理感知的生成,因此與現有的關于生成模型[75]、擴散模型[76]、[77]、視頻擴散模型[78]、基于擴散的視頻編輯[79]的綜述有所不同。與專注于特定領域的綜述,如人類視頻或運動生成[80]、[81]、[82]相比,我們的綜述也有不同的范圍。
摘要—隨著數據可用性的擴展,機器學習(ML)在學術界和工業界取得了顯著的突破。然而,不平衡的數據分布在各種原始數據中普遍存在,并且通過偏倚決策過程嚴重影響了機器學習的性能。為了深入理解不平衡數據并促進相關研究和應用,本文系統分析了各種現實世界的數據格式,并將現有研究針對不同數據格式的工作歸納為四個主要類別:數據重平衡、特征表示、訓練策略和集成學習。這一結構化分析幫助研究人員全面理解不平衡在不同數據格式中的廣泛存在,從而為實現特定研究目標鋪平了道路。我們還提供了相關開源庫的概述,突出當前面臨的挑戰,并提出了旨在推動該關鍵研究領域未來進展的新見解。 關鍵詞—機器學習、不平衡數據學習、深度學習。
I. 引言
隨著數據可用性的擴展,機器學習(ML)已成為學術界和工業界技術進步的前沿。這些機器學習模型被精心設計,以適應特定的數據分布,并隨后應用于各種下游任務,從預測分析到自動決策系統。因此,機器學習模型的性能受到訓練數據質量和分布的深刻影響。具有代表性、多樣化且經過精心預處理的數據確保模型不僅準確,而且在不同的環境和挑戰中具有魯棒性和廣泛的泛化能力。 然而,自然數據分布本質上復雜且經常存在缺陷。在這些挑戰中,不平衡數據分布尤其突出,反映了各個領域普遍存在和自然產生的差異。例如,在金融領域,欺詐行為的實例相較于合法交易來說相對稀少,這使得模型難以準確地檢測這些異常。在醫療領域,稀有疾病在醫學數據集中可能被低估,這為開發穩健的診斷模型帶來了重大挑戰。在工業領域,質量控制系統常常需要識別稀有的產品缺陷,而這些缺陷可能會被大量合格產品所掩蓋。這些情境不僅使機器學習模型的訓練更加復雜,而且對系統的魯棒性提出了更高要求。 通常,不平衡的數據分布顯著影響機器學習模型的性能和實用性。這些模型通常在高資源組上表現良好,這些組的數據充足,但在低資源組上表現較差,后者的數據稀缺,導致數據分布的界限模糊。因此,盡管機器學習模型可能在整體上表現令人滿意,但在這些低資源組中的有效性會顯著降低。然而,這些低資源組往往在現實世界的應用中更為重要。例如,在醫學診斷中,由于數據不足未能檢測到稀有疾病,可能導致漏診和不充分的患者護理。同樣,在金融系統中,無法識別稀有的欺詐實例可能導致重大財務損失和安全性受損。機器學習模型忽視這些稀有但關鍵的實例,降低了自動決策系統在實際應用中的效用和安全性。 為應對這些挑戰,機器學習領域已提出了一系列方法,我們將其組織為四個基本類別——數據重平衡、特征表示、訓練策略和集成學習——每個類別都與機器學習過程中的關鍵環節相對應。數據重平衡技術對于調整數據分布以更好地進行表示至關重要,采用了如過采樣少數類和欠采樣多數類等方法。這一調整對于防止模型過度偏向多數類樣本至關重要,符合機器學習中的數據準備階段。特征表示策略增強了準確捕捉和表示與少數類樣本相關信息的能力。這一改進在特征工程階段至關重要,使得模型能夠有效地從所有樣本中學習并做出預測。先進的訓練策略調整學習算法,以最小化其對多數類樣本的內在偏見。這一訓練階段的關鍵調整確保了學習過程的包容性,平等地考慮所有樣本。最后,集成方法通過組合多個模型,屬于機器學習過程中的模型集成部分。這些方法利用多個算法的優勢,以潛在地減少由不平衡數據引發的偏差,從而提高最終模型輸出的魯棒性和準確性。通過根據機器學習的基礎過程對方法進行分類,這一分類不僅有助于全面的領域調查,還闡明了這些策略背后的動機,幫助實現特定目標。此調查還探討了不平衡在不同數據格式中的表現,包括圖像、文本和圖形,突出了每種格式的差異、獨特的挑戰和所需的適應性。這一探索至關重要,因為它加深了對每種數據格式的理解,并有助于為復雜數據格式場景制定針對性的機器學習策略。 本調查的貢獻總結如下:
本調查的結構安排如下:第二節對處理不平衡問題的方法進行了詳細調查,并按我們的分類法進行組織;第三節廣泛討論了不平衡在各種數據格式中的表現;第四節對不平衡數據方法的評估指標進行了詳細研究;第五節介紹了可用于學習不平衡數據的資源;最后,第六節總結了該領域的挑戰與未來發展方向。
摘要:人工智能(AI)在軍事情報中的潛在益處是毋庸置疑的。然而,如何具體提升軍事數據分析仍不明確。本研究旨在解決這一問題。為此,AI演示工具 deepCOM 與初創公司 Aleph Alpha 合作開發。該AI工具的功能包括文本搜索、自動文本摘要和命名實體識別(NER)。這些功能的附加值在軍事分析中的表現得到了評估。研究表明,在時間壓力下,利用AI功能的分析結果明顯優于對照組。然而,盡管實驗組在分析結果上表現出顯著優勢,但并未觀察到參與者對其自身分析準確性的信心有所提高。最后,本文指出了在軍事情報中使用AI的局限性,尤其是在分析模糊和相互矛盾的信息時。 關鍵詞:軍事情報,人工智能,開源情報,分析過程,實驗
今天可以觀察到的數據量巨大,這使得軍事情報需要采用人工智能(AI)變得愈加明顯【10】。然而,使用AI的具體益處以及在軍事分析過程中何時使用AI仍然是一個懸而未決的問題【26】。軍事情報的主要作用是收集和分析信息,以支持軍事領導人做出知情決策。從學術角度來看,軍事情報是一個跨學科的研究領域,涉及多個學科,包括政治學、經濟學、社會學、心理學等【1】。 因此,軍事情報關注的是信息的收集和分析,以提供對局勢的全面了解。這可能包括收集關于武裝部隊的數據,審查其他國家的計劃和行動,以及收集與國家安全相關的動態信息【25】。 可以確定的是,必須確保在分析與軍事相關的國外發展時采用創新方法和手段,如人工智能(AI)。人工智能的新進展及其在分析和研究軟件中的集成,承諾提供廣泛的支持選項,以增強分析人員的判斷能力【5】。 預計使用AI技術將減輕分析人員的負擔,使其能夠集中精力分析、評估和呈現軍事情報情況【12】。 需要強調的是,分析人員不應被AI系統取代,而應得到輔助。特別是,必須確保分析人員始終能夠理解他們所做評估的依據【2】。 作為本研究的一部分,初創公司Aleph Alpha開發了一個專有的AI演示工具。這個名為deepCOM的程序基于大型語言模型(LLM)。需要強調的是,deepCOM不是一個成熟的產品,而是一個演示工具。deepCOM的核心功能是語義搜索。這使得用戶可以直接提問,系統會提供答案,并指出所用的來源。此外,deepCOM還可以自動總結數據庫中的每一份報告,幫助分析人員通過幾句話的摘要識別相關來源。 系統中還實現了命名實體識別(NER),可以全自動地為所有報告標記:如果文本中出現時間、地點、組織和人物的提及,系統會從中提取標簽并進行高亮顯示,幫助用戶在識別相關來源和閱讀報告時更為便捷【8】。 本研究的目標是展示在軍事分析過程中使用AI的附加價值。盡管以往的研究主要集中在AI在數據收集中的應用【13】, 本研究則專注于AI如何為人工分析和評估提供支持。僅僅為了技術本身而使用新技術是不可取的,除非它能為分析人員及其分析工作帶來直接的附加價值。 僅有概念性的考慮并不足以評估價值。為了能夠做出經驗證實的結論,本研究進行了一個實驗。根據我們所知,這是首個在情報領域中實證分析AI附加價值的研究。研究問題將通過以下方法來探討。第2節概述了基于情報周期的軍事分析過程。第3節介紹了本研究中調查的AI功能及其如何支持軍事分析人員。第4節解釋了實驗設計,第5節展示了實驗結果。第6節討論了實驗結果,最后,第7節提供了結論性意見。
摘要—終身學習,也稱為持續學習或增量學習,是推進人工通用智能(AGI)的關鍵組成部分,通過使系統在動態環境中持續適應。盡管大規模語言模型(LLM)在自然語言處理領域展現了出色的能力,但現有的LLM智能體通常是為靜態系統設計的,缺乏根據新挑戰隨時間適應的能力。本調查是首個系統總結將終身學習納入基于LLM的智能體的潛在技術的文獻。我們將這些智能體的核心組件分為三個模塊:感知模塊,用于多模態輸入的集成;記憶模塊,用于存儲和檢索不斷發展的知識;以及行動模塊,用于與動態環境的實際互動。我們強調這三個支柱如何共同實現持續適應,緩解災難性遺忘,并提高長期性能。本調查為從事基于LLM智能體的終身學習能力開發的研究人員和從業人員提供了一條發展路線圖,提供了關于新興趨勢、評估指標和應用場景的見解。相關文獻和資源可通過以下鏈接獲取:
//github.com/qianlima-lab/awesome-lifelong-llm-agent.
