摘要——基于用戶指定要求的條件圖像生成是創建復雜視覺內容的關鍵組件。近年來,基于擴散的生成模型已成為條件圖像生成的一個非常有效的方法,導致了相關文獻的爆炸式增長。然而,擴散模型的復雜性、圖像生成任務的廣泛性以及條件機制的多樣性,為研究人員跟上快速發展的步伐并理解該主題的核心概念帶來了巨大挑戰。在本綜述中,我們根據條件如何融入擴散模型的兩個基本組件(即去噪網絡和采樣過程)對現有工作進行分類。我們特別強調了在訓練、重用和專門化階段構建理想去噪網絡時,各種條件方法的基本原理、優點和潛在挑戰。我們還總結了在核心采樣過程中使用的六種主流條件機制。所有討論都圍繞流行的應用展開。最后,我們指出了一些關鍵但仍未解決的未來問題,并提出了一些可能的解決方案。我們審閱的相關工作列在 //github.com/zju-pi/Awesome-Conditional-Diffusion-Models。
關鍵詞——生成模型,擴散模型,條件圖像生成,條件集成。
I. 引言
圖像生成是生成式人工智能的一個重要任務。當結合用戶提供的條件來生成符合不同用戶需求的圖像時,它的實用性會更大。早期的研究在各種條件圖像生成任務中取得了重大突破,如文本到圖像生成 [37, 41, 156, 159, 239]、圖像修復 [87, 88, 125, 210] 和圖像編輯 [1, 10, 107]。然而,早期基于深度學習的生成模型(如生成對抗網絡 (GANs) [49, 131]、變分自編碼器 (VAEs) [81, 185] 和自回歸模型 (ARMs) [199, 200])在條件圖像生成中的表現并不令人滿意,這是由于它們的內在局限性:GANs 容易出現模式崩潰和訓練不穩定的問題 [49];VAEs 通常生成模糊的圖像 [81];而 ARMs 則存在順序誤差積累和耗時巨大的問題 [200]。
近年來,擴散模型 (DMs) 作為最先進的圖像生成模型嶄露頭角,憑借其強大的生成能力和多功能性,得到了廣泛認可 [20, 57, 71, 184, 191]。在擴散模型中,圖像是通過引導去噪網絡預測的迭代去噪步驟從高斯噪聲中生成的。這種獨特的多步采樣過程使得擴散模型能夠實現出色的生成性能,表現為穩定的訓練、豐富的輸出和卓越的樣本質量。此外,與一步生成模型相比,擴散模型在促進條件集成方面具有獨特優勢。這些優點使得擴散模型成為條件圖像生成的首選工具,近年來基于擴散的條件圖像生成 (DCIS) 研究得到了迅速發展 [25, 45, 56, 75, 118, 160, 167, 168, 209, 242, 247]。圖1展示了使用多種輸入模態的七個流行的 DCIS 任務。
隨著相關研究的快速擴展,模型架構、訓練方法和采樣技術的眾多變化,以及潛在的條件生成任務的廣泛性,研究人員很難全面掌握 DCIS 的全貌。這種復雜性對該領域的新手來說尤為具有挑戰性。當前需要的是一項系統性的綜述,提供對這一快速發展的研究領域的全面且結構化的概述。
已有一些關于特定條件圖像生成任務的綜述,如圖像修復 [238]、文本到圖像生成 [103] 和圖像編輯 [64],或根據目標條件生成任務對計算機視覺領域的相關工作進行分類的研究 [32, 149]。雖然這些面向任務的綜述為其各自目標任務的方法提供了寶貴的見解,但它們并未涵蓋不同條件生成任務在模型框架中的共同特征,特別是在模型架構和條件機制方面。最近的兩篇綜述 [14, 182] 提供了基于擴散模型的廣泛任務的概述,但它們的范圍有限,主要集中于構建在文本到圖像 (T2I) 框架上的 DCIS 工作,忽略了早期將條件集成到無條件去噪網絡中的工作,或涉及從頭開始訓練特定任務的條件去噪網絡的工作。這些早期工作為當前使用 T2I 框架的 DCIS 進展奠定了基礎,并且在低級任務如圖像修復中仍然廣泛應用。此外,[182] 主要關注基于擴散模型的圖像編輯框架,缺乏對該領域其他任務統一框架的系統分析,而 [14] 并未深入探討模型架構的設計選擇和采樣過程中詳細的條件機制。因此,它們的分類方法缺乏系統性,并遺漏了 DCIS 領域中的一些關鍵相關工作。
相較之下,本綜述旨在提供一個全面且結構化的框架,涵蓋當前廣泛的 DCIS 研究工作,基于 DCIS 框架中條件集成的主流技術提供分類方法。我們對構建具有條件集成的 DCIS 框架所涉及的組件和設計選擇進行了清晰而系統的分解。具體來說,我們通過審查和總結現有的 DCIS 方法,探討條件如何集成到擴散建模的兩個基本組件中:去噪網絡和采樣過程。在去噪網絡方面,我們將構建條件去噪網絡的過程分為三個階段。在采樣過程中,我們將六種主流的采樣中條件機制進行分類,詳細說明控制信號如何集成到采樣過程的各個組件中。我們的目標是為讀者提供跨不同任務的現有 DCIS 工作的高層次和易于理解的概述,使他們能夠設計適用于其所需任務的條件生成框架,包括尚未探索的新任務。
本綜述的其余部分組織如下:首先在第二部分介紹擴散模型的背景和條件圖像生成任務。接下來,我們在第三部分總結去噪網絡中的條件集成方法,并在第四部分總結采樣過程中的方法。最后,我們在第五部分探討未來的潛在方向。圖2展示了本文提出的 DCIS 分類體系。
摘要——根據規模預測,大型模型在許多領域取得了突破性進展,特別是在自然語言生成任務中,它們的表現已接近甚至超越人類水平。然而,前所未有的參數規模帶來了顯著的計算和存儲成本。這些大型模型需要大量的計算資源和GPU內存來運行。在將大型模型適應于特定下游任務時,其龐大的參數規模在計算能力和GPU內存有限的硬件平臺上微調時面臨重大挑戰。為了解決這個問題,參數高效微調(PEFT)通過有效調整大型預訓練模型的參數以適應各種下游任務,提供了一種實用的解決方案。具體而言,PEFT調整預訓練大型模型的參數,以適應特定任務或領域,最小化額外參數的引入和所需的計算資源。本文主要介紹PEFT的基礎知識、各種PEFT算法的核心思想和原理、PEFT的應用以及未來研究方向。通過閱讀本綜述,我們相信感興趣的讀者能夠迅速掌握PEFT方法論,從而加速其發展和創新。 關鍵詞——微調、參數高效、大型語言模型、深度學習、人工智能。
最近幾年,大型預訓練模型(通常稱為“大模型”)作為人工智能領域的一項重要進展,逐漸受到廣泛關注。由于其在各種應用場景中的卓越表現和多樣性,這些模型引發了大量討論。這些模型具有強大的計算能力和豐富的數據資源,使其能夠在處理復雜任務時表現出色。在自然語言處理(NLP)領域,大型語言模型(LLMs)備受關注。這些模型在文本生成、機器翻譯、個性化聊天機器人、文本摘要、情感分析和問答系統等任務中展現出卓越的創造力。 然而,大模型的發展面臨著重大挑戰和爭議。這些模型需要大量的計算資源和數據支持,這可能對環境造成威脅并影響隱私保護。盡管在特定任務中表現出色,但這些模型仍然存在局限性和錯誤率,需要不斷優化和改進。在直接使用大模型處理特定任務時,其性能往往低于預期。因此,微調大模型已成為提高模型性能的關鍵方法。 PEFT(參數高效微調)是一種轉移學習方法,專門用于調整大型預訓練模型的參數,以適應新的任務和場景。這種方法涉及動態調整模型,以增強其在執行特定任務時的有效性,考慮到目標任務的獨特特征和要求。微調過程通常包括改進模型架構、優化參數和調整學習策略等多個方面,以在新任務中實現更好的性能。隨著深度學習領域的不斷發展,優化和微調大模型的技術也取得了顯著進展。值得注意的PEFT方法包括LoRA、適配器調優、前綴調優、提示調優、P-tuning、BitFit等。 然而,盡管在多個領域中,大模型微調技術取得了顯著成就,但仍然存在許多需要解決的挑戰和困難。例如,過擬合的緩解、微調效率的優化,以及在預訓練與微調任務之間找到學習平衡等問題都需要更多的研究。 近年來,關于PEFT的文章層出不窮,其中一些研究提供了對最流行方法的有益概述。以下是對這些研究的比較分析。丁寧等人引入了一種理論抽象,用于Delta Tuning,從優化和最優控制的角度進行分析。這一抽象提供了一種統一的方法,描述當前的參數高效微調方法,為未來的研究提供了獨特的視角。然而,盡管該研究主要集中在NLP應用上,但這些方法在不同領域的通用性和有效性仍需進一步探討。Lialin等人提供了全面的分析和分類,涵蓋了廣泛的方法,并比較了約30種方法在存儲效率、內存效率、計算效率、準確性和推理開銷等五個維度上的表現。然而,雖然文章主要關注于對數十億參數規模語言模型進行有效微調的詳細方法,但對真實應用場景的探討相對有限。徐玲玲等人對當前PEFT方法進行了全面的評估和分析,評估了它們在一系列NLP任務中的性能、參數效率和內存利用率。然而,該論文并未充分闡述這些方法在實際操作環境中的應用,也未深入探討它們的適應性及可能遇到的領域特定挑戰。辛怡等人提供了視覺PEFT的全面概述和未來方向,系統地回顧了最新的進展。盡管文章涵蓋了多種視覺任務,但實驗主要集中在幾個常見任務上,并未完全涵蓋更廣泛的潛在應用場景。韓澤宇等人詳細分類了PEFT方法,探討了PEFT技術在各種模型架構和下游任務中的應用,以及參數高效微調方法的系統設計挑戰。該研究為研究人員和工程師提供了PEFT方法的全面概述,但在實際應用覆蓋方面仍有改進空間。 我們的貢獻如下:
本調查旨在全面回顧大模型微調技術的最新進展。通過對現有研究的深入審查,我們的目標是識別并填補當前知識體系中的空白,從而開發出一個全面和系統的知識框架,為研究人員提供清晰的視角,并指導他們未來的研究。總之,我們的工作為相關領域提供了有價值的資源和視角,供學術和實踐用途。調查的剩余部分結構如下: 在第二部分中,我們提供大型語言模型基本組成部分的簡要總結,包括其過去的發展、新興能力以及支配其規模的擴展規律。隨后,我們簡要概述了全面語言模型的主要分類,并介紹了多模態綜合模型的基本原理和框架。此外,我們還探討了在大型語言模型微調領域采用的主要方法,包括指令微調、對齊和基于人類反饋的強化學習(RLHF)。最后,我們簡要總結了在大模型微調領域最常用的基準和評估數據集。 在第三部分中,我們提供了對PEFT方法的全面分析和總結,展示了當前PEFT方法的分類框架,涵蓋了2019年6月至2024年7月發布的100多篇研究文章。我們在傳統的加法、重新參數化和減法PEFT分類基礎上,納入了混合、量化和多任務分類PEFT方法的總結。 在第四部分中,我們對多模態、視覺和擴散模型領域的PEFT方法進行全面分析和描述。我們的目標是提供深刻的理解和針對不同應用場景的PEFT選擇和改進建議。 在第五部分中,我們總結了我們的廣泛調查,并提出了多個有前景的未來發展方向,包括算法改進和任務場景,旨在為這一蓬勃發展的領域的進一步研究和發展提供有價值的見解。
摘要
大型語言模型(LLMs)的成功本質上與海量、多樣化和高質量的訓練和評估數據的可用性密切相關。然而,高質量數據的增長速度遠遠落后于訓練數據集的擴展,導致了潛在的數據枯竭危機。這凸顯了提高數據效率和探索新數據源的緊迫性。在此背景下,合成數據作為一種有前景的解決方案出現。目前,數據生成主要包括兩大方法:數據增強和數據合成。本文全面回顧并總結了貫穿LLM生命周期的數據生成技術,包括數據準備、預訓練、微調、指令調整、偏好對齊及其應用。此外,我們討論了這些方法當前面臨的限制,并探討了未來發展的潛在途徑。我們的目標是為研究人員提供對這些方法論的清晰理解,幫助他們在構建LLM時快速識別合適的數據生成策略,并為未來的探索提供寶貴的見解。
近年來,大型語言模型(LLMs)在廣泛的任務中展現了無與倫比的能力【9, 68, 166】,牢固地確立了它們作為通用人工智能(AI)系統支柱的地位。這些模型在自然語言處理【234, 262, 264】、計算機視覺【100, 207, 239】和其他研究領域【36, 163, 229】中取得了顯著的進展,不斷推動AI所能實現的邊界。LLMs的成功很大程度上歸功于它們能夠從大量數據中捕捉復雜的模式和關系,使其能夠高效執行復雜任務,例如自然語言推理【39, 134】、視覺問答【151, 158】和視覺與語言導航【125, 178】。 然而,LLMs的性能高度依賴于訓練數據的質量和數量【2, 57, 58】。隨著模型規模的指數級增長——現在達到數十億甚至數萬億個參數【105, 168, 268】——對于大規模、多樣化和高質量數據的需求日益增加,以確保模型在各種任務和領域中的穩健泛化。獲取此類數據帶來了巨大的挑戰,因為數據收集成本高昂,同時還面臨隱私問題。此外,高質量數據的增長速度遠遠落后于訓練數據集規模的快速擴展。如果這一趨勢繼續下去,現有的數據將最終耗盡,意味著如果不能顯著提高數據效率或發現新的數據源,LLMs的增長可能會顯著放緩。
面對這些迫在眉睫的限制,數據合成和增強技術對于延長LLMs的生命周期和提升其泛化能力至關重要。傳統的數據合成和增強技術【34, 98, 135, 194】,如圖像旋轉、裁剪、翻轉以及基于規則的自然語言生成,已被廣泛應用于解決這些數據限制。盡管這些方法在一定程度上改善了數據多樣性并緩解了數據匱乏問題,但它們仍難以充分捕捉真實世界數據的復雜性【55】,難以大規模生成數據【233】,并且難以抵御對抗性樣本【162】,這限制了它們在LLM訓練中的有效性。
為了克服這些挑戰,研究人員越來越多地轉向面向LLM的數據合成和增強技術,認識到LLM能夠從大型數據集中建模復雜模式,并生成與真實世界分布高度相似的合成數據,同時引入有價值的變異【37, 175, 260】。這些研究減少了對人工策劃數據集的依賴,并能夠生成高質量、多樣化的數據,以滿足LLMs在其生命周期和功能中的不斷演進需求。為了捕捉這些努力的廣度,我們通過在Google Scholar中使用“數據合成”、“數據增強”和“大模型”等關鍵詞收集了與LLM數據合成和增強相關的論文。圖1展示了按年份和發布平臺劃分的出版趨勢,反映了該領域日益增長的興趣。截至2024年10月,我們識別出了250篇涵蓋不同研究主題和發布平臺的獨特出版物。總結這些努力為我們提供了對進展和剩余挑戰的關鍵見解,并為未來的研究奠定了基礎。 盡管取得了這些進展,但在LLM數據合成和增強方面仍然存在一些關鍵挑戰。合成數據的濫用帶來了風險,特別是在傳播錯誤信息和引發操縱公眾輿論的倫理問題時。此外,合成數據在將AI模型與人類價值對齊時經常引入歧義,可能導致偏見結果。評估訓練于合成數據上的模型也很復雜,因為傳統的基準測試可能無法完全捕捉這些數據的細微差別。確保可靠性也是另一個問題,因為原始數據集中的偏見和不準確性可能在合成數據中持續存在,限制了它的跨領域泛化能力。此外,LLM的計算需求,以及處理不常見語言或新穎指令的挑戰,也使得其更廣泛的應用變得復雜。最后,缺乏統一的框架來組織和比較學術界和工業界提出的方法,這也是研究人員在應對這一快速發展的領域時面臨的障礙。
本綜述旨在通過提供LLM數據合成和增強技術的全面概述來解決這些差距。如圖2所示,與先前的綜述【43, 140, 147, 214, 271】主要集中在支持特定下游任務或LLM某些階段的方法不同,我們的工作強調了LLM數據合成技術在提升其生命周期各個階段和核心功能整體性能中的直接作用。與【137】的工作不同,該工作主要關注解決數據匱乏和隱私問題的合成數據生成實踐,我們的綜述不僅提供了實際指導,還通過分類方法全方位提升LLM性能。我們不僅探討了數據生成方法,還研究了這些技術如何在LLM的各個階段和功能中發揮作用,提供了一種更綜合、以數據為中心的框架來推進LLM的發展。具體而言,我們從兩個關鍵角度系統回顧和分類了現有研究:LLM生命周期(從預訓練到微調和應用)及其核心功能(理解、邏輯、記憶和生成)。通過圍繞這兩個角度展開討論,我們為不同方法的發展、相互聯系及實際應用提供了更清晰的見解。此外,我們還識別了關鍵挑戰,探索了新興的研究方向,并突出了可能進一步推動通過數據為中心的方法提升LLM性能的潛在突破。
本綜述的貢獻總結如下:
通過提供LLM數據合成和增強方法的全面概述,本綜述旨在闡明該領域的現狀,并激發未來的研究方向,以通過數據合成和增強方法進一步提升LLM的能力。