關鍵詞—終身學習,持續學習,增量學習,大規模語言模型,智能體,人工通用智能(AGI)
1 引言
“智慧是適應變化的能力。” ——斯蒂芬·霍金
終身學習[1],[2],也稱為持續學習或增量學習[3],[4],已成為智能系統發展的關鍵焦點。如圖1所示,終身學習近年來吸引了越來越多的研究關注,它在使這些系統能夠持續適應并不斷改進方面起著至關重要的作用。正如Legg等人[5]所指出的,人的智能本質上是快速適應廣泛環境的能力,這突顯了人工智能系統展現同樣適應性的需求。終身學習指的是系統在避免遺忘已學知識的同時,獲取、整合和保持新知識的能力。對于那些在動態復雜環境中運行的系統,尤其重要,因為這些環境中常常出現新的任務和挑戰。與傳統的機器學習模型不同,后者通常在固定數據集上進行訓練并優化以執行特定任務,終身學習系統則被設計為能夠不斷演變。它們隨著遇到新情境而積累新知識并持續完善其能力。 盡管終身學習具有潛力,但目前人工智能的進展與終身學習的實際應用之間仍存在顯著的差距。雖然人類能夠自然地整合新知識并保留舊知識,但當前的人工智能系統在終身學習方面面臨兩大挑戰:災難性遺忘[6]和可塑性喪失[7],[8]。這些挑戰形成了穩定性與可塑性困境[9]。一方面,災難性遺忘指的是當系統學習新任務時,會忘記之前學到的信息,特別是在環境發生變化時尤為突出。另一方面,可塑性喪失則指系統無法適應新任務或新環境。這兩者代表了學習譜系的兩個對立端:靜態系統避免遺忘,但缺乏適應能力;而注重適應的系統則面臨遺忘過去知識的風險。克服這一困境是推動人工智能發展的關鍵,也是實現人工通用智能(AGI)[5]的基礎性挑戰。
近年來,大規模語言模型(LLM)[11],[12]的進展顯著改變了自然語言處理領域。像GPT-4[12]這樣的模型通過學習海量的文本數據,能夠處理并生成類人文本。它們在文本生成、機器翻譯和問答等任務中表現出色,得益于其理解復雜語言模式的能力。然而,傳統的LLM[11],[12]在訓練完成后是靜態的,這意味著它們無法在部署后適應新任務或環境。它們的知識是固定的,且無法在不重新訓練的情況下整合新信息,這限制了它們在動態現實場景中的應用。與此相比,LLM智能體代表了更高級的人工智能形式。不同于標準的LLM,這些智能體[13],[14]是能夠與環境互動的自治實體。LLM智能體能夠感知多模態數據(例如文本、圖像、傳感數據),將這些信息存儲在記憶中,并采取行動影響或響應其周圍環境[15]–[17]。它們被設計為不斷適應新情境,隨著與環境的互動和經驗的積累,智能體的決策能力得以不斷提高。圖2和圖3提供了相關示意圖。
將終身學習融入LLM智能體的動機源于開發能夠不僅適應新任務,還能在廣泛的動態環境中保留并應用先前知識的智能系統的需求,這與Legg等人[5]將智能定義為快速適應廣泛環境的觀點相契合。目前,現有的LLM智能體通常被開發為靜態系統,限制了它們在面對新挑戰時的演變能力。此外,大多數關于LLM的終身學習研究[1],[4]集中于處理不斷變化的數據分布,而非與環境進行互動。例如,通過持續微調LLM以適應特定領域的指令[1]。然而,這些方法仍將LLM視為靜態黑箱系統,并未解決LLM在真實世界環境中進行互動學習的實際需求。圖2比較了傳統的終身學習范式與本調查中討論的、LLM智能體與動態環境互動的新范式。 在現實世界的應用中,LLM智能體需要適應多樣的環境,如游戲、網頁瀏覽、購物、家庭任務和操作系統,而無需為每個新情境設計單獨的智能體。通過引入終身學習能力,這些智能體可以克服這一局限性。它們能夠持續學習并存儲來自多種模態(如視覺、文本、傳感數據)的知識,使其在環境變化時能夠進行實時適應和決策[18]–[21]。將終身學習融入LLM智能體,可以釋放它們在動態現實應用中的全部潛力[22],[23]。因此,這些智能體能夠不斷演變、獲得新知識,并保持關鍵信息,從而增強其適應性和多功能性。這個持續學習的過程對那些挑戰不斷出現的環境尤為重要,如自主機器人、互動助手和自適應決策支持系統[14]。圖4展示了一個終身學習的LLM智能體示意圖。
本調查提供了關于基于LLM的智能體終身學習系統的關鍵概念、技術和挑戰的全面概述。作為首個系統總結將終身學習納入LLM智能體的潛在技術的文獻,本調查將重點回答以下研究問題(RQ): RQ1:為終身學習設計的LLM智能體的核心概念、開發流程和基本架構是什么?(第3節) RQ2:LLM智能體如何持續感知和處理單模態和多模態數據,以適應新環境和任務?(第4、5節) RQ3:什么策略可以減輕災難性遺忘并保留已學知識?(第6、7、8、9節) RQ4:LLM智能體如何在動態環境中執行各種動作,如扎根、檢索和推理?(第10、11、12節) RQ5:評估終身學習在LLM智能體中表現的評估指標和基準是什么?(第13節) RQ6:終身學習LLM智能體的現實應用和使用案例是什么?它們如何從持續適應中受益?(第14節) RQ7:開發LLM智能體終身學習面臨的關鍵挑戰、局限性和未解問題是什么?(第15節) 通過回答這些研究問題,本調查作為理解LLM智能體中終身學習的設計、挑戰和應用的逐步指南。它回顧了最前沿的技術,并突出了新興趨勢和未來的研究方向。
據我們所知,這是首個系統回顧終身學習與LLM智能體交叉領域最新進展的調查。本調查的主要貢獻如下:
本調查的結構如下:第2節回顧了關于LLM智能體和終身學習的相關調查和文獻;第3節介紹了為終身學習設計的LLM智能體的基礎概念、開發流程和整體架構;第4和第5節從感知角度討論了終身學習LLM智能體的設計,分別聚焦于單模態和多模態方法;第6、7、8和9節從記憶角度探討了LLM智能體的設計,涉及工作記憶、情節記憶、語義記憶和參數記憶;第10、11和12節從行動角度探討了LLM智能體的設計,包括扎根動作、檢索動作和推理動作;第13節介紹了評估終身學習LLM智能體表現的評估指標和基準;第14節深入討論了終身學習LLM智能體的現實應用和使用案例;第15節提供了實踐洞察并概述了未來的研究方向;最后,第16節總結了本調查。
終身學習,也稱為持續學習或增量學習,基于這樣一個理念:智能系統應該像人類一樣,持續地獲取、完善和保留知識,貫穿整個生命周期。與傳統的機器學習方法不同,傳統方法假設數據集是固定的、靜態的,而終身學習框架則面臨數據和任務隨時間演變的現實,模型必須在不遺忘已掌握技能的前提下進行適應。圖5展示了終身學習發展的示意圖。
終身學習的基于LLM的智能體架構旨在持續適應、整合并優化其在一系列任務和環境中的行為。在本小節中,我們識別了三個關鍵模塊——感知、記憶和行動——它們共同支持終身學習。這個劃分遵循了先前工作中提出的框架[14],但有一個顯著的不同:我們沒有保留“腦”模塊,而是采用了[14]中提出的“記憶”模塊,具有更清晰的功能性和改進的模塊化結構。 每個模塊相互作用,確保智能體能夠處理新信息、保留有價值的知識并選擇適應當前情境的合適行動。這三個模塊的設計理念來源于智能體的需求:(i) 感知和解讀不斷變化的數據,(ii) 存儲和管理來自過去經驗的知識,(iii) 執行適應變化環境的任務。 這三個模塊構成了一個動態反饋回路:感知模塊將新信息傳遞給記憶模塊,在記憶模塊中進行存儲和處理。記憶模塊隨后引導行動模塊,影響環境并為未來的感知提供信息。通過這一持續循環,智能體不斷完善其知識,提升適應性,最終提高其在復雜動態環境中的表現。
接下來,我們將詳細描述每個模塊,分析其設計如何貢獻于智能體的終身學習能力。圖6展示了整體架構的示意圖,圖7總結了后續章節的組織結構。
摘要—人工智能(AI)通過計算能力的提升和海量數據集的增長迅速發展。然而,這一進展也加劇了對AI模型“黑箱”性質的解釋挑戰。為了解決這些問題,可解釋人工智能(XAI)應運而生,重點關注透明性和可解釋性,以增強人類對AI決策過程的理解和信任。在多模態數據融合和復雜推理場景中,多模態可解釋人工智能(MXAI)的提出將多種模態整合用于預測和解釋任務。同時,大型語言模型(LLMs)的出現推動了自然語言處理領域的顯著突破,但它們的復雜性進一步加劇了MXAI問題。為了深入了解MXAI方法的發展,并為構建更加透明、公平和可信的AI系統提供重要指導,我們從歷史的角度回顧了MXAI方法,并將其劃分為四個發展階段:傳統機器學習、深度學習、判別式基礎模型和生成式大型語言模型。我們還回顧了MXAI研究中使用的評估指標和數據集,最后討論了未來的挑戰和發展方向。與此綜述相關的項目已創建在 //github.com/ShilinSun/mxai_review。
關鍵詞—大型語言模型(LLMs)、多模態可解釋人工智能(MXAI)、歷史視角、生成式。
人工智能(AI)的進展對計算機科學產生了重大影響,如Transformer [1]、BLIP-2 [2] 和 ChatGPT [3] 在自然語言處理(NLP)、計算機視覺和多模態任務中表現出色,通過集成多種數據類型。這些相關技術的發展推動了具體應用的進步。例如,在自動駕駛中,系統需要整合來自不同傳感器的數據,包括視覺、雷達和激光雷達(LiDAR),以確保在復雜道路環境中的安全運行 [4]。類似地,健康助手需要具備透明性和可信度,以便醫生和患者都能輕松理解和驗證 [5]。理解這些模型如何結合和解釋不同模態對于提升模型可信度和用戶信任至關重要。此外,模型規模的不斷增大帶來了計算成本、可解釋性和公平性等挑戰,推動了可解釋人工智能(XAI)的需求 [6]。隨著包括生成式大型語言模型(LLMs)在內的模型變得越來越復雜,數據模態也更加多樣化,單一模態的XAI方法已無法滿足用戶需求。因此,多模態可解釋人工智能(MXAI)通過在模型的預測或解釋任務中利用多模態數據來解決這些挑戰,如圖1所示。我們根據數據處理順序將MXAI分為三種類型:數據可解釋性(預模型)、模型可解釋性(模型內)和事后可解釋性(模型后)。在多模態預測任務中,模型處理多個數據模態,如文本、圖像和音頻;在多模態解釋任務中,利用多種模態來解釋結果,從而提供更全面的最終輸出解釋。
為了回顧MXAI的歷史并預測其發展,我們首先將不同階段進行分類,并從歷史角度回顧了各種模型(如圖2所示)。在傳統機器學習時代(2000-2009年),有限的結構化數據的可用性促進了像決策樹這樣的可解釋模型的出現。在深度學習時代(2010-2016年),隨著大型標注數據集(如ImageNet [7])的出現以及計算能力的提升,復雜模型和可解釋性研究嶄露頭角,包括神經網絡核的可視化 [8]。在判別式基礎模型時代(2017-2021年),Transformer模型的出現,利用大規模文本數據和自監督學習,徹底改變了自然語言處理(NLP)。這一轉變引發了對注意力機制的解釋研究 [1],[9]–[11]。在生成式大型語言模型時代(2022-2024年),大量多模態數據的集成推動了生成式大型語言模型(LLMs)的發展,如ChatGPT [3],以及多模態融合技術。這些進展提供了全面的解釋,增強了模型的透明性和可信度。這一演變導致了對MXAI的關注,它解釋了處理多樣數據類型的模型 [6]。
然而,最近的XAI綜述通常忽視了歷史發展,主要集中在單模態方法上。例如,盡管[6]將MXAI方法按模態數、解釋階段和方法類型進行了分類,但忽略了LLMs的可解釋性技術。雖然Ali等人 [12] 提出了一個全面的四軸分類法,但缺少關于多模態和LLMs的總結。然而,像[13]、[14]和[15]這樣的綜述僅關注LLMs的可解釋性。我們的研究解決了這些不足,通過提供MXAI的歷史視角,分類了MXAI方法的四個時代(傳統機器學習、深度學習、判別式基礎模型和生成式大型語言模型),并將每個時代分為三個類別(數據、模型和事后可解釋性)。本文的主要創新貢獻總結如下:
這一時代的重點是通過判別模型(2017-2021年)奠定的基礎來推進生成任務。與前輩不同,這些模型,如GPT-4 [240]、BLIP-2 [2] 及其繼任者,通過生成連貫且語境相關的文本來增強可解釋性,為輸出提供自然語言解釋。這一進展彌合了人類理解和機器決策之間的鴻溝,使得與模型的互動更加細致,并為模型行為提供了更多的洞察。我們在表V中總結了相關工作。
本文將多模態可解釋人工智能(MXAI)方法按歷史發展分為四個時代:傳統機器學習、深度學習、判別基礎模型和生成式大型語言模型。我們從數據、模型和后驗可解釋性三個方面分析了MXAI的演變,并回顧了相關的評估指標和數據集。展望未來,主要挑戰包括可解釋性技術的規模化、平衡模型的準確性與可解釋性以及解決倫理問題。MXAI的持續進展對于確保AI系統的透明性、公正性和可信性至關重要。
摘要—神經場(Neural Fields)已成為計算機視覺和機器人領域中用于3D場景表示的變革性方法,能夠從帶姿態的2D數據中精準推理幾何、3D語義和動態信息。通過可微分渲染(differentiable rendering),神經場包括連續隱式和顯式神經表示,實現高保真3D重建、多模態傳感器數據的整合,以及新視角的生成。本綜述探討了神經場在機器人領域的應用,強調其在提升感知、規劃和控制方面的潛力。神經場的緊湊性、內存效率和可微性,加之與基礎模型和生成模型的無縫集成,使其非常適合實時應用,有助于提升機器人的適應性和決策能力。本文對機器人中的神經場進行了全面回顧,涵蓋200多篇論文中的應用,并對其優缺點進行評估。首先,我們介紹了四種關鍵的神經場框架:占用網絡(Occupancy Networks)、符號距離場(Signed Distance Fields)、神經輻射場(Neural Radiance Fields)和高斯分布(Gaussian Splatting)。其次,我們詳細描述了神經場在機器人五大主要領域中的應用:姿態估計、操控、導航、物理仿真和自動駕駛,重點介紹了關鍵工作并討論了主要發現與開放挑戰。最后,我們總結了神經場在機器人應用中的當前局限性,并提出了未來研究的有前景方向。項目頁面:robonerf.github.io 關鍵詞—神經輻射場(Neural Radiance Field, NeRF)、神經場(Neural Fields)、符號距離場(Signed Distance Fields)、3D高斯分布(3D Gaussian Splatting)、占用網絡(Occupancy Networks)、計算機視覺、新視角合成(Novel View Synthesis)、神經渲染(Neural Rendering)、體渲染(Volume Rendering)、姿態估計、機器人、操控、導航、自動駕駛。
I. 引言
機器人依賴對環境的精確且緊湊的表示來執行廣泛的任務,從穿越繁忙的倉庫到整理雜亂的家庭環境,甚至參與高風險的搜救任務。在典型的機器人系統中,感知與行動之間的協同作用是其核心。感知系統通過RGB相機、LiDAR和深度傳感器等設備采集感官數據,并將其轉化為一致的環境模型——例如,使機器人能夠在動態且障礙密集的空間中導航的3D地圖。這種表示的質量直接影響機器人的決策或策略,從而將所感知的環境轉化為行動,使其能夠避開移動的叉車、拾取散落的物體或在緊急情況下規劃安全路徑。 傳統上,機器人使用點云 [13–15]、體素網格 [16]、網格 [17–19]和截斷符號距離函數(TSDF)[20]等數據結構來建模環境。盡管這些表示提升了機器人能力,但它們在捕捉復雜或動態環境中的精細幾何細節方面仍存在局限,導致在適應性場景中的性能不佳。
為了克服這些限制,神經場(Neural Fields, NFs)[21]作為一種有前途的替代方案出現,它提供了從空間坐標到物理量(如顏色或符號距離)的連續、可微映射。與傳統的數據結構不同,神經場可以將3D環境建模為由神經網絡或高斯分布參數化的連續函數,從而更加高效地表示復雜的幾何結構和精細細節 [22, 23]。神經場可以使用基于梯度的方法與各種真實世界的傳感器數據(包括圖像和深度圖)進行優化,從而生成高質量的3D重建。
在機器人領域,神經場相比傳統方法具有幾大優勢:
生成式AI的最新進展 [39]通過將合成數據作為監督信號進一步擴展了神經場的能力,從而減少了對真實世界觀測數據的依賴。這一范式轉變使得神經場可以在現實數據采集不可行或成本高昂的情況下進行優化。重要的是,它將神經場定位為生成式AI與機器人之間的關鍵橋梁。盡管2D數據生成先驗具有強大的功能,但通常缺乏進行有效機器人決策所需的空間一致性。神經場將這些先驗與稀疏的真實世界數據 [33]結合,能夠在物理環境約束(如有限的傳感器配置和遮擋)下建模傳感與運動空間。 鑒于這些優勢,神經場在機器人領域的應用正迅速發展。圖1和圖2概述了神經場在機器人的應用,并展示了與神經場相關的機器人研究出版物的增長趨勢。本文旨在梳理和分析其對該領域的影響。
本文的結構如下:第II節介紹了神經場的基本公式,而第III節則從以下主題中概述其在不同領域中的優勢:
我們在第IV節通過探討若干研究方向和挑戰進行總結。據我們所知,本綜述是首批對機器人領域的神經場進行全面考察的研究之一。我們在最接近的并行綜述 [40] 的基礎上補充了對NeRF、3DGS、占用網絡、符號距離場等多個領域的全面涵蓋。通過結合多個維度的見解,本綜述旨在提供對神經場在機器人應用中當前狀態的整體理解,突顯近期成就、未來挑戰及未探索的研究領域。
摘要—持續學習(CL)旨在使機器學習模型能夠從新數據中不斷學習,同時在不遺忘已獲得知識的基礎上進行擴展。隨著機器學習模型從小規模到大規模預訓練架構的演變,以及從支持單一模態數據到支持多模態數據,多模態持續學習(MMCL)方法最近開始出現。MMCL的主要挑戰在于,它超越了簡單的單模態持續學習方法的疊加,因為這種直接的方法通常會產生不理想的效果。在本研究中,我們首次對MMCL進行了全面綜述。我們提供了MMCL的基本背景知識和設定,并提出了結構化的MMCL方法分類法。我們將現有的MMCL方法分為四類,即基于正則化、基于架構、基于重放和基于提示的方法,闡述它們的方法論并強調其關鍵創新。此外,為了激發該領域的進一步研究,我們總結了開放的MMCL數據集和基準,并討論了若干未來有前景的研究和發展方向。我們還創建了一個GitHub倉庫,用于索引相關的MMCL論文和開放資源,網址為://github.com/LucyDYu/Awesome-Multimodal-Continual-Learning。
關鍵詞—多模態持續學習,多模態數據,終身學習,增量學習
1 引言近年來,機器學習(ML)取得了顯著的進展,為解決各種實際問題作出了重要貢獻。在傳統設置中,大多數ML模型在所謂的“單一階段”范式下運行,即在靜態和單一數據集上進行訓練,并在獨立同分布(i.i.d.)假設下進行評估【1】。然而,這種“單一階段”范式無法賦予訓練模型適應新數據或執行新任務的能力,因此難以滿足開發能夠應對動態變化環境的智能體的需求。為解決這一問題,ML社區致力于發展持續學習(CL),也稱為終身學習或增量學習,它通過在新任務上逐步訓練模型并保留早期知識,無需對完整數據進行重新訓練【2-5】。 CL的主要挑戰是災難性遺忘:當任務按順序進行訓練時,針對新任務的訓練會嚴重影響之前已學習任務的性能【6, 7】,這是因為不受約束的微調會使參數遠離舊的最優狀態【8】。CL的目標是開發能夠持續獲取知識并保留已學習信息的學習系統。這一過程本質上模仿了生物大腦的認知靈活性,生物大腦在整個生命過程中不斷學習各種技能【9】。通過使模型能夠在不遺忘的情況下適應新任務,CL在資源和時間效率方面相較于傳統的模型全數據重新訓練方法具有顯著優勢。此外,由于存儲限制、隱私問題等原因,歷史訓練數據可能無法訪問,這使得全數據訓練變得不可行,進一步突顯了CL在記憶舊知識并從動態環境中獲取最新知識方面的效率和有效性。盡管CL取得了顯著進展,大多數研究仍集中在單一數據模態上,如視覺【10-13】、語言【14-16】、圖【17, 18】或音頻【19】。這種單模態的關注忽略了真實世界環境的多模態特性,這些環境本質上是復雜的,由多種數據模態組成而非單一模態。隨著多模態數據的快速增長,例如Meta和TikTok等平臺上圖像、文本和視頻數據的激增,開發能夠從多模態源中持續學習的AI系統變得至關重要,因此出現了多模態持續學習(MMCL)設置。這些MMCL系統需要有效地整合和處理多模態數據流【20, 21】,同時還要能夠保留先前獲取的知識。更重要的是,這種MMCL設置更接近于人類生物系統在應對現實世界復雜性時跨模態學習和整合信息的過程【22, 23】。MMCL的挑戰。盡管傳統單模態CL與MMCL之間存在聯系,MMCL的挑戰遠不止是簡單地將CL方法疊加在多模態數據上。事實證明,這種直接的嘗試通常會產生次優性能【31-33】。具體來說,如圖2所示,除CL中已有的災難性遺忘問題外,MMCL的多模態特性還引入了以下四個挑戰。這些挑戰不僅獨立存在,還可能加劇災難性遺忘問題:
多模態持續學習根據輸入模態的不同,多模態持續學習可以分為五種主要場景:
在多模態持續學習(MMCL)中,有多種方法學策略。本文將MMCL方法分為四大類:基于正則化、基于架構、基于重放以及基于提示的方法。圖5對這些方法進行了分類,并在后續的小節中詳細說明。表2總結了各類MMCL方法的具體特性,而圖6展示了代表性架構,主要以視覺和語言模態為主。對于其他模態的方法,在表3中進行了匯總。在正式介紹MMCL方法之前,我們將首先介紹一些經典的單模態持續學習(CL)方法,因為它們既是MMCL方法的前身,也在MMCL研究中被廣泛用作對比。
基于正則化的方法旨在通過對參數施加約束來減少災難性遺忘現象【8】。這類方法根據約束方式的不同,分為顯式正則化和隱式正則化兩種。下圖(圖6a)總結了顯式和隱式正則化方法的代表性架構。3.1.1 顯式正則化顯式正則化方法通過直接為參數賦予重要性權重來抑制模型的參數變化。它通過懲罰那些偏離先前最優狀態的參數,以減緩模型的遺忘。其關鍵思想是對模型的參數偏移施加顯式約束,以保護模型在先前任務中的知識。在這種方法中,常用的技術包括:
架構方法通過引入任務特定組件來減少不同任務之間的干擾,通常分為固定架構和動態架構兩種。
固定架構方法在整個任務序列中保持相同的模型結構,通過任務掩碼選擇性地激活或抑制特定參數,從而使各個任務使用不同的參數組合。這種方式通過分配任務特定的參數部分來減輕遺忘現象。單模態模型中,HAT(Hard Attention to the Task)通過學習接近于二值的注意力向量,在模型層次上選擇性激活或抑制參數。它通過掩碼來固定特定參數,以保留早期任務的知識。在多模態模型中,RATT(Recurrent Attention Task Transformer)使用固定架構進行圖像描述生成。它結合了卷積神經網絡(CNN)和長短時記憶網絡(LSTM),并通過注意力掩碼實現特定任務的激活,以便針對不同任務分配不同的模型層激活狀態。
動態架構方法則允許模型結構隨著任務的引入而動態擴展,通常通過添加新模塊來增加模型容量。與固定架構不同,動態架構可以在新任務到來時擴展新的任務特定模塊,因此性能不會受到初始容量的限制。在單模態模型中,進步網絡(Progressive Network)是一種早期的動態架構,它通過為每個新任務初始化一個新網絡來避免遺忘。這種方法使用橫向連接來支持特征共享和知識轉移。多模態模型中的動態架構方法則可以通過任務特定、模態特定等多種策略來決定如何擴展網絡結構。例如,MoE-Adapters4CL在多模態模型CLIP的基礎上為每個新任務添加模塊,減少了新任務對已有知識的干擾。此外,ODU和CMR-MFN都設計了模態融合模塊,以應對多模態數據中模態組合多變的特性。
重放方法使用一個記憶緩沖區來存儲歷史實例,以幫助在學習新任務時維護早期任務的知識。這些方法無需動態調整網絡架構,也不需約束參數自由度。基于獲取重放數據的不同方式,重放方法可以分為直接重放和偽重放兩種。
直接重放方法通過將舊任務中的少量樣本存儲在記憶緩沖區中,以在新任務訓練時進行重放。此類方法的關鍵在于如何選擇代表性樣本以充分利用有限的記憶空間。在多模態模型中,例如VQACL和SAMM采用隨機選擇策略直接重放多模態樣本。實驗表明,與單模態重放相比,多模態重放能顯著提升模型的穩定性和靈活性。此外,KDR通過在跨模態相似度矩陣上引入KD,以確保模型更新前后的交互一致性,從而進一步鞏固知識。
偽重放方法利用生成模型學習舊任務的數據分布,從而在當前階段生成偽造數據,避免了直接重放方法的存儲需求和隱私問題。例如,單模態模型中DGR(Deep Generative Replay)通過訓練生成對抗網絡(GAN)來生成數據樣本以進行重放。后續研究擴展了偽重放策略,包括在特征層面進行偽重放,以強化特征表示,減少遺忘現象。在多模態模型中,SGP通過保存場景圖和語言模型生成偽造數據以進行偽重放。此外,AID通過偽原型重放策略處理模態不平衡問題,從而提升分類器的區分能力。這些方法解決了多模態學習環境中數據類型多樣性和平衡性的問題。
基于提示的方法利用預訓練大模型,通過修改輸入而非調整模型結構來保留原始知識并學習新任務。此類方法減少了大規模微調的需求,并能夠更好地保留預訓練模型的零樣本能力。在多模態模型中,例如Fwd-Prompt和S-liPrompts分別采用共享提示和任務特定提示策略,增強了視覺-語言模型在跨模態信息融合中的表現。CPE-CLIP通過將視覺提示設計為語言提示的函數來連接多模態信息,使模型在新任務中具備更好的適應性。
本節對當前多模態持續學習(MMCL)領域的主要數據集和基準進行了綜述。MMCL中的大多數數據集都是從最初為非持續學習(CL)任務設計的知名數據集中改編而來,研究人員常常利用多個數據集或將單一數據集劃分為多個子集,以便在MMCL設置中模擬任務【39】。此外,也存在一些專門為MMCL構建的數據集,例如P9D【68】和UESTC-MMEA-CL【39】。表4匯總了涵蓋各種CL場景、模態和任務類型的MMCL基準。以下將具體介紹這些基準,若數據集和代碼為公開可訪問,將在相應位置標明。
這一部分總結了兩個專門為MMCL構建的數據集:
除了專門的數據集外,也有一些基準通過使用多個數據集來模擬MMCL任務。以下是一些此類基準的簡要介紹:
隨著多模態模型的快速發展,多模態持續學習(MMCL)已成為一個活躍且前景廣闊的研究課題。在本節中,我們提出了幾個值得進一步探索和研究的未來方向。
當前的MMCL研究中,多模態數據的數量和質量直接影響模型的性能。然而,由于不同模態的數據特性和收集難度,提升模態數量和質量仍面臨諸多挑戰:
MMCL中的模型往往依賴大規模預訓練模型,并在多個模態和任務上進行持續訓練,這對計算資源提出了更高要求。為提高資源利用效率,未來可以在以下幾個方面展開研究:
MMCL中的一個關鍵挑戰是如何在不忘舊任務的同時提升對新任務的零樣本適應能力及泛化性能:
在多模態環境下,模態數據的分布和數量可能存在不平衡,這會影響MMCL的表現。未來的研究可以關注以下方面:
隨著隱私和數據安全需求的增加,未來MMCL研究需要更好地應對這些問題:
結論
以上是未來研究方向的詳盡討論,為進一步發展多模態持續學習(MMCL)領域提供了切實可行的建議和探索路徑。通過提升模態數量與質量、提高計算資源效率、增強零樣本能力與泛化性能、應對模態失衡問題,以及加強隱私與數據安全的適應性,研究人員可以應對MMCL的挑戰,推動模型更好地適應現實環境的需求。這些方向的研究不僅能解決當前的技術難題,還將推動更為廣泛和深入的實際應用,從而實現更加智能化和多樣化的學習系統。
摘要—近年來,三維視覺已成為計算機視覺領域的關鍵方向,推動了自動駕駛、機器人技術、增強現實(AR)和醫學成像等廣泛應用。該領域依賴于從圖像和視頻等二維數據源中準確感知、理解和重建三維場景。擴散模型最初設計用于二維生成任務,但它們提供了更靈活的概率方法,更好地捕捉了真實世界三維數據中的多樣性和不確定性。然而,傳統方法往往在效率和可擴展性方面面臨挑戰。本文綜述了當前最先進的擴散模型在三維視覺任務中的應用,包括但不限于三維物體生成、形狀補全、點云重建和場景理解。我們深入討論了擴散模型的基本數學原理,概述了其前向和反向過程,并介紹了支持這些模型處理三維數據集的各種架構進展。我們還探討了擴散模型在三維視覺中應用所面臨的主要挑戰,如處理遮擋和點密度變化,以及高維數據的計算需求。最后,我們討論了包括提升計算效率、增強多模態融合、探索大規模預訓練以改善三維任務泛化能力在內的潛在解決方案。本文為這一快速發展的領域的未來探索和開發奠定了基礎。
關鍵詞—擴散模型,三維視覺,生成模型。
I. 引言
近年來,三維視覺已成為計算機視覺領域中的重要方向,推動了自動駕駛、機器人、增強現實和醫學成像等各種應用。這些應用依賴于從圖像和視頻等二維數據源中對三維場景的準確感知、理解和重建。隨著三維視覺任務的日益復雜,傳統方法常常在效率和可擴展性方面遇到挑戰。 擴散模型[1]–[5]最初在生成建模領域提出,并迅速發展,展現出在許多計算機視覺領域的顯著潛力。基于通過一系列隨機步驟轉換數據的理念,這些模型在圖像生成[6]–[9]、去噪[10]和修復任務[11]中取得了成功。尤其是,擴散模型在生成高質量、多樣化輸出方面表現出強大的生成能力,同時對噪聲具備魯棒性。 近年來,擴散模型的發展已從二維拓展到更具挑戰性的三維任務[12]–[14],如三維物體生成[15]–[17]、形狀補全[18]、點云重建[20]等,標志著擴散建模與三維視覺的新時代的到來。 將擴散模型應用于三維視覺任務展現出前景,主要原因在于它們能夠建模復雜的數據分布,并且在噪聲處理上具備固有的魯棒性。擴散模型為需要三維數據合成、補全或增強的任務(如形狀生成[21]或深度估計[22])提供了強大的框架。與依賴確定性算法的傳統三維建模技術不同,擴散模型提供了更靈活的概率方法,可以更好地捕捉真實三維數據中的多樣性和不確定性。 對擴散模型的日益關注源于它們在二維任務中生成精細高質量結果的能力,這促使研究人員探索其在三維中的應用。本文綜述了將擴散模型用于三維視覺的最新方法,討論了其潛在的優勢,如在三維重建中提升精度、更好地處理遮擋和稀疏數據等。 盡管將擴散模型應用于三維視覺前景廣闊,但其并非沒有挑戰。其中一個主要技術障礙是三維數據的復雜性增加,它可以以多種形式表示,如網格、體素或點云,每種形式都有其特定的處理需求。將擴散模型與這些異構數據結構集成仍然是一個挑戰,同時三維任務的計算需求常常遠遠高于二維任務,導致可擴展性問題。 另一個挑戰在于建模三維數據中的長距離依賴關系,擴散模型并非原生具備該能力。此外,許多三維視覺任務缺乏大規模標注數據集,這進一步增加了擴散模型的訓練難度,要求大量高質量數據以實現有效泛化。 本綜述聚焦于擴散模型在廣泛三維視覺任務中的應用,包括但不限于三維物體生成、點云去噪、三維重建及場景理解[23]。我們回顧了多種擴散模型架構及其在三維視覺中的適應性,涵蓋了過去五年的早期階段和最新進展。特別關注于這些模型如何應對三維數據的特定挑戰以及大規模三維視覺問題的計算限制。本文的主要貢獻如下: * 對現有將擴散模型應用于三維視覺任務的研究進行了全面分類和總結,分析其優缺點。 * 深入分析和比較了用于三維數據的關鍵技術、框架和方法。 * 詳細討論了該領域當前的挑戰和開放問題,以及未來研究方向,以改進三維視覺應用中的擴散模型。 * 對用于評估三維視覺任務中擴散模型的相關數據集和基準進行了廣泛的回顧。