我們對本綜述的其余部分進行如下組織:第2節對LLM數據合成和增強的主要領域進行了分類,概述了基礎技術。第3節從LLM生命周期的角度討論了當前的LLM數據合成和增強方法,詳細說明了這些技術如何在模型開發的不同階段使用。在第4節中,我們從LLM核心功能的角度回顧了這些方法,探討了數據合成和增強如何提升關鍵能力,如理解、邏輯、記憶和生成。第5節探討了LLM數據合成和增強的評估策略,涵蓋了評估基準、評估指標和排行榜,用于評估和比較現有方法的有效性。最后,第6節深入研究了LLM數據合成和增強中的挑戰和新興趨勢,并提出了未來的研究建議,以促進LLM通過數據合成和增強方法的持續進步。
數據生成方法在解決數據稀缺性和不平衡問題方面起著關鍵作用,從而提升模型性能和泛化能力。如圖4所示,我們總結了近年來數據增強和合成技術的發展和演變。本節主要介紹當前數據生成方法的分類,區分了數據增強和數據合成。數據增強通過對現有數據樣本的轉換來增強其多樣性,而數據合成則是從頭或基于生成模型創建全新的樣本。兩者在獲取數據的方式上有所不同,但目標都是擴展數據集。此外,數據增強和合成方法可以從多個維度進行細分。每種方法都有其獨特的優勢和應用,使研究人員能夠根據特定需求和目標定制其數據生成策略。
數據增強是一種從數據到數據的生成方法,通常涉及對原始數據進行操作,以增加其多樣性和數量,而不會顯著改變其本質特征。數據增強技術通過轉換或擾動現有數據樣本,旨在提高其豐富性。在不同的模態中,數據增強技術往往具有相似性。例如,在圖像數據中,增強操作包括拼貼【90】、翻轉【184】、復制粘貼【61】、加噪聲【149】、配對【84】等。類似地,在文本數據中,增強操作包括同義詞替換【95】、復制粘貼【185】等。此外,為滿足多模態學習的需求,現有研究已在數據增強過程中解決了跨模態信息對齊問題。MixGen【75】通過線性插值圖像和拼接來自兩個現有圖文對的文本序列生成新的訓練樣本,所生成的圖文對中的語義關系保持一致并匹配。近年來,在快速發展的LLM領域,數據增強已成為通過多樣化訓練示例來提升模型性能的基石,從而避免了大量額外數據收集的必要性。從數據中心的角度來看,我們系統地將現有的數據增強研究分為三類:數據標注【3, 63, 94, 136, 198, 275】、數據重組【45, 51, 143, 237】和協同標注【11, 43, 116】。
2.1.1 數據標注
數據標注旨在利用LLM廣泛的語言理解能力來為大量未標注數據集提供注釋。這種方法在擁有大量未標注數據的領域(如跨語言處理和多模態學習【3, 63, 275】)中特別有用,在這些領域中,自動化標注可以顯著加快數據準備過程。最近的研究探索了LLM的零樣本標注能力,例如GPT-4對政治推特的標注【198】。此外,Khan等人【94】通過使用SelTDA框架從未標注的圖像中生成偽標簽數據,專注于視覺問答(VQA)任務。
2.1.2 數據重組
數據重組涉及將現有數據轉化并重組為更多樣化的變體,從而實現更精細的數據增強【45, 51】。這種方法旨在通過引入多樣而相關的示例來豐富訓練環境,增強模型的魯棒性和泛化能力。旋轉【92】、顏色通道轉換【64】和同義詞替換【95】等經典方法經常使用。近年來,利用LLM的策略也開始出現。例如,Chen等人【27】提出了Disco方法,該方法利用LLM生成大規模、高質量的反事實數據。2.1.3 協同標注 協同標注指的是人類標注者與LLM在標注過程中的協作【11】。通過整合兩種標注方法的優勢,協同標注不僅降低了標注成本,還同時提升了標注性能,從而促進了更高效和有效的數據標注方法。Li等人【116】提出了CoAnnotating框架,通過評估LLM的標注不確定性,策略性地分配數據點給人類或LLM進行標注。
另一方面,數據合成旨在從頭或基于生成模型創建全新的數據,這些數據與真實數據的分布相似。近年來,隨著生成式AI【13, 41, 42, 78, 139, 161, 169】的爆發和進步,合成數據的質量和生成效率取得了顯著進展。根據LLM的需求,本文將數據合成方法分為三大類:通用模型蒸餾【22, 53, 120, 263, 266】、領域模型蒸餾【108, 145, 146, 215】和模型自我改進【54, 150, 210, 248】。2.2.1 通用模型蒸餾 通用模型蒸餾涉及利用功能強大的通用模型,通常具有更多參數和更優性能,如StableVicuna、ChatGPT和GPT-4,來生成數據集以增強較弱模型的能力。使用這些強大模型的方式有多種,例如使用預定義的模板生成小故事【53】或利用LLM自身評估生成數據的質量。Phi-1及其系列【67, 120】表明,通過利用GPT-3.5生成教科書和習題的全面內容,一小部分高質量數據也可以訓練出強大的模型。其他一些方法通過生成指令數據集并在改進這些數據集的質量后微調模型,也取得了性能提升【22, 80, 196】。2.2.2 領域模型蒸餾 領域模型蒸餾是指利用特定領域內的模型生成數據。這種方法通常在通用模型無法滿足行業應用的特定需求時使用。例如,在代碼編程領域,領域模型蒸餾可以用于生成針對特定編程任務的指令數據【146, 215】。在數學領域,Minerva【108】和DeepSeekMath【220】等方法旨在生成數學問題的解答,同時確保其準確性和多樣性。此外,行業數據往往面臨規模有限和數據無法在特定企業中獲取等障礙。這些因素需要采用能夠有效解決這些特定場景中挑戰的領域專用模型。
2.2.3 模型自我改進
模型自我改進是指模型生成更高質量的數據以提升其能力。例如,利用現有指令調整模型,并促使其以特定風格(如維基百科風格或問答風格)改寫網絡上的文檔,可以聯合預訓練LLM進行真實和合成的釋義任務【150】。Self-Instruct【210】通過自動生成和改進指令數據來增強LLM自身的性能,極少需要人工干預。
數據合成和增強對于推動LLMs的發展至關重要,特別是在滿足LLMs對大規模和高質量數據需求方面。本綜述全面回顧了面向LLM的數據合成和增強技術,系統地探討了這些技術在LLM整個生命周期及核心功能中的應用,并構建了一個連接現有研究的框架,突出關鍵方法,闡明其優勢與局限性。我們相信,面向LLM的數據合成和增強方法的進步將開辟新的可能性,以提升數據效率、改善任務間的泛化能力,并推動以數據為中心的AI的演變。我們希望本綜述能為未來的研究奠定基礎,激發該領域的數據合成和增強的創新與進步。
摘要—近年來,三維視覺已成為計算機視覺領域的關鍵方向,推動了自動駕駛、機器人技術、增強現實(AR)和醫學成像等廣泛應用。該領域依賴于從圖像和視頻等二維數據源中準確感知、理解和重建三維場景。擴散模型最初設計用于二維生成任務,但它們提供了更靈活的概率方法,更好地捕捉了真實世界三維數據中的多樣性和不確定性。然而,傳統方法往往在效率和可擴展性方面面臨挑戰。本文綜述了當前最先進的擴散模型在三維視覺任務中的應用,包括但不限于三維物體生成、形狀補全、點云重建和場景理解。我們深入討論了擴散模型的基本數學原理,概述了其前向和反向過程,并介紹了支持這些模型處理三維數據集的各種架構進展。我們還探討了擴散模型在三維視覺中應用所面臨的主要挑戰,如處理遮擋和點密度變化,以及高維數據的計算需求。最后,我們討論了包括提升計算效率、增強多模態融合、探索大規模預訓練以改善三維任務泛化能力在內的潛在解決方案。本文為這一快速發展的領域的未來探索和開發奠定了基礎。
關鍵詞—擴散模型,三維視覺,生成模型。
I. 引言