為完成本綜述,我們采用了全面的文獻檢索策略,以確保深入探索該領域。首先確定了與主題相關的關鍵詞和短語,如“擴散模型”、“三維視覺”以及相關概念(如“生成模型”和“三維數據的神經網絡”)。我們在多個學術數據庫(包括IEEE Xplore、arXiv和Google Scholar)中進行檢索,重點關注過去五年的出版物,以捕捉最新進展。此外,我們優先選擇經過同行評審的期刊文章、會議論文和預印本,確保包含高質量的前沿研究。通過此策略,我們旨在提供關于三維視覺中擴散模型的全面、最新的綜述。 本文其余部分的組織結構如下:第二節概述擴散模型的理論基礎及其在二維和三維視覺任務中的關鍵發展。第三節深入探討三維視覺的核心概念,討論不同數據表示及其挑戰。第四節對擴散模型在不同三維視覺任務中的應用進行了詳細回顧。第五節總結了用于評估的可用數據集和基準。最后,第六節討論了未來方向和開放問題。
第七節為結論。
A. 擴散模型簡介 擴散模型(Diffusion Models)是一類生成模型,通過逐步將隨機噪聲轉換為結構化數據來學習生成數據的分布。該過程包括前向擴散過程,在此過程中噪聲逐步添加到數據中,以及反向過程,利用去噪算法從噪聲中重建數據。這種方法旨在通過迭代去噪來建模數據分布,已證明能夠在多個領域(包括三維視覺)生成高質量的樣本。 擴散模型最早作為一種受非平衡熱力學啟發的隨機過程被引入,發展迅速。尤其是在Ho等人提出去噪擴散概率模型(DDPMs)之后,擴散模型在可擴展性和采樣效率方面有了顯著提升。擴散模型的關鍵特性在于其迭代生成過程,主要包括: * 前向過程:逐步向數據添加高斯噪聲。 * 反向過程:通過去噪還原數據,生成新樣本。
這種框架允許擴散模型避免模式崩潰,與生成對抗網絡(GANs)相比,生成出多樣性更高的樣本。B. 擴散模型的數學基礎
C. 擴散模型的變體 1. 去噪擴散概率模型(DDPMs):在DDPM中,前向過程逐步將高斯噪聲添加到數據中,使原始數據分布轉變為已知先驗(通常為標準高斯分布)。反向過程則由神經網絡參數化,并訓練為逐步去噪。DDPM通過優化變分下界,實現高保真度圖像生成(Diffusion Models in 3D …)。 1. 基于得分的生成模型(Score-Based Generative Models):這種變體使用得分匹配技術,以更直接地估計數據分布的梯度(Diffusion Models in 3D …)。 1. 隨機微分方程(SDE):此類擴散模型的連續時間公式使其在三維生成任務中更具靈活性,例如生成點云和體素網格(Diffusion Models in 3D …)。 D. 三維視覺中的生成過程 與生成對抗網絡(GANs)和變分自編碼器(VAEs)相比,擴散模型在三維視覺任務中具有更強的生成能力,能夠生成光滑的連續表面,并處理復雜的高維數據。這對于需要詳細幾何結構的應用(如三維形狀重建)特別有利。
三維視覺領域是現代計算機視覺中不可或缺的一部分,涉及各種數據表示方法及深度學習技術,以理解和處理三維信息。三維視覺廣泛應用于增強現實、虛擬現實以及自動駕駛等領域,這些應用都依賴于準確的三維場景感知與分析。
三維數據表示是三維視覺的核心,提供了建模、分析和交互的手段。不同的表示方式各有其特點、優缺點,通常用于不同的三維任務。 二維表示
二維表示使用平面圖像推斷三維信息,適用于渲染與理解三維場景。通過多視圖圖像或深度圖,可以從多個角度獲取場景或物體的三維結構。
深度圖:深度圖表示從特定視角到場景中物體的距離,將深度信息編碼成圖像。它在三維重建、場景理解等應用中十分重要,因為它提供了一種整合二維圖像處理技術的有效方式。 顯式表示
顯式表示直接定義了三維模型的幾何形狀,如點云、體素網格和網格。它們直觀易操作,但存儲復雜形狀時空間需求較大。
點云:點云通過三維坐標表示物體或場景的形狀。其主要優勢在于對幾何數據的直接捕獲。然而,由于缺乏拓撲信息,點云通常需要進一步處理,以實現渲染或仿真。 1. 隱式表示 隱式表示通過數學函數定義三維幾何,例如有符號距離場(SDF)和占用場。它們通常用于生成平滑、連續的表面,并能處理復雜的幾何形狀。
深度學習的進步推動了三維視覺的發展,使得自動駕駛、機器人導航等領域能夠高效地分析和解釋三維數據。
基于卷積的神經網絡 三維卷積神經網絡(3D CNN)將二維卷積擴展到體素數據,捕捉三維空間的關系,適用于體素網格處理任務。然而,三維CNN計算需求高,因此多視圖CNN和球面CNN等變體在實際應用中被廣泛采用。
直接點云處理方法 點云數據的處理逐步由PointNet等方法引領,這些方法通過直接操作點云數據而無需將其轉換為其他形式,從而保留了數據的稀疏性與不規則性。
圖神經網絡 在點云上應用圖神經網絡(GNN)通過捕獲非歐幾里得結構中的關系,適合于對拓撲信息的建模。
占用網絡與深度有符號距離場 占用網絡和深度有符號距離場(DeepSDF)模型能有效地在復雜場景中生成詳細的三維形狀,在物體重建和場景理解中具有優勢。
基于Transformer的架構 Transformer的引入使得長距離依賴關系的建模成為可能,尤其在三維點云數據上,表現出在自適應分割和語義理解方面的能力。
遮擋 遮擋問題在三維視覺中普遍存在,尤其在物體間相互重疊的場景中。這會導致數據缺失或失真,影響物體識別和場景重建。多視圖聚合和深度完成是應對此問題的常用技術。
點密度變化 由于掃描設備距離和角度的不同,點云密度可能不均勻,導致重建和特征提取的復雜度增加。點云上采樣和表面插值技術被用來處理這些問題。
噪聲與離群值 三維數據采集過程中常伴有噪聲和離群值,影響數據的準確性。去噪濾波和離群值去除是常見的應對手段,但在精度和計算需求之間的平衡仍具挑戰性。
三維視覺的復雜性及其數據的高維特性使得這一領域充滿了挑戰,但隨著深度學習技術的不斷進步,三維視覺的準確性和效率正在顯著提高,為實際應用帶來了新的突破。
擴散模型在三維數據生成任務中表現出極大的潛力,能夠生成高質量的三維模型及其相關內容。這些任務涵蓋了各種生成和處理三維數據的方式,使擴散模型成為三維視覺研究的重要工具。
無條件生成指的是不依賴于任何輸入或條件(如類標簽、圖像或文本提示)生成三維形狀或物體。在這種生成模式下,模型從隨機噪聲或潛在變量出發,基于學習到的數據模式生成多樣化的三維結構。無條件生成常用于三維設計、虛擬環境和游戲等應用,其目的是在沒有外部指導的情況下捕捉數據的底層分布,生成逼真且多樣的三維輸出。
Zhou等人提出的Point-Voxel Diffusion框架,是最早利用擴散模型生成三維物體的工作之一。該方法將去噪擴散模型與三維形狀的概率生成模型結合,使用點-體素混合表示進行生成。模型通過一系列去噪步驟,將觀察到的點云數據逆擴散回到高斯噪聲狀態,從而生成新的三維形狀。
在條件生成任務中,擴散模型會根據特定輸入(例如圖像或文本提示)生成對應的三維數據。該方法通常用于圖像到三維、文本到三維轉換等場景。這類任務對于三維數據合成的控制性較強,允許模型根據輸入生成具有特定特征的三維結構。例如,Ren等人提出的模型結合卷積和Transformer架構,生成動態掩模以在生成過程中實現特征融合,從而在不同階段優化全局和局部特征的平衡(Diffusion Models in 3D …)。
三維編輯任務涉及對已有的三維數據進行修改或增強。擴散模型在這一領域展示了顯著的靈活性,允許對三維場景進行細致的控制。Zheng等人開發的PointDif方法,應用擴散模型進行點云預訓練,有助于在分類、分割和檢測等任務中提高性能。該方法將點云預訓練任務視為條件點對點生成問題,通過循環均勻采樣優化策略,使模型在不同噪聲水平下實現一致的恢復(Diffusion Models in 3D …)。
新視角合成任務主要集中于從給定的視角生成不同角度的三維圖像。擴散模型能夠有效處理三維數據的長距離依賴關系,并生成新的視角。Shue等人提出的Triplane Diffusion模型將三維訓練場景轉換為一組二維特征平面(稱為triplanes),然后利用現有的二維擴散模型對這些表示進行訓練,從而生成高質量的三維神經場。
擴散模型在深度估計任務中的應用表現在通過噪聲抑制的方式改善深度信息提取質量。在復雜的場景中,模型可以利用擴散過程生成連續的深度數據,有效應對噪聲和不完整信息的問題。擴散模型通過生成更為平滑和準確的深度圖,為三維視覺系統在動態場景中的應用提供了新的解決方案。 綜上所述,擴散模型為三維視覺中的多項任務提供了有效的生成和增強工具。模型的應用不僅在無條件生成和條件生成方面取得了顯著成果,還在三維數據的編輯、合成和估計等任務中展現了出色的性能。這一領域的研究仍在不斷發展,未來可通過結合物理約束和多模態數據進一步提升模型的表現,為復雜和動態場景中的三維任務提供更強大的支持。
本文對擴散模型在三維視覺任務中的應用進行了全面綜述。擴散模型最初是為二維生成任務設計的,但隨著三維數據(如點云、網格和體素網格)的處理需求增長,這些模型逐步適應了三維數據的復雜性。我們詳細回顧了將擴散模型應用于三維對象生成、形狀補全、點云重建和場景生成等任務的關鍵方法,并深入討論了擴散模型的數學基礎,包括其前向和反向過程及架構改進,使之能夠處理三維數據。
此外,本文分類和分析了擴散模型在不同三維任務中的顯著影響,包括從文本生成三維數據、網格生成以及新視角合成等。我們還探討了擴散模型在三維視覺中面臨的主要挑戰,如遮擋處理、點密度變化以及高維數據的計算需求。針對這些挑戰,我們提出了一些潛在解決方案,包括提升計算效率、增強多模態融合,以及探索使用大規模預訓練以更好地在三維任務中實現泛化。
通過整合當前擴散模型在三維視覺領域的研究現狀,并識別出其中的不足與機遇,本文為未來在這一快速發展的領域進行更深入的探索和開發奠定了基礎。擴散模型在三維視覺中的應用還在不斷進步,未來的研究有望繼續優化模型的計算效率和多任務處理能力,為三維數據的生成、重建和理解開拓新的可能性。
摘要——基于用戶指定要求的條件圖像生成是創建復雜視覺內容的關鍵組件。近年來,基于擴散的生成模型已成為條件圖像生成的一個非常有效的方法,導致了相關文獻的爆炸式增長。然而,擴散模型的復雜性、圖像生成任務的廣泛性以及條件機制的多樣性,為研究人員跟上快速發展的步伐并理解該主題的核心概念帶來了巨大挑戰。在本綜述中,我們根據條件如何融入擴散模型的兩個基本組件(即去噪網絡和采樣過程)對現有工作進行分類。我們特別強調了在訓練、重用和專門化階段構建理想去噪網絡時,各種條件方法的基本原理、優點和潛在挑戰。我們還總結了在核心采樣過程中使用的六種主流條件機制。所有討論都圍繞流行的應用展開。最后,我們指出了一些關鍵但仍未解決的未來問題,并提出了一些可能的解決方案。我們審閱的相關工作列在 //github.com/zju-pi/Awesome-Conditional-Diffusion-Models。
關鍵詞——生成模型,擴散模型,條件圖像生成,條件集成。
I. 引言
圖像生成是生成式人工智能的一個重要任務。當結合用戶提供的條件來生成符合不同用戶需求的圖像時,它的實用性會更大。早期的研究在各種條件圖像生成任務中取得了重大突破,如文本到圖像生成 [37, 41, 156, 159, 239]、圖像修復 [87, 88, 125, 210] 和圖像編輯 [1, 10, 107]。然而,早期基于深度學習的生成模型(如生成對抗網絡 (GANs) [49, 131]、變分自編碼器 (VAEs) [81, 185] 和自回歸模型 (ARMs) [199, 200])在條件圖像生成中的表現并不令人滿意,這是由于它們的內在局限性:GANs 容易出現模式崩潰和訓練不穩定的問題 [49];VAEs 通常生成模糊的圖像 [81];而 ARMs 則存在順序誤差積累和耗時巨大的問題 [200]。
近年來,擴散模型 (DMs) 作為最先進的圖像生成模型嶄露頭角,憑借其強大的生成能力和多功能性,得到了廣泛認可 [20, 57, 71, 184, 191]。在擴散模型中,圖像是通過引導去噪網絡預測的迭代去噪步驟從高斯噪聲中生成的。這種獨特的多步采樣過程使得擴散模型能夠實現出色的生成性能,表現為穩定的訓練、豐富的輸出和卓越的樣本質量。此外,與一步生成模型相比,擴散模型在促進條件集成方面具有獨特優勢。這些優點使得擴散模型成為條件圖像生成的首選工具,近年來基于擴散的條件圖像生成 (DCIS) 研究得到了迅速發展 [25, 45, 56, 75, 118, 160, 167, 168, 209, 242, 247]。圖1展示了使用多種輸入模態的七個流行的 DCIS 任務。
隨著相關研究的快速擴展,模型架構、訓練方法和采樣技術的眾多變化,以及潛在的條件生成任務的廣泛性,研究人員很難全面掌握 DCIS 的全貌。這種復雜性對該領域的新手來說尤為具有挑戰性。當前需要的是一項系統性的綜述,提供對這一快速發展的研究領域的全面且結構化的概述。
已有一些關于特定條件圖像生成任務的綜述,如圖像修復 [238]、文本到圖像生成 [103] 和圖像編輯 [64],或根據目標條件生成任務對計算機視覺領域的相關工作進行分類的研究 [32, 149]。雖然這些面向任務的綜述為其各自目標任務的方法提供了寶貴的見解,但它們并未涵蓋不同條件生成任務在模型框架中的共同特征,特別是在模型架構和條件機制方面。最近的兩篇綜述 [14, 182] 提供了基于擴散模型的廣泛任務的概述,但它們的范圍有限,主要集中于構建在文本到圖像 (T2I) 框架上的 DCIS 工作,忽略了早期將條件集成到無條件去噪網絡中的工作,或涉及從頭開始訓練特定任務的條件去噪網絡的工作。這些早期工作為當前使用 T2I 框架的 DCIS 進展奠定了基礎,并且在低級任務如圖像修復中仍然廣泛應用。此外,[182] 主要關注基于擴散模型的圖像編輯框架,缺乏對該領域其他任務統一框架的系統分析,而 [14] 并未深入探討模型架構的設計選擇和采樣過程中詳細的條件機制。因此,它們的分類方法缺乏系統性,并遺漏了 DCIS 領域中的一些關鍵相關工作。
相較之下,本綜述旨在提供一個全面且結構化的框架,涵蓋當前廣泛的 DCIS 研究工作,基于 DCIS 框架中條件集成的主流技術提供分類方法。我們對構建具有條件集成的 DCIS 框架所涉及的組件和設計選擇進行了清晰而系統的分解。具體來說,我們通過審查和總結現有的 DCIS 方法,探討條件如何集成到擴散建模的兩個基本組件中:去噪網絡和采樣過程。在去噪網絡方面,我們將構建條件去噪網絡的過程分為三個階段。在采樣過程中,我們將六種主流的采樣中條件機制進行分類,詳細說明控制信號如何集成到采樣過程的各個組件中。我們的目標是為讀者提供跨不同任務的現有 DCIS 工作的高層次和易于理解的概述,使他們能夠設計適用于其所需任務的條件生成框架,包括尚未探索的新任務。
本綜述的其余部分組織如下:首先在第二部分介紹擴散模型的背景和條件圖像生成任務。接下來,我們在第三部分總結去噪網絡中的條件集成方法,并在第四部分總結采樣過程中的方法。最后,我們在第五部分探討未來的潛在方向。圖2展示了本文提出的 DCIS 分類體系。
摘要——視頻異常檢測 (VAD) 旨在發現視頻中偏離正常行為或事件的異常現象。作為計算機視覺領域中一個長期存在的任務,VAD 已經取得了許多顯著的進展。在深度學習的時代,隨著具備持續增長的能力和容量的架構的爆發,基于深度學習的各種方法不斷涌現于 VAD 任務中,極大地提升了檢測算法的泛化能力并拓寬了應用場景。因此,面對如此多樣的方法和大量的文獻,一篇全面的綜述變得迫在眉睫。本文提供了一篇廣泛而全面的研究綜述,涵蓋了五種不同類別的范疇,即半監督、弱監督、全監督、無監督以及開放集監督的 VAD 方法,并深入探討了基于預訓練大模型的最新 VAD 工作,彌補了過去僅關注于半監督 VAD 和小模型方法的綜述的局限性。針對不同監督級別的 VAD 任務,我們構建了一個有條理的分類體系,深入討論了不同類型方法的特點,并展示了它們的性能對比。此外,本綜述還涉及了公共數據集、開源代碼以及覆蓋所有上述 VAD 任務的評估指標。最后,我們為 VAD 社區提供了若干重要的研究方向。 關鍵詞——視頻異常檢測,異常檢測,視頻理解,深度學習。
異常代表著偏離標準、正常或預期的事物。正常性有多種多樣,而異常現象則非常稀少。然而,當異常出現時,往往會產生負面影響。異常檢測旨在通過機器學習發現這些稀有的異常,從而減少人工判斷的成本。異常檢測在多個領域中有著廣泛的應用【1】,例如金融欺詐檢測、網絡入侵檢測、工業缺陷檢測和人類暴力檢測。在這些應用中,視頻異常檢測 (VAD) 占據著重要地位,異常在此指的是時間或空間維度上的異常事件。VAD 不僅在智能安防中起著至關重要的作用(例如暴力、入侵和徘徊檢測),還廣泛應用于其他場景,如在線視頻內容審查和自動駕駛中的交通異常預測【2】。由于其在各個領域中顯著的應用潛力,VAD 吸引了來自工業界和學術界的廣泛關注。
在深度學習時代之前,常規的方法是將特征提取與分類器設計分離,形成一個兩階段的過程,并在推理階段將它們結合起來。首先進行特征提取,將原始的高維度視頻數據轉換為基于專家先驗知識的緊湊手工特征。盡管手工特征缺乏魯棒性,且在面對復雜場景時難以有效捕捉行為表達,但這些早期工作極大啟發了后續基于深度學習的研究工作。
在過去十年中,隨著深度學習的崛起,傳統的機器學習算法逐漸失去了吸引力。隨著計算機硬件的快速發展以及互聯網時代大量數據的涌現,近年來基于深度學習的方法在 VAD 領域取得了顯著進展。例如,ConvAE【3】作為第一個基于卷積神經網絡 (CNN) 的深度自編碼器,首次用于捕捉視頻中的規律;FuturePred【4】首次利用 U-Net 預測未來的異常;DeepMIL【5】是第一個探索用于現實世界異常的深度多實例學習 (MIL) 框架的工作。為了更直觀地展現深度學習時代對 VAD 任務的研究熱情,我們通過 Google Scholar 和 IEEE Xplore1 對過去十年中與 VAD 相關的出版物數量進行了統計調查(這個時期由基于深度學習方法的崛起所驅動)。我們選擇了五個相關主題,即視頻異常檢測、異常事件檢測、異常行為檢測、異常事件檢測和異常行為檢測,并在圖 1 中展示了出版物統計數據。不難看出,從這兩個來源統計的相關出版物數量呈現出穩步快速增長的趨勢,表明 VAD 已經引起了廣泛的關注。此外,我們還展示了在兩種常見監督方式下常用數據集上年度最先進方法的檢測性能趨勢,并在圖 2 中呈現了性能趨勢。檢測性能在所有數據集上均表現出穩步上升的趨勢,未顯示出任何性能瓶頸。例如,CUHK Avenue【6】上的半監督方法性能在過去七年間顯著提升,從 70.2% AUC【3】上升到 90.1% AUC【7】。此外,針對后續提出的弱監督 VAD,研究也取得了顯著進展。這表明,隨著架構的發展,深度學習方法的能力不斷提升,同時也展示了對 VAD 任務中深度學習方法的持續探索熱情。
上述統計數據清楚地表明,深度學習驅動的 VAD 是當前研究的熱點。因此,迫切需要對現有工作進行系統分類并進行全面總結,以便為新手提供指導并為現有研究人員提供參考。基于此,我們首先收集了近年來一些高影響力的 VAD 綜述,見表 I。Ramachandra 等人【8】主要聚焦于單一場景下的半監督 VAD,缺乏對跨場景的討論。Santhosh 等人【9】回顧了針對道路交通場景中實體的 VAD 方法。其綜述缺乏足夠的深度分析,主要關注 2020 年之前的方法,忽略了最近的進展。Nayak 等人【10】對基于深度學習的半監督 VAD 方法進行了全面調查,但未考慮弱監督 VAD 方法。隨后 Tran 等人【11】介紹了新興的弱監督 VAD 綜述,但其重點不僅限于視頻,還涉及圖像異常檢測,導致對 VAD 任務的系統性組織不足。最近,Chandrakala 等人【12】和 Liu 等人【13】構建了涵蓋多種 VAD 任務的分類體系,例如無監督 VAD、半監督 VAD、弱監督 VAD 和全監督 VAD,并對大多數監督 VAD 任務的深度學習方法進行了綜述。然而,他們的研究范圍局限于傳統的閉集場景,未涵蓋最新的開放集監督 VAD 研究,也未引入基于預訓練大模型和可解釋學習的全新框架。
為全面解決這一差距,我們對深度學習時代的 VAD 研究進行了深入綜述。我們的綜述涵蓋了幾個關鍵方面,以提供對 VAD 研究的全面分析。具體而言,我們對深度學習時代 VAD 任務的發展趨勢進行了深入調查,并提出了一個統一的框架,將不同的 VAD 任務整合在一起,填補了現有綜述在分類方面的空白。我們還收集了最全面的開源資源,包括基準數據集、評估指標、開源代碼和性能對比,以幫助該領域的研究人員避免走彎路并提高效率。此外,我們系統地對各種 VAD 任務進行分類,將現有工作劃分為不同類別,并建立了一個清晰的結構化分類體系,以提供對各種 VAD 模式的連貫和有條理的概述。除了這個分類體系,我們還對每種模式進行了全面分析。此外,在整個綜述中,我們重點介紹了對 VAD 研究進展做出重大貢獻的影響力工作。 本綜述的主要貢獻總結如下三個方面:
我們對 VAD 進行了全面綜述,涵蓋了基于不同監督信號的五種任務,即半監督 VAD、弱監督 VAD、全監督 VAD、無監督 VAD 和開放集監督 VAD。研究重點已經從傳統的單任務半監督 VAD 擴展到了更廣泛的多任務 VAD。
跟隨研究趨勢,我們回顧了最新的開放集監督 VAD 研究。此外,我們還重新審視了基于預訓練大模型和可解釋學習的最新 VAD 方法。這些方法的出現提升了 VAD 的性能和應用前景。據我們所知,這是首次對開放集監督 VAD 和基于預訓練大模型的 VAD 方法進行的全面綜述。
針對不同任務,我們系統地回顧了現有的基于深度學習的方法,更重要的是,我們引入了一個統一的分類框架,從模型輸入、架構、方法論、模型改進和輸出等多個方面對各種 VAD 模式的方法進行了分類。這一精細的科學分類體系有助于對該領域的全面理解。
半監督視頻異常檢測
基于我們對以往綜述的深入調查,我們發現現有的綜述大多缺乏科學的分類體系。許多綜述只是根據使用方法將半監督視頻異常檢測 (VAD) 作品分為不同的組別,例如基于重建、基于距離和基于概率的方法,有些綜述則根據輸入進行分類,例如基于圖像、基于光流和基于片段的方法。顯然,現有的分類綜述相對簡單且表面化,因此難以全面有效地涵蓋所有方法。為了解決這個問題,我們建立了一個全面的分類體系,涵蓋了模型輸入、方法論、架構、模型優化和模型輸出。詳細說明見圖 4。
如前所述,在半監督 VAD 任務中,只有正常樣本可用于訓練,這使得監督分類范式不可適用。常見的方法是利用訓練樣本的內在信息,學習深度神經網絡 (DNN) 來解決前置任務。例如,正常性重建是一個經典的前置任務【3】。在此過程中,需要考慮幾個關鍵方面:樣本信息的選擇(模型輸入)、前置任務的設計(方法論)、深度網絡的利用(網絡架構)、方法的改進(優化)和異常結果的表達(模型輸出)。這些關鍵要素共同決定了半監督 VAD 解決方案的有效性。在接下來的章節中,我們將根據上述分類體系系統地介紹現有的基于深度學習的 VAD 方法。
IV. 弱監督視頻異常檢測
弱監督視頻異常檢測 (VAD) 是當前 VAD 領域中備受關注的研究方向,其起源可追溯到 DeepMIL【5】。相比于半監督 VAD,這是一個較新的研究方向,因此現有的綜述缺乏全面而深入的介紹。如表 I 所示,Chandrakala 等人【12】和 Liu 等人【13】都提到了弱監督 VAD 任務。然而,前者僅簡要描述了 2018 至 2020 年間的一些成果,而后者盡管涵蓋了近期的工作,卻缺乏科學的分類體系,僅根據不同的模態將其簡單地分為單模態和多模態。鑒于此背景,我們從 2018 年至今調查了相關工作,包括基于預訓練大模型的最新方法,并從四個方面對現有工作進行了分類:模型輸入、方法論、優化策略和模型輸出。弱監督 VAD 的分類體系如圖 8 所示。 與半監督 VAD 相比,弱監督 VAD 在訓練過程中明確定義了異常,為檢測算法提供了明確的方向。然而,與全監督 VAD 相比,粗糙的弱監督信號為檢測過程引入了不確定性。現有的大多數方法利用 MIL 機制來優化模型。這個過程可以視為從正常包(正常視頻)中選擇看起來最異常的最困難區域(視頻片段),以及從異常包(異常視頻)中選擇最有可能異常的區域。然后,目標是最大化它們之間的預測置信差異(即使最困難的正常區域的置信度接近 0,最異常區域的置信度接近 1),這可以被視為二元分類優化。通過逐步挖掘所有正常和異常區域的不同特征,異常區域的異常置信度逐漸增加,而正常區域的置信度則逐漸下降。不幸的是,由于缺乏強監督信號,檢測模型在上述優化過程中不可避免地會涉及盲目猜測。
VII. 開集監督視頻異常檢測
讓經過充分訓練的監督模型在開放環境中檢測未見過的異常是一項具有挑戰性的任務。在現實場景中,未見過的異常很可能會出現,因此,關于開集異常檢測的研究引起了廣泛關注。開集監督視頻異常檢測 (VAD) 是一項具有挑戰性的任務,其目標是在訓練階段未見過的異常事件中進行檢測。與傳統的(閉集)VAD 不同,傳統 VAD 中的異常類型是已知且定義明確的,而開集 VAD 必須處理不可預見和未知的異常。這對現實世界的應用至關重要,因為在訓練過程中預見并標注所有可能的異常是不現實的。因此,開集 VAD 的研究引起了極大的關注。然而,現有的綜述工作并未對開集 VAD 進行深入研究。基于此,我們進行了深入的調查,并對現有的開集 VAD 工作進行了系統分類。據我們所知,這是第一個包含詳細介紹開集監督 VAD 的綜述。在本節中,我們根據不同的研究方向,將開集監督 VAD 大致分為兩類:開集 VAD 和小樣本 VAD。在圖 10 中,我們展示了六種經典的開集監督 VAD 方法。
IX. 結論
我們對深度學習時代的視頻異常檢測方法進行了全面綜述。與之前主要集中于半監督視頻異常檢測的綜述不同,我們提出了一個系統的分類體系,將現有的工作根據監督信號分為五類:半監督、弱監督、無監督、全監督和開集監督視頻異常檢測。對于每個類別,我們進一步根據模型的不同特征進行細分,例如模型輸入和輸出、方法論、優化策略和架構,并展示了各種方法的性能對比。最后,我們討論了基于深度學習的視頻異常檢測未來的一些有前景的研究方向。
摘要——大型語言模型(LLMs)的快速進展有潛力革新各個領域,但其迅猛發展在監督、倫理開發和建立用戶信任方面帶來了顯著挑戰。本綜述全面調研了LLMs中的關鍵信任問題,重點關注意外傷害、缺乏透明性、易受攻擊、人類價值觀對齊和環境影響等問題。我們強調了可能破壞用戶信任的諸多障礙,包括社會偏見、決策過程中的不透明性、潛在的濫用以及技術快速演變帶來的挑戰。隨著LLMs在金融、醫療、教育和政策等敏感領域的普及,解決這些信任差距至關重要。 為了解決這些問題,我們建議采用綜合方法,包括倫理監督、行業問責、監管和公眾參與。我們主張重塑AI開發規范、對齊激勵措施,并在整個機器學習過程中整合倫理考量,這需要技術、倫理、法律和政策等不同領域專業人士的密切合作。我們的綜述通過提供一個評估LLMs信任的強大框架和對復雜信任動態的深入分析,為該領域作出了貢獻。我們提供了上下文化的指南和標準,旨在負責任地開發和部署這些強大的AI系統。 本綜述識別了在開發可信AI過程中面臨的關鍵限制和挑戰。通過應對這些問題,我們的目標是創建一個透明、負責的AI生態系統,在帶來社會利益的同時將風險降至最低。我們的研究成果為研究人員、政策制定者和行業領導者提供了寶貴的指導,幫助他們在各類應用中建立對LLMs的信任,并確保其負責任地使用造福社會。 關鍵詞——AI治理、算法偏見、可解釋的AI、大型語言模型、可信的AI。
人工智能(AI)的發展顯著受到了作出基礎性貢獻的關鍵人物的影響。AI的創始人約翰·麥卡錫提出了“人工智能”一詞,并倡導使用數學邏輯來表示知識,開創了知識表示領域。他還開發了LISP,這是一種對AI進展至關重要的編程語言[1]。麻省理工學院計算機科學與人工智能實驗室的聯合創始人馬文·明斯基通過理論AI研究推動了對機器智能和推理的理解[2]。由麥卡錫、明斯基、內森尼爾·羅切斯特和克勞德·香農提出的1956年達特茅斯會議是AI歷史上的一個關鍵時刻,將該領域從理論概念轉向實際應用[3]。這一時期見證了啟發式搜索技術和早期機器學習模型的進步,展示了AI向實際應用的轉變。
1970年代后期,AI進展放緩,被稱為“第一次AI寒冬”。這是由于未能達到預期和計算能力有限導致資金和興趣的減少。1980年代見證了向實際AI應用的轉變,如專家系統和自然語言處理,為大型語言模型(LLMs)奠定了基礎,推進了AI對語言理解和生成的能力。盡管在AI寒冬期間面臨挑戰,早期的專家系統在AI商業化方面起到了關鍵作用[4]。
最近的AI進展歸因于廣泛的數據集和日益增加的計算能力,特別是GPU的使用。這些因素在推動深度學習技術的發展中起到了關鍵作用,顯著影響了計算機視覺和語音識別[5],[6]。另一個重要的里程碑是語言模型的創建,這些模型能夠處理和生成類人文本,從而擴展了AI的能力。深度神經網絡(DNNs)和LLMs的有效性導致了AI在醫療、金融、交通和零售等各個行業的廣泛采用,提高了效率和數據處理能力[8]-[10]。神經網絡(NNs)用于分析大量數據集并識別模式,而LLMs則用于為自動化客戶服務的聊天機器人提供動力[11]-[14]。這些技術革新了不同領域的技術互動,凸顯了深度學習和語言模型對AI進展的重大影響[9]。 DNN架構,包括LLMs,導致了“黑箱”問題,使得理解其工作原理及其結果變得困難[15]。雖然像決策樹這樣的簡單AI模型是透明的,但LLMs缺乏透明性,這在用于決策時引發了倫理問題。挑戰在于使這些系統更透明和可理解,同時考慮到潛在的偏見和錯誤。解決這些問題的努力包括開發使算法過程更透明的方法,但這在AI倫理和治理中仍然是一個重大挑戰[16]。要更好地理解這一點,請參見圖1,它展示了AI的演變和信任挑戰。
時間軸展示了AI在醫療、金融、交通、零售和電子商務領域的日益擴大影響。LLMs在利用先進的語言生成技術變革內容創建方面處于領先地位。時間軸強調了AI中的信任和監督挑戰以及建立信任策略的重要性[17],[18]。它揭示了AI進展與政策和治理發展之間的差距。
LLMs的最新進展改善了其語言生成能力,但其復雜性阻礙了我們對其決策過程的理解。黃和王在2023年的調查[19]強調了解釋性對LLMs的重要性,特別是在需要透明度和信任的關鍵行業。主要發現包括:a)用于基于神經網絡的NLP模型的事后解釋工具如InSeq工具包;b)模型校準和不確定性估計技術;c)用于擴展和推理的指令微調LLMs研究,問題回答中的元推理;d)LLMs的數學推理能力,語義解析魯棒性研究,減少LLM使用危害的舉措,Aug-imodels等框架[19]用于高效和可解釋的模型,評估代碼訓練的LLMs,以及e)改進LLM推理性能的Chain-of-Thought樞紐措施。他們的研究強調了解釋性對LLMs的倫理和實際重要性。在LLMs被集成到多種應用中時,提供可理解和可解釋的響應是重要的。增強模型設計和交互、提高魯棒性和效率、指導訓練技術都是理解LLM操作的好處。他們的調查是揭開LLM復雜性的一個重要貢獻,為在醫療、金融和法律領域透明和倫理部署LLM奠定了基礎。它為未來研究奠定了基礎,以彌合原始LLM輸出與人類可理解解釋之間的差距。持續開發LLM解釋性對推進AI技術的可信性和可及性至關重要。
A. 構建大型語言模型的信任