近年來,三維視覺已成為計算機視覺領域中的重要方向,推動了自動駕駛、機器人、增強現實和醫學成像等各種應用。這些應用依賴于從圖像和視頻等二維數據源中對三維場景的準確感知、理解和重建。隨著三維視覺任務的日益復雜,傳統方法常常在效率和可擴展性方面遇到挑戰。 擴散模型[1]–[5]最初在生成建模領域提出,并迅速發展,展現出在許多計算機視覺領域的顯著潛力。基于通過一系列隨機步驟轉換數據的理念,這些模型在圖像生成[6]–[9]、去噪[10]和修復任務[11]中取得了成功。尤其是,擴散模型在生成高質量、多樣化輸出方面表現出強大的生成能力,同時對噪聲具備魯棒性。 近年來,擴散模型的發展已從二維拓展到更具挑戰性的三維任務[12]–[14],如三維物體生成[15]–[17]、形狀補全[18]、點云重建[20]等,標志著擴散建模與三維視覺的新時代的到來。 將擴散模型應用于三維視覺任務展現出前景,主要原因在于它們能夠建模復雜的數據分布,并且在噪聲處理上具備固有的魯棒性。擴散模型為需要三維數據合成、補全或增強的任務(如形狀生成[21]或深度估計[22])提供了強大的框架。與依賴確定性算法的傳統三維建模技術不同,擴散模型提供了更靈活的概率方法,可以更好地捕捉真實三維數據中的多樣性和不確定性。 對擴散模型的日益關注源于它們在二維任務中生成精細高質量結果的能力,這促使研究人員探索其在三維中的應用。本文綜述了將擴散模型用于三維視覺的最新方法,討論了其潛在的優勢,如在三維重建中提升精度、更好地處理遮擋和稀疏數據等。 盡管將擴散模型應用于三維視覺前景廣闊,但其并非沒有挑戰。其中一個主要技術障礙是三維數據的復雜性增加,它可以以多種形式表示,如網格、體素或點云,每種形式都有其特定的處理需求。將擴散模型與這些異構數據結構集成仍然是一個挑戰,同時三維任務的計算需求常常遠遠高于二維任務,導致可擴展性問題。 另一個挑戰在于建模三維數據中的長距離依賴關系,擴散模型并非原生具備該能力。此外,許多三維視覺任務缺乏大規模標注數據集,這進一步增加了擴散模型的訓練難度,要求大量高質量數據以實現有效泛化。 本綜述聚焦于擴散模型在廣泛三維視覺任務中的應用,包括但不限于三維物體生成、點云去噪、三維重建及場景理解[23]。我們回顧了多種擴散模型架構及其在三維視覺中的適應性,涵蓋了過去五年的早期階段和最新進展。特別關注于這些模型如何應對三維數據的特定挑戰以及大規模三維視覺問題的計算限制。本文的主要貢獻如下: * 對現有將擴散模型應用于三維視覺任務的研究進行了全面分類和總結,分析其優缺點。 * 深入分析和比較了用于三維數據的關鍵技術、框架和方法。 * 詳細討論了該領域當前的挑戰和開放問題,以及未來研究方向,以改進三維視覺應用中的擴散模型。 * 對用于評估三維視覺任務中擴散模型的相關數據集和基準進行了廣泛的回顧。
為完成本綜述,我們采用了全面的文獻檢索策略,以確保深入探索該領域。首先確定了與主題相關的關鍵詞和短語,如“擴散模型”、“三維視覺”以及相關概念(如“生成模型”和“三維數據的神經網絡”)。我們在多個學術數據庫(包括IEEE Xplore、arXiv和Google Scholar)中進行檢索,重點關注過去五年的出版物,以捕捉最新進展。此外,我們優先選擇經過同行評審的期刊文章、會議論文和預印本,確保包含高質量的前沿研究。通過此策略,我們旨在提供關于三維視覺中擴散模型的全面、最新的綜述。 本文其余部分的組織結構如下:第二節概述擴散模型的理論基礎及其在二維和三維視覺任務中的關鍵發展。第三節深入探討三維視覺的核心概念,討論不同數據表示及其挑戰。第四節對擴散模型在不同三維視覺任務中的應用進行了詳細回顧。第五節總結了用于評估的可用數據集和基準。最后,第六節討論了未來方向和開放問題。
第七節為結論。
A. 擴散模型簡介 擴散模型(Diffusion Models)是一類生成模型,通過逐步將隨機噪聲轉換為結構化數據來學習生成數據的分布。該過程包括前向擴散過程,在此過程中噪聲逐步添加到數據中,以及反向過程,利用去噪算法從噪聲中重建數據。這種方法旨在通過迭代去噪來建模數據分布,已證明能夠在多個領域(包括三維視覺)生成高質量的樣本。 擴散模型最早作為一種受非平衡熱力學啟發的隨機過程被引入,發展迅速。尤其是在Ho等人提出去噪擴散概率模型(DDPMs)之后,擴散模型在可擴展性和采樣效率方面有了顯著提升。擴散模型的關鍵特性在于其迭代生成過程,主要包括: * 前向過程:逐步向數據添加高斯噪聲。 * 反向過程:通過去噪還原數據,生成新樣本。
這種框架允許擴散模型避免模式崩潰,與生成對抗網絡(GANs)相比,生成出多樣性更高的樣本。B. 擴散模型的數學基礎
C. 擴散模型的變體 1. 去噪擴散概率模型(DDPMs):在DDPM中,前向過程逐步將高斯噪聲添加到數據中,使原始數據分布轉變為已知先驗(通常為標準高斯分布)。反向過程則由神經網絡參數化,并訓練為逐步去噪。DDPM通過優化變分下界,實現高保真度圖像生成(Diffusion Models in 3D …)。 1. 基于得分的生成模型(Score-Based Generative Models):這種變體使用得分匹配技術,以更直接地估計數據分布的梯度(Diffusion Models in 3D …)。 1. 隨機微分方程(SDE):此類擴散模型的連續時間公式使其在三維生成任務中更具靈活性,例如生成點云和體素網格(Diffusion Models in 3D …)。 D. 三維視覺中的生成過程 與生成對抗網絡(GANs)和變分自編碼器(VAEs)相比,擴散模型在三維視覺任務中具有更強的生成能力,能夠生成光滑的連續表面,并處理復雜的高維數據。這對于需要詳細幾何結構的應用(如三維形狀重建)特別有利。
三維視覺領域是現代計算機視覺中不可或缺的一部分,涉及各種數據表示方法及深度學習技術,以理解和處理三維信息。三維視覺廣泛應用于增強現實、虛擬現實以及自動駕駛等領域,這些應用都依賴于準確的三維場景感知與分析。
三維數據表示是三維視覺的核心,提供了建模、分析和交互的手段。不同的表示方式各有其特點、優缺點,通常用于不同的三維任務。 二維表示
二維表示使用平面圖像推斷三維信息,適用于渲染與理解三維場景。通過多視圖圖像或深度圖,可以從多個角度獲取場景或物體的三維結構。
深度圖:深度圖表示從特定視角到場景中物體的距離,將深度信息編碼成圖像。它在三維重建、場景理解等應用中十分重要,因為它提供了一種整合二維圖像處理技術的有效方式。 顯式表示
顯式表示直接定義了三維模型的幾何形狀,如點云、體素網格和網格。它們直觀易操作,但存儲復雜形狀時空間需求較大。
點云:點云通過三維坐標表示物體或場景的形狀。其主要優勢在于對幾何數據的直接捕獲。然而,由于缺乏拓撲信息,點云通常需要進一步處理,以實現渲染或仿真。 1. 隱式表示 隱式表示通過數學函數定義三維幾何,例如有符號距離場(SDF)和占用場。它們通常用于生成平滑、連續的表面,并能處理復雜的幾何形狀。
深度學習的進步推動了三維視覺的發展,使得自動駕駛、機器人導航等領域能夠高效地分析和解釋三維數據。
基于卷積的神經網絡 三維卷積神經網絡(3D CNN)將二維卷積擴展到體素數據,捕捉三維空間的關系,適用于體素網格處理任務。然而,三維CNN計算需求高,因此多視圖CNN和球面CNN等變體在實際應用中被廣泛采用。
直接點云處理方法 點云數據的處理逐步由PointNet等方法引領,這些方法通過直接操作點云數據而無需將其轉換為其他形式,從而保留了數據的稀疏性與不規則性。
圖神經網絡 在點云上應用圖神經網絡(GNN)通過捕獲非歐幾里得結構中的關系,適合于對拓撲信息的建模。
占用網絡與深度有符號距離場 占用網絡和深度有符號距離場(DeepSDF)模型能有效地在復雜場景中生成詳細的三維形狀,在物體重建和場景理解中具有優勢。
基于Transformer的架構 Transformer的引入使得長距離依賴關系的建模成為可能,尤其在三維點云數據上,表現出在自適應分割和語義理解方面的能力。
遮擋 遮擋問題在三維視覺中普遍存在,尤其在物體間相互重疊的場景中。這會導致數據缺失或失真,影響物體識別和場景重建。多視圖聚合和深度完成是應對此問題的常用技術。
點密度變化 由于掃描設備距離和角度的不同,點云密度可能不均勻,導致重建和特征提取的復雜度增加。點云上采樣和表面插值技術被用來處理這些問題。
噪聲與離群值 三維數據采集過程中常伴有噪聲和離群值,影響數據的準確性。去噪濾波和離群值去除是常見的應對手段,但在精度和計算需求之間的平衡仍具挑戰性。
三維視覺的復雜性及其數據的高維特性使得這一領域充滿了挑戰,但隨著深度學習技術的不斷進步,三維視覺的準確性和效率正在顯著提高,為實際應用帶來了新的突破。
擴散模型在三維數據生成任務中表現出極大的潛力,能夠生成高質量的三維模型及其相關內容。這些任務涵蓋了各種生成和處理三維數據的方式,使擴散模型成為三維視覺研究的重要工具。
無條件生成指的是不依賴于任何輸入或條件(如類標簽、圖像或文本提示)生成三維形狀或物體。在這種生成模式下,模型從隨機噪聲或潛在變量出發,基于學習到的數據模式生成多樣化的三維結構。無條件生成常用于三維設計、虛擬環境和游戲等應用,其目的是在沒有外部指導的情況下捕捉數據的底層分布,生成逼真且多樣的三維輸出。
Zhou等人提出的Point-Voxel Diffusion框架,是最早利用擴散模型生成三維物體的工作之一。該方法將去噪擴散模型與三維形狀的概率生成模型結合,使用點-體素混合表示進行生成。模型通過一系列去噪步驟,將觀察到的點云數據逆擴散回到高斯噪聲狀態,從而生成新的三維形狀。
在條件生成任務中,擴散模型會根據特定輸入(例如圖像或文本提示)生成對應的三維數據。該方法通常用于圖像到三維、文本到三維轉換等場景。這類任務對于三維數據合成的控制性較強,允許模型根據輸入生成具有特定特征的三維結構。例如,Ren等人提出的模型結合卷積和Transformer架構,生成動態掩模以在生成過程中實現特征融合,從而在不同階段優化全局和局部特征的平衡(Diffusion Models in 3D …)。
三維編輯任務涉及對已有的三維數據進行修改或增強。擴散模型在這一領域展示了顯著的靈活性,允許對三維場景進行細致的控制。Zheng等人開發的PointDif方法,應用擴散模型進行點云預訓練,有助于在分類、分割和檢測等任務中提高性能。該方法將點云預訓練任務視為條件點對點生成問題,通過循環均勻采樣優化策略,使模型在不同噪聲水平下實現一致的恢復(Diffusion Models in 3D …)。
新視角合成任務主要集中于從給定的視角生成不同角度的三維圖像。擴散模型能夠有效處理三維數據的長距離依賴關系,并生成新的視角。Shue等人提出的Triplane Diffusion模型將三維訓練場景轉換為一組二維特征平面(稱為triplanes),然后利用現有的二維擴散模型對這些表示進行訓練,從而生成高質量的三維神經場。
擴散模型在深度估計任務中的應用表現在通過噪聲抑制的方式改善深度信息提取質量。在復雜的場景中,模型可以利用擴散過程生成連續的深度數據,有效應對噪聲和不完整信息的問題。擴散模型通過生成更為平滑和準確的深度圖,為三維視覺系統在動態場景中的應用提供了新的解決方案。 綜上所述,擴散模型為三維視覺中的多項任務提供了有效的生成和增強工具。模型的應用不僅在無條件生成和條件生成方面取得了顯著成果,還在三維數據的編輯、合成和估計等任務中展現了出色的性能。這一領域的研究仍在不斷發展,未來可通過結合物理約束和多模態數據進一步提升模型的表現,為復雜和動態場景中的三維任務提供更強大的支持。
本文對擴散模型在三維視覺任務中的應用進行了全面綜述。擴散模型最初是為二維生成任務設計的,但隨著三維數據(如點云、網格和體素網格)的處理需求增長,這些模型逐步適應了三維數據的復雜性。我們詳細回顧了將擴散模型應用于三維對象生成、形狀補全、點云重建和場景生成等任務的關鍵方法,并深入討論了擴散模型的數學基礎,包括其前向和反向過程及架構改進,使之能夠處理三維數據。
此外,本文分類和分析了擴散模型在不同三維任務中的顯著影響,包括從文本生成三維數據、網格生成以及新視角合成等。我們還探討了擴散模型在三維視覺中面臨的主要挑戰,如遮擋處理、點密度變化以及高維數據的計算需求。針對這些挑戰,我們提出了一些潛在解決方案,包括提升計算效率、增強多模態融合,以及探索使用大規模預訓練以更好地在三維任務中實現泛化。
通過整合當前擴散模型在三維視覺領域的研究現狀,并識別出其中的不足與機遇,本文為未來在這一快速發展的領域進行更深入的探索和開發奠定了基礎。擴散模型在三維視覺中的應用還在不斷進步,未來的研究有望繼續優化模型的計算效率和多任務處理能力,為三維數據的生成、重建和理解開拓新的可能性。
摘要——在過去的十年中,深度神經網絡取得了令人振奮的突破,數據增強作為一種正則化技術在缺乏大規模標注數據的情況下越來越受到關注。在現有的數據增強方法中,Mixup 及相關的數據混合方法通過凸組合選定樣本及其對應的標簽生成數據依賴的虛擬數據,廣泛應用于各種領域并取得了優異的性能。本綜述對基礎的Mixup方法及其應用進行了全面的回顧。我們首先詳細闡述了包含Mixup增強的訓練流程,作為一個包含模塊的統一框架。一個重構的框架可以容納各種Mixup方法,并給出直觀的操作步驟。然后,我們系統地研究了Mixup增強在視覺下游任務、各種數據模態上的應用,以及Mixup的分析與定理。同時,我們總結了當前Mixup研究的現狀和局限性,并指出了進一步提升Mixup增強有效性和效率的研究方向。本綜述可以為研究者提供Mixup方法的最新進展,并在Mixup領域中提供一些洞見和指導作用。本綜述的在線項目可在 //github.com/Westlake-AI/Awesome-Mixup 獲取。 關鍵詞——數據增強,Mixup,分類,自監督學習,計算機視覺,自然語言處理,圖結構
深度神經網絡(DNNs),如卷積神經網絡(CNNs)和Transformers,由于其強大的特征表示能力,已成功應用于諸多任務,如圖像分類、目標檢測和自然語言處理(NLP)等。為了完成越來越具有挑戰性的任務,DNNs使用了大量可學習的參數,這意味著如果沒有大量的訓練數據,模型容易過擬合,無法很好地泛化。然而,在某些情況下,訓練數據難以獲得且收集成本高昂。如何讓DNNs在有限的訓練數據之外實現泛化,是深度學習中的一個基本問題。
為了解決數據需求量大的問題,研究人員提出了數據增強(DA)技術。與“模型中心”和正則化方法相比,DA是一種“數據中心”的正則化技術,它通過合成虛擬訓練數據來防止過擬合。DA通過構建同一樣本的不同版本引入有用的不變特征。DA帶來的數據集大小增加和歸納偏差的引入也起到了一定的正則化效果,緩解了過擬合問題。最近,數據增強已被證明能夠提高深度學習模型的泛化能力,成為實現最先進性能的關鍵因素。數據增強可以通過對比組合、Mixup和生成等方式合成新數據。
在本綜述中,我們聚焦于一個新興領域——Mixup。Mixup [1] 通過對兩個樣本及其對應的one-hot標簽進行插值來生成增強樣本。本質上,基于Mixup的方法通過混合多個樣本來生成增強數據。與大多數現有的增強技術修改單個樣本但不改變其唯一標簽的做法不同,Mixup通過來自兩個或多個示例生成增強樣本,導致多個標簽的產生,從而更好地反映現實世界的情況。此外,Mixup在不同的數據集和領域中表現出很強的可遷移性。相比之下,其他組合方法通常需要大量時間來確定合適的增強策略。生成方法在應用于大數據集時具有挑戰性,因為它需要額外的生成器和判別器,從而限制了可遷移性和應用場景。而Mixup不依賴于保留標簽的操作,而是通過可學習的方法來創建更有效的增強樣本。與傳統的數據增強方法處理單個樣本不同,Mixup通過混合多個樣本生成虛擬訓練數據,無需領域知識即可生成大量的訓練數據。目前,Mixup已成功應用于多種任務和訓練范式,包括監督學習(SL)、自監督學習(SSL)、半監督學習(Semi-SL)、自然語言處理(NLP)、圖結構和語音處理等領域。
在圖1中,我們總結了這些訓練范式和數據模態下的一些主流方法的時間軸:
SL(樣本):2018年,Mixup [1] 提出了靜態線性插值的樣本混合方法。2019年,CutMix [2] 和 Manifold Mixup [3] 提出了基于切割和特征的Mixup改進。這些是特定的增強方法。但從2020年到2023年,許多方法進一步在靜態線性、切割和特征基礎上改進了Mixup,甚至逐步轉向自適應方式。到2024年,DiffuseMix [4] 結合了生成模型和Mixup方法。
SL(標簽):2019年,AdaMixup [5] 發現混合比例λ會影響模型性能,這被稱為“流形入侵”。因此,從2020年到2024年,許多基于CNNs或Vision Transformers(ViTs)的方法涌現出來,優化這些比例。此外,CAMixup [6] 在2021年和RankMixup [7] 在2023年提出了增強模型校準的方法。