黃和王的調查工作[19]及更廣泛的解決“黑箱”問題的努力指明了清晰的前進方向。然而,我們需要一種綜合方法,考慮倫理、技術和政策,以構建AI系統的信任,尤其是像LLMs這樣復雜的模型。 1)LLMs的倫理問題:LLMs在醫療、金融、政策制定和法律系統等領域的日益使用引發了關于隱私、偏見、公平和問責的倫理問題,原因是它們具有先進的自然語言能力。 LLMs可能會因為訓練文本數據中包含敏感信息而損害隱私。這可能導致隱私泄露,例如暴露醫療保健中的機密患者數據或在數據分析中泄露敏感的客戶記錄。為減少這些風險,有必要避免將個人可識別信息納入模型,并評估其隱私影響。確保LLM系統中的透明性和用戶對其數據的控制至關重要。明確的數據隱私指南和法規對于與用戶建立信任至關重要[20]-[30]。 偏見是LLMs的另一個倫理問題。它指的是LLMs在訓練數據中反映和延續的偏見,這可能導致偏見輸出或決策,損害邊緣化群體。性別、種族或文化偏見可能影響LLM模型,導致不公平或刻板印象的輸出和歧視性決策。例如,一個以人力資源為重點的LLM助手可能會對某些群體不利。為解決這一問題,公司應建立多元化的審查委員會,并定期使用偏見檢測工具審核LLM輸出[31]-[33]。 LLMs的另一個倫理問題是公平性,指的是公正待遇。LLM系統必須避免偏見并確保公平,通過公正對待每個人來實現。不公平的LLM模型可能會加劇不平等并造成傷害。例如,在公共政策中使用LLMs評估貸款或抵押申請可能會加劇經濟不平等。實現LLMs的公平性需要防止數據和算法中的偏見,使用對抗性去偏技術,并使用明確定義的指標持續評估公平性[34]-[37]。 問責在LLM系統中至關重要[38]-[40]。由于其復雜的推理過程,LLMs在醫療、司法和就業等影響人們生活的領域中尤其難以追究責任。用戶和利益相關者應知道誰對開發、部署和維護負責。他們應有錯誤、偏見或傷害的申訴機制。組織應建立明確的責任制和透明的治理,包括AI倫理委員會、模型性能的詳細記錄和跟蹤,以及關于LLM系統開發和部署的全面報告。 訓練和運行如GPT-3之類的LLMs需要大量的計算資源,導致高能耗和碳排放[41]。例如,GPT-3的訓練消耗了大約1287 MWh的電力,產生了502公噸的CO2排放,相當于112輛燃油車一年的排放。推理過程可能比訓練消耗更多的能量,估計約60%的AI能量用于推理,40%用于訓練[42]。一次ChatGPT請求的能耗可能是一次谷歌搜索的100倍。盡管LLMs目前對整個ICT行業的排放貢獻不到0.5%,對全球總排放的貢獻不到0.01%,但其影響正在迅速增加[43],[44]。為了促進AI的可持續性,行業應優先透明測量能耗和排放,利用可再生能源數據中心,開發更高效的AI硬件和算法,啟用排放跟蹤功能,并考慮轉向較小的專用模型而非大型通用LLMs。盡管LLMs目前對全球排放的貢獻很小,但其日益廣泛的使用需要積極努力減輕其環境影響,確保AI發展惠及世界而不加劇氣候變化。AI社區、政府和科技公司之間的合作對于實現更可持續的AI未來至關重要[45],[46]。
2)信任基礎上的LLMs技術進步:LLM系統需要解決技術挑戰以建立信任,例如解釋性。解釋性指的是理解和解釋LLM系統的決策過程。透明性通過使用戶理解系統的推理并識別潛在的偏見或錯誤來建立信任。可解釋的LLM系統可以幫助識別倫理問題并提供決策見解[20],[47],[48]。 可解釋AI(XAI)技術對于理解LLMs及建立其復雜系統的信任至關重要。注意力機制提供了對模型預測的見解[49],但其解釋可能存在爭議[50]。更可靠的方法如綜合梯度[51]和代理模型[52]提供了特征相關性的量化指標,增強了我們對模型決策的理解。最新進展應用電路分析[53]來分解復雜的黑箱LLMs為可解釋的元素,提供了模型操作的詳細見解。使用提示技術生成的模型解釋允許全面的因果敘述[54]。然而,重要的是嚴格評估這些解釋的準確性和有用性[55]。使用各種XAI方法對于LLM的負責任使用至關重要。清晰的解釋通過描述模型的能力、局限性和風險來幫助建立終端用戶的信任[56]。它們對于調試[57]、識別偏見[58]和促進倫理使用至關重要。隨著LLMs的進步,開發可解釋的LLMs至關重要。這在技術上具有挑戰性,但在倫理和研究上必不可少。定制的XAI技術需要在各個層次提供解釋,反映模型的邏輯以增強用戶信心、確保安全并指導AI的倫理使用。
另一個技術挑戰是數據偏見。數據偏見指的是LLM訓練數據中的不公平偏向或歧視。它可能導致有偏見的結果并延續社會不平等。解決數據偏見需要采取措施,如數據審計、預處理以減輕偏見以及多樣化訓練數據集以實現代表性和包容性。明確定義的指標可以幫助評估LLM系統的公平性、準確性、可靠性和透明性,提供其倫理表現的量化指標[20],[37],[47],[48]。
最新研究探索了通過解決幻覺和缺乏可解釋性等問題來提高LLMs可信度的技術[59]。他們提出了一種稱為圖上的推理(RoG)的方法,通過知識圖譜與LLMs協同進行真實和可解釋的推理。在其檢索-推理優化方法中,RoG使用知識圖譜檢索推理路徑,以便LLMs生成答案。RoG中的推理模塊使LLMs能夠識別重要的推理路徑并提供可解釋的解釋,增強了AI系統的可信度。通過專注于知識圖譜中的推理過程并提供透明的解釋,像RoG這樣的方法展示了建立LLMs信任的有希望的方向[59]。
具有可靠日志記錄的可解釋系統增強了透明性、審計和問責制[60]。文檔和日志記錄提供了對決策過程的見解,支持錯誤解決,并確保遵守倫理和法規標準,從而建立用戶信任。這些機制使技術和非技術利益相關者能夠理解AI系統的內部運作,并確定影響其輸出的因素。
3)用戶信任的心理因素:用戶對LLMs的信任在很大程度上取決于心理因素,而不僅僅是技術的可靠性[61]-[65]。用戶必須對LLM系統的可靠性、準確性和可信度有信心。通過有效的溝通和透明性可以實現這一點。組織應清楚地傳達LLM系統的能力和局限性,提供有關系統工作原理和決策方式的信息。此外,組織應對其數據收集和使用實踐保持透明,讓用戶了解他們的數據如何被使用和保護。
4)信任基礎上的LLMs政策與治理:有效的治理對于管理部署LLM系統相關的倫理、技術和問責問題至關重要[36],[40],[47],[61],[66]-[69]。應建立結構和流程,以確保LLM系統的倫理和負責任開發、部署和監控。涉及關鍵利益相關者,如AI倫理委員會、監管機構和行業專家,可以提供指導和監督。為了確保公平和無偏見的決策,必須包括用戶反饋和多樣化的觀點。為了建立對LLMs的信任,我們必須解決解釋性和數據偏見等技術問題,同時建立強有力的治理框架。
5)社會經濟影響:必須評估LLMs的社會經濟影響,以了解其對勞動力和社會的影響。LLMs可能會取代人類工人,導致失業和社會動蕩。需要投資于技能發展,以幫助工人適應變化。再培訓計劃和其他培訓可以使工人能夠與LLMs協同工作或從事新角色。應實施優先考慮工作保障和社會支持的政策,以減輕影響。探索LLMs的潛在社會福利,如增加信息獲取,可以促進更包容的社會。在設計和實施LLMs時,倫理考量和負責任的部署至關重要。應建立促進透明、問責和公平的政策和法規。對LLMs影響的仔細考慮、技能發展的投資和負責任的部署對于對社會產生積極影響至關重要[70]-[72]。
B. 本綜述的主要貢獻
本綜述對AI系統的信任進行了全面分析,重點關注LLMs。通過審查倫理、技術和社會因素,我們為負責任的AI開發討論作出了貢獻。我們的綜述提供了應對構建AI系統信任挑戰的見解和建議,特別是LLMs。主要貢獻如下所述。
? 綜合評估框架:本綜述提供了一個用于分析高級AI系統,特別是LLMs中的算法偏見和漏洞的分類法。該框架由八個視角組成,涵蓋透明性、魯棒性、人類價值對齊和環境影響等方面。此方法使得能夠對LLMs的信任進行徹底評估,解決其開發和部署中的問題。通過整合多種視角,該框架提供了LLM可信度的全貌,對負責任的AI作出了重要貢獻。 ?** 綜合信任動態分析**:本綜述審查了影響用戶對AI系統信任的因素,包括心理、倫理、技術和政策方面。通過分析AI能力、法規和社會接受度的交叉點,識別了實現可信AI的障礙。此研究揭示了信任動態,為從事負責任的AI開發和實施的研究人員、政策制定者和行業專業人士提供了指導。 ? 針對LLMs的上下文化指南和標準:本綜述審查了現代AI系統,特別是不透明模型如LLMs的倫理指南和政策標準的應用。倫理指南在確保AI使用的責任方面發揮重要作用。然而,LLMs由于其類人文本生成和缺乏透明性,面臨獨特的挑戰,這使得理解和解釋其行為變得困難。本綜述探討了在實際LLM部署中實施倫理原則的實際意義,考慮了技術限制、社會影響和潛在風險。它識別了局限性并提供了解釋和操作化LLM開發和部署倫理指南的見解。目標是通過突出差距并倡導完善LLM特定指南來促進AI治理,促進AI使用的透明性、公平性和問責制。
C. 本綜述的局限性
本綜述對AI信任進行了全面審查,特別關注LLMs。然而,重要的是要承認我們研究的局限性。我們的分析基于現有的AI倫理和信任領域的文獻和研究,包括專門針對LLMs的相關工作。因此,本綜述可能無法完全捕捉這些快速發展的領域中最新的想法或進展。
我們的分析范圍限于學術出版物和行業報告,這限制了所考慮的觀點范圍。對于LLMs,這尤為相關,因為本綜述可能未包括未出版的研究或不太知名的觀點,這些觀點可能提供寶貴的見解。此外,鑒于AI技術發展和LLMs倫理考慮不斷演變的速度,本綜述中提出的一些討論和結論可能會隨著時間的推移而變得不再相關。盡管我們的綜述旨在涵蓋AI,包括LLMs,越來越多部署在高風險領域中的情況,但它并未詳盡地解決所有與LLMs相關的信任方面或行業特定挑戰。本綜述中提出的解釋和分析基于撰寫時可獲得的最佳數據和研究。讀者在評估這些發現和建議時應考慮這些局限性。
需要強調的是,本綜述的目標是對AI和LLMs的信任進行全面審查,同時保持對分析范圍的透明度。我們旨在通過探索現有的指南和框架、討論構建LLMs信任的方法和挑戰以及提出未來研究方向,為AI信任和倫理的持續對話作出貢獻。我們鼓勵在可能探索較少或快速發展的領域進行進一步研究和對話,因為這些討論對于AI系統負責任的開發和部署至關重要。在本綜述中,我們創建了一個敘述,捕捉了AI信任的當前狀態及其領域中的潛在發展。然而,AI倫理和信任的領域是復雜和多面的,我們的綜述可能未涵蓋每一個細微差別或觀點。盡管如此,我們希望這項工作能為研究人員、政策制定者和從業人員在應對與AI和LLMs信任相關的挑戰和機遇時,提供有價值的資源。