SSL(CL)與SSL(MIM):對比學習(CL)在圖像分類任務中表現出強大的能力。為了提高模型性能,研究人員提出了大量結合Mixup的CL方法,這些方法通過Mixup獲得“半正樣本”以捕捉更多特征。CL + Mixup 通常會修改其損失項以適應SSL任務。遮掩圖像建模(MIM)通過從混合樣本中重建樣本,認為混合樣本將共享更多特征,能夠學習一些高維信息。MixMAE [8] 和MixedAE [9] 在2023年展示了這一觀點。
Semi-SL:可以利用標注和未標注的信息。2019年,MixMatch [10] 使用這種方法提高了模型性能,并使其更具魯棒性,因為混合樣本可以作為帶噪聲圖像的干凈圖像使用。對于PUL,P3Mix [11] 在2021年通過混合來自決策邊界附近的樣本獲得了更好的準確性。DecoupledMix [12] 在2023年提出了通過解耦樣本預測來獲得更干凈的偽標簽。
數據模態:不僅限于圖像領域。對于NLP,WordMixup & SenMixup [13] 在2019年提出了兩種文本混合方式,分別基于句子混合和嵌入混合。基于這兩種基本方法,許多帶有特定修改的方法被提出。例如,SeqMix [14] 在2021年提出了基于顯著性的嵌入混合,TreeMix [15] 通過使用成分句法分析將句子分解為子結構,并通過混合重新組合成新句子。對于圖結構,GraphMix [16] 和 ProGCL [17] 在2021年和2022年提出了結合Mixup方法的圖分類,并提出了一些結合Mixup和圖結構的新損失項,用于困難樣本挖掘。GraphMixup [18]、G-Mixup [19] 和iGraphMix [20] 在2022年和2024年通過顯著性信息獲得混合圖樣本,以提高模型的分類能力和魯棒性。對于語音,BC [21] 和Contrastive-mixup [22] 通過線性插值直接混合語音數據。
總體而言,與已發表的三篇關于Mixup的綜述[23]、[24]和[25]相比,我們的貢獻包括:
我們提供了及時的文獻回顧,并使用SL作為示例,提出了兩種不同的Mixup改進策略(樣本和標簽)的綜合框架。這兩種策略可以對應不同的訓練范式和數據模態。
我們仔細回顧并討論了各種Mixup方法的技術細節,如靜態線性、顯著性和基于注意力的方式,以便研究人員能夠更好地了解所涉及的方法,進而獲得更深入的理解和洞見。
我們對Mixup方法在下游任務中的應用進行了系統性的綜述,提出了技術挑戰,并進一步展示了它們在視覺任務之外的廣泛適用性,如音頻、語音、圖形、生物學等領域。
我們進一步將Mixup方法總結為一種可訓練的范式,相比于其他綜述中將其作為數據增強工具和方法的處理方式,我們呼吁研究人員貢獻一個統一的Mixup框架,以解決多種任務,而不是離散的任務特定修改。
Mixup框架模塊 在本小節中,我們將詳細說明Mixup方法流程中的各個模塊功能,如圖2所示。
初始化:在進行Mixup之前,一些方法會選擇mini-batch中的原始樣本來篩選適合混合的樣本。例如,Co-Mix [26] 在mini-batch中選擇適合的樣本,以最大化所獲得的混合樣本的多樣性。除了篩選樣本外,一些基于顯著性的方式利用預訓練模型定位并獲取樣本的特征圖。最后,各種方法從Beta分布中獲取Mixup比例λ。
樣本Mixup策略:在監督學習中,我們將策略分為9類,詳細信息展示在圖A1中。靜態線性方法使用λ基于插值線性混合兩個或多個樣本。基于特征的方法使用由fθ(?)f_θ(·)fθ(?)獲得的原始樣本特征圖,并以插值線性的方式進行混合。切割方法通過不同方式(如切割、調整大小或堆疊)混合樣本,混合比例λ來自掩碼區域。K樣本Mixup方法使用兩個以上的樣本進行混合。隨機策略方法結合了多種不同的數據增強方法和一些手工制作的Mixup方法,策略的選擇由每種方法的權重因子決定。基于風格的混合方法通過額外的風格提取器從樣本的風格和內容中進行混合。顯著性方法使用樣本特征圖來定位顯著性信息,并獲得最大特征混合樣本。基于注意力的方法類似于顯著性方法,利用注意力得分而非顯著圖。生成樣本的方法使用生成模型,如基于GAN的模型[27]和基于擴散的模型[28]生成混合樣本。
標簽Mixup策略:在監督學習中,我們將策略分為8類,并在圖A1中展示了詳細內容。校準優化方法使用ECE指標對混合樣本進行排序,以提高分類性能和模型校準。基于區域的方法使用掩碼區域重新定義混合比例λ。損失對象方法重新定義新的Mixup分類損失或提出新的損失作為正則化方法。隨機策略方法將其他增強方法與Mixup方法結合或為Mixup提出新的訓練策略。混合比例優化方法使用可學習的參數作為λ,通過不同的混合樣本獲得可靠的混合比例。生成標簽方法通過混合樣本生成混合標簽,而不是使用one-hot標簽。注意力得分方法使用原始樣本的注意力圖來獲得比例,或者使用混合樣本的注意力圖通過每個樣本的得分計算混合比例。顯著性Token方法使用每個原始樣本的顯著圖并將其劃分為tokens,通過tokens計算混合比例。
采樣:一些方法僅專注于樣本策略,以提高模型的性能和能力。它們采用其他策略來固定比例λ或標簽,一些方法計算掩碼上的所有像素并固定λ,而另一些方法為混合樣本設置權重因子。
通道Mixup策略:與樣本或標簽不同,通道具有大量高級特征。Manifold Mixup [3] 通過插值線性獲得混合樣本,Catch up-Mix [29] 通過選擇一些特征圖進一步提高濾波器能力,獲得混合樣本。
如圖2頂部所示,Mixup方法遵循以下步驟:
在本綜述中,我們將Mixup方法重新表述為一個統一的框架,并總結了這些方法在2018年至2024年間在各種任務中的技術細節和數據模態。此外,我們將Mixup分為兩大類:樣本Mixup策略和標簽Mixup策略,這兩類可以涵蓋Mixup的不同改進版本,并在圖A1和圖A2中總結了本綜述中的所有Mixup方法。我們還總結了Mixup方法中經常使用的各種數據集類型,以及在常用數據集上基于主流模型進行圖像分類任務的主流Mixup方法的分類結果,顯示在表A2、表A3和表A4中。最后,我們討論了現有問題和未來有價值的研究方向,旨在為研究人員提供該領域中的一些前沿想法和思路。
在不斷發展的深度學習領域,數據的數量和質量問題一直是一個長期存在的難題。最近大語言模型(LLMs)的出現為合成數據生成提供了一種以數據為中心的解決方案,緩解了現實世界數據的限制。然而,目前對這一領域的研究缺乏統一的框架,大多停留在表面。因此,本文基于合成數據生成的一般工作流程,整理了相關研究。通過這樣做,我們突出了現有研究中的空白,并概述了未來研究的潛在方向。本研究旨在引導學術界和工業界向更深入、更系統地探究LLMs驅動的合成數據生成的能力和應用。
在深度學習領域不斷演變的背景下,數據數量和質量的問題一直是一個長期存在的困境。大語言模型(LLMs)的革命性出現引發了深度學習領域的顯著范式轉變(Zhang et al., 2023a; Guo et al., 2023; Bang et al., 2023)。盡管有這些進展,大量高質量數據仍然是構建穩健自然語言處理(NLP)模型的基礎(Gandhi et al., 2024)。具體來說,這里的高質量數據通常指的是包含豐富監督信號(通常以標簽形式)并與人類意圖緊密對齊的多樣化數據。然而,由于高成本、數據稀缺、隱私問題等原因,依賴于人類數據來滿足這些需求有時是具有挑戰性甚至是不現實的(Kurakin et al., 2023)。此外,多項研究(Hosking et al., 2023; Singh et al., 2023; Gilardi et al., 2023)表明,人類生成的數據由于其固有的偏見和錯誤,可能并不是模型訓練或評估的最佳選擇。這些考慮促使我們更深入地探討一個問題:是否有其他更有效和可擴展的數據收集方法可以克服當前的限制?
鑒于LLMs的最新進展,它們展示了生成與人類輸出相當的流暢文本的能力(Hartvigsen et al., 2022; Sahu et al., 2022; Ye et al., 2022a; Tang et al., 2023; Gao et al., 2023a),由LLMs生成的合成數據成為了人類生成數據的一種可行替代品或補充。具體來說,合成數據旨在模仿真實世界數據的特征和模式(Liu et al., 2024)。一方面,LLMs通過廣泛的預訓練,積累了豐富的知識庫,并展現出卓越的語言理解能力(Kim et al., 2022; Ding et al., 2023a),這為生成真實的數據奠定了基礎。另一方面,LLMs深厚的指令遵循能力允許在生成過程中實現更好的可控性和適應性,從而能夠為特定應用創建定制的數據集,并設計更靈活的流程(Eldan and Li, 2023)。這兩個優勢使LLMs成為極具前景的合成數據生成器。
作為LLMs的一項關鍵應用,合成數據生成對于深度學習的發展具有重要意義。如圖1所示,LLMs驅動的合成數據生成(Li et al., 2023c; Wang et al., 2021; Seedat et al., 2023)使整個模型訓練和評估過程實現自動化,最小化了人類參與的需求(Huang et al., 2023),從而使深度學習模型的優勢可以應用于更廣泛的領域。除了提供可擴展的訓練和測試數據供應之外,LLMs驅動的合成數據生成還可能為開發下一代LLMs鋪平道路。來自TinyStories(Eldan and Li, 2023)和Phi系列(Gunasekar et al., 2023; Li et al., 2023b)的見解強調了數據質量對于有效模型學習的重要性,而LLMs賦予我們主動“設計”模型學習內容的能力,通過數據操作顯著提高了模型訓練的效率和可控性。截至2024年6月,Hugging Face上已有超過300個被標記為“合成”的數據集,許多主流LLMs利用高質量的合成數據進行訓練,包括Alpaca(Taori et al., 2023)、Vicuna(Zheng et al., 2023)、OpenHermes 2.5和Openchat 3.5(Wang et al., 2023a)。
盡管看似簡單,但生成同時具有高正確性和足夠多樣性的合成數據集需要精心設計過程,并涉及許多技巧(Gandhi et al., 2024),使得LLMs驅動的合成數據生成成為一個非平凡的問題。雖然大多數現有工作通常針對各種任務(如預訓練(Gunasekar et al., 2023; Li et al., 2023b; Eldan and Li, 2023)、微調(Mukherjee et al., 2023; Mitra et al., 2023; Xu et al., 2023a)、評估(Feng et al., 2023; Wei et al., 2024))和不同領域(如數學(Yu et al., 2023a; Luo et al., 2023a)、代碼(Luo et al., 2023b; Wei et al., 2023b)、指令(Honovich et al., 2023a; Wang et al., 2023d))進行數據生成,但它們共享許多共同的理念。為了應對LLMs驅動的合成數據生成這一新興領域中缺乏統一框架的問題,并開發通用工作流程,本綜述調查了最近的研究,并根據生成、策展和評估三個密切相關的主題進行組織,如圖2所示。我們的主要目的是提供該領域的全面概述,確定關鍵關注領域,并突出需要解決的空白。我們希望為學術界和工業界帶來見解,并推動LLMs驅動的合成數據生成的進一步發展。
摘要 —— 隨著ChatGPT的興起,大型模型的使用顯著增加,迅速在整個行業中脫穎而出,并在互聯網上廣泛傳播。本文是對大型模型微調方法的全面綜述。本文研究了最新的技術進展以及在諸如任務適應性微調、領域適應性微調、小樣本學習、知識蒸餾、多任務學習、高效參數微調和動態微調等方面應用先進方法。 索引術語 —— 大型語言模型(LLMs)、任務適應性微調、領域適應性微調、小樣本學習、知識蒸餾、多任務學習、高效參數微調、動態微調 I. 引言 變換器(Transformer)模型的出現標志著自然語言處理(NLP)領域的一個重要里程碑。變換器架構最初是為了解決循環神經網絡(RNNs [143])和卷積神經網絡(CNNs [55])在處理長距離依賴關系中的局限而設計的,該架構由Vaswani等人在2017年引入[126],徹底改變了我們處理語言理解和生成任務的方式。 變換器架構背景:變換器模型源于對比傳統模型更有效處理序列數據的需求。其獨特的架構,不依賴遞歸和卷積,利用注意力機制來抽取輸入與輸出之間的全局依賴關系,顯著提高了處理效率和模型性能。 編碼器[19]、解碼器[95] [96] [13]以及編解碼器[100]架構:變換器架構主要由其編碼器和解碼器組成。編碼器處理輸入序列,創建每個詞的豐富上下文表征。相比之下,解碼器通常在語言翻譯任務中生成輸出序列,使用編碼信息。 兩者的區別在于它們的角色:編碼器是輸入的上下文感知處理器,而解碼器基于編碼輸入生成預測。編解碼器架構常用于序列到序列的任務,結合這兩個組件,便于處理復雜任務,如機器翻譯,編碼器處理源語言,解碼器生成目標語言。 大型模型中的微調興起:微調大型語言模型的概念源于將這些模型從訓練于龐大、多樣的數據集適應到特定任務或領域的挑戰。微調調整模型的權重,針對特定任務,增強其從廣泛語言模式到特定應用需求的泛化能力。隨著模型規模和復雜性的增長,這種方法變得越來越重要,需要更精細的適應技術來充分發揮其潛力。 本文的結構旨在提供關于微調大型語言模型的方法論和進展的全面概覽。后續部分的組織如下: 文獻回顧:審視語言模型的發展,突出變換器架構的關鍵發展和基礎概念。 理論基礎:深入探討變換器模型的理論基礎,包括注意力機制、編碼器和解碼器的機制。 微調策略:討論各種微調方法,如任務特定、領域特定的適應和高級技術,如小樣本學習和動態微調。 挑戰與未來方向:識別微調方法中的當前挑戰,并探索這一迅速發展領域的潛在未來研究方向。 本文介紹了基于變換器架構的大型語言模型的范式,并提供了常用的大模型微調方法的詳細概述。文章以一個比較實驗結束,聚焦于六個文本分類數據集上的模型大小和LoRA微調范式。實驗代碼已在GitHub上提供。
摘要: 隨著人工智能的快速發展,從可行的算法中選擇滿足應用需求的算法已經成為各領域亟待解決的關鍵問題,即算法選擇問題。基于元學習的方法是解決算法選擇問題的重要途徑,被廣泛應用于算法選擇研究并取得了良好成果。方法通過構建問題特征到候選算法性能的映射模型來選擇合適的算法,主要包括提取元特征、計算候選算法性能、構建元數據集以及訓練元模型等步驟。首先,闡述基于元學習的算法選擇概念和框架,回顧簡述相關綜述工作;其次,從元特征、元算法和元模型性能指標三方面總結研究進展,對其中典型的方法進行介紹并比較不同類型方法的優缺點和適用范圍;然后,概述基于元學習的算法選擇在不同學習任務中的應用情況;繼而,使用140個分類數據集、9種候選分類算法和5種性能指標開展算法選擇實驗,對比不同算法選擇方法的性能;最后,分析目前存在的挑戰和問題,探討未來的發展方向。 //fcst.ceaj.org/CN/abstract/abstract3212.shtml
人工智能是數據處理與分析的重要技術,為人 們利用數據進行決策和研究提供了有力支撐。在人 工智能的不同領域中,研究人員提出了大量算法,然 而,不同算法在有限數量的問題上具備優越性能,不 存在一個適用于所有問題的可行算法,該現象被稱 為算法的性能互補性(performance complementarity) 現象[1] ,與“沒有免費午餐”(no free lunch)定理相印 證[2] 。算法的性能互補性現象普遍存在于不同領域, 如何為給定問題從大量可行算法中選擇滿足應用需 求的算法成為了各領域面臨的重要挑戰,即算法選 擇問題(algorithm selection problem)[3] 。算法選擇問 題通常采用人工選擇或自動選擇的方法解決。人工 選擇方法通過實驗試錯或依賴專家選擇合適的算 法,然而實驗試錯方法成本較高,專家選擇與專家的 經驗知識相關且靈活性較低[4] 。自動選擇方法通過 設計算法和模型,根據問題的特點自動選擇滿足應 用需求的算法,包括活躍測試(active test)方法、推薦 系統方法以及基于元學習(meta-learning)的方法[5-7] 。 其中基于元學習的方法研究基礎較為深厚,具備開 銷低和靈活度高等優點,成為了解決算法選擇問題 的主要方法[8-9] 。 本文對基于元學習的算法選擇進行綜述總結, 為研究人員了解相關領域的發展現狀提供參考。
摘要: 近年來,由于大規模數據集的出現,圖像語義分割技術得到快速發展。但在實際場景中,并不容易獲取到大規模、高質量的圖像,圖像的標注也需要消耗大量的人力和時間成本。為了擺脫對樣本數量的依賴,小樣本語義分割技術逐漸成為研究熱點。當前小樣本語義分割的方法主要利用了元學習的思想,按照不同的模型結構可劃分為基于孿生神經網絡、基于原型網絡和基于注意力機制三大類。基于近年來小樣本語義分割的發展現狀,介紹了小樣本語義分割各類方法的發展及優缺點,以及小樣本語義分割任務中常用的數據集及實驗設計。在此基礎上,總結了小樣本語義分割技術的應用場景及未來的發展方向。
摘要: 圖異常檢測旨在大圖或海量圖數據庫中尋找“陌生”或“不尋常”模式,具有廣泛的應用場景.深度學習可以從數據中學習隱含的規律,在提取數據中潛在復雜模式方面表現出優越的性能. 近年來隨著基于深度神經網絡的圖表示學習取得顯著進展,如何利用深度學習方法進行圖異常檢測引起了學術界和產業界的廣泛關注. 盡管最近一系列研究從圖的角度對異常檢測技術進行了調研,但是缺少對深度學習技術下的圖異常檢測技術的關注. 首先給出了靜態圖和動態圖上各類常見的異常定義,然后調研了基于深度神經網絡的圖表示學習方法,接著從靜態圖和動態圖的角度出發,梳理了基于深度學習的圖異常檢測的研究現狀,并總結了圖異常檢測的應用場景和相關數據集,最后討論了圖異常檢測技術目前面臨的挑戰和未來的研究方向.
//crad.ict.ac.cn/CN/10.7544/issn1000-1239.2021.20200685
圖作為一種通用的數據結構,被廣泛用于表示 復雜的結構化數據.相對于其他數據結構,它能更好 地存儲和表達實體及其聯系.現實世界中,圖在社交 網絡分析、Web網絡分析、交通路網優化、知識圖譜 構建等領域均有廣泛的應用.針對這些語義豐富、樣 式多樣、規模龐大的圖數據,如何快速、準確地檢測 其中的異常引起了學術界和產業界的廣泛關注.圖 異常檢測是指在一個大圖或海量圖數據庫中尋找包 含“陌生”或者“不尋常”模式的結構(包括節點、邊或 者子圖),具有廣泛的應用場景,例如英特網中的惡 意攻擊、社交網絡中的突發事件檢測、電子商務中的 水軍發現等.相較于傳統的異常檢測方法,基于圖的 異常檢測由于圖具有強大的表達能力,不僅可以將 復雜的數據加以直觀的呈現,同時也能將數據中隱 含的相關性融入到異常檢測過程中.
面向圖的異常檢測工作最早發表于2003年[1], 現有工作大致可分為基于靜態圖和基于動態圖 2 類.在基于靜態圖的異常檢測工作中,一類方法利用 ego網絡[2]或者基于團體[3]研究問題;一類方法基 于圖的結構信息進行異常檢測[4G6],也有一些工作基 于子空間選擇,試圖在節點特征的子空間中發現異 常[7G9].還有一些工作通過概率、統計方法獲取圖的 統計信息進行異常檢測[10G13].盡管這些工作在異常 檢測上取得了不錯的進展,但這些方法如利用ego 網絡的方法,由于處理圖數據,必須考慮節點之間的 交互,在圖較為稀疏時難以實現較好的效果;或者如 子空間選擇和統計方法,由于淺層學習機制難以綜 合利用節點的屬性和結構信息.在基于動態圖的異 常檢測方面,同樣有一些工作基于團體[14G15]、基于結 構[6,16]、或基于概率統計[17G19]進行異常檢測.另外一 類典型的方法是首先獲取圖的概要,然后通過聚類 和異常 檢 測 來 確 定 概 要 中 的 異 常,例 如 文 獻 [20G 21],但是這些方法獲得的概要無法保留重要的結構 信息,比如鄰接節點的信息.現有的基于動態圖的異 常檢測方法大多依賴于啟發式規則,通常只是簡單 地考慮某一類特征;雖然有部分方法[22G23]考慮了內 容甚至時間因素,但并不靈活,導致其應用局限于特 定的場景.
近年來,深度學習成為人工智能和機器學習中極為重要的部分,在提取數據中潛在復雜模式方面 表現出優越的性能,并在音頻、圖像和自然語言處理 等領域得到了廣泛應用.深度學習方法能夠合理處 理復雜的屬性信息,并且可以從數據中學習隱含的 規律;此外,通過神經網絡對圖進行嵌入不僅可以很 好地保留信息[24G26],還可以很好地處理節點或邊的 屬性,同時保留結構信息,進而方便檢查隱空間中節 點或邊表示的相似性.近年來隨著對圖進行嵌入表 示取得顯著進展,如何利用深度學習方法進行圖異 常檢測在過去幾年中吸引了廣泛關注.基于深度學 習的圖異常檢測方法通常使用圖的嵌入表示方法先 將圖表示為隱空間中的向量,然后使用該向量重構 圖從而剔除異常信息的影響,最后通過重構誤差進 行異常檢測.
關于異常和離群點檢測,已經存在非常全面的 綜述類文章,例如Zimek等人[27]重點介紹了關于高 維離群值檢測,Schubert等人[28]討論了局部離群值 檢測技術.但是,這些文章通常關注多維數據實例的 點,沒有或者不是直接地關注基于圖的檢測技術.盡管文獻[29]從圖的角度對異常檢測技術進行了調 研,但是缺少對深度學習技術下的圖異常檢測技術 的關注.與以往關于異常檢測的綜述不同,本文專注 于大圖或海量圖數據庫中的異常檢測,并對基于深 度學習的圖異常檢測技術進行全面地梳理和總結, 是最早聚焦基于深度學習的圖異常檢測技術方面的研究綜述.
本文首先對圖上的異常定義做了全面的分析, 然后詳細介紹了基于深度神經網絡的圖表示學習方 法,接著從靜態圖和動態圖的角度出發,對現有基于 深度學習的圖異常檢測方法進行系統地總結和歸 類,并討論相關方法的局限性.接著簡單介紹圖異常 檢測技術的實際應用場景和相關的數據集,最后討論基于深度學習的圖異常檢測研究面臨的挑戰及未 來可行的研究方向.本文期望通過對目前基于深度 學習的圖異常檢測研究現狀的梳理,為后續研究提 供可借鑒的思路.
摘要: 知識圖譜以圖結構表示豐富靈活的語義,描述客觀世界的事物及其關系,在應用領域得到了廣泛的關注。事件知識圖譜聚焦動態事件及其間的順承、時序和因果關系,并以結構化的圖形式表示,對海量數據更高效地管理。尤其是對動態事件信息和事件邏輯關系的挖掘,對認識客觀世界發展規律,助力領域多種智能應用有著重要的意義。本文系統闡述事件知識圖譜的構建技術,包括事件知識表示、事件知識抽取、事件關系抽取,并介紹事件知識圖譜在領域的典型應用,最后介紹現階段的挑戰與研究展望。