摘要 —— 隨著ChatGPT的興起,大型模型的使用顯著增加,迅速在整個行業中脫穎而出,并在互聯網上廣泛傳播。本文是對大型模型微調方法的全面綜述。本文研究了最新的技術進展以及在諸如任務適應性微調、領域適應性微調、小樣本學習、知識蒸餾、多任務學習、高效參數微調和動態微調等方面應用先進方法。 索引術語 —— 大型語言模型(LLMs)、任務適應性微調、領域適應性微調、小樣本學習、知識蒸餾、多任務學習、高效參數微調、動態微調 I. 引言 變換器(Transformer)模型的出現標志著自然語言處理(NLP)領域的一個重要里程碑。變換器架構最初是為了解決循環神經網絡(RNNs [143])和卷積神經網絡(CNNs [55])在處理長距離依賴關系中的局限而設計的,該架構由Vaswani等人在2017年引入[126],徹底改變了我們處理語言理解和生成任務的方式。 變換器架構背景:變換器模型源于對比傳統模型更有效處理序列數據的需求。其獨特的架構,不依賴遞歸和卷積,利用注意力機制來抽取輸入與輸出之間的全局依賴關系,顯著提高了處理效率和模型性能。 編碼器[19]、解碼器[95] [96] [13]以及編解碼器[100]架構:變換器架構主要由其編碼器和解碼器組成。編碼器處理輸入序列,創建每個詞的豐富上下文表征。相比之下,解碼器通常在語言翻譯任務中生成輸出序列,使用編碼信息。 兩者的區別在于它們的角色:編碼器是輸入的上下文感知處理器,而解碼器基于編碼輸入生成預測。編解碼器架構常用于序列到序列的任務,結合這兩個組件,便于處理復雜任務,如機器翻譯,編碼器處理源語言,解碼器生成目標語言。 大型模型中的微調興起:微調大型語言模型的概念源于將這些模型從訓練于龐大、多樣的數據集適應到特定任務或領域的挑戰。微調調整模型的權重,針對特定任務,增強其從廣泛語言模式到特定應用需求的泛化能力。隨著模型規模和復雜性的增長,這種方法變得越來越重要,需要更精細的適應技術來充分發揮其潛力。 本文的結構旨在提供關于微調大型語言模型的方法論和進展的全面概覽。后續部分的組織如下: 文獻回顧:審視語言模型的發展,突出變換器架構的關鍵發展和基礎概念。 理論基礎:深入探討變換器模型的理論基礎,包括注意力機制、編碼器和解碼器的機制。 微調策略:討論各種微調方法,如任務特定、領域特定的適應和高級技術,如小樣本學習和動態微調。 挑戰與未來方向:識別微調方法中的當前挑戰,并探索這一迅速發展領域的潛在未來研究方向。 本文介紹了基于變換器架構的大型語言模型的范式,并提供了常用的大模型微調方法的詳細概述。文章以一個比較實驗結束,聚焦于六個文本分類數據集上的模型大小和LoRA微調范式。實驗代碼已在GitHub上提供。
近年來,大型語言模型(LLM)的集成徹底改變了機器人技術領域,使機器人能夠以類似人類的熟練程度進行交流、理解和推理。本文探討了LLM對機器人學的多方面影響,討論了利用這些模型的關鍵挑戰和機遇。通過對LLM在機器人核心元素——通信、感知、規劃和控制中的應用進行分類和分析,我們旨在為尋求將LLM集成到其機器人系統中的研究者提供可行的見解。
我們的研究主要集中在GPT-3.5之后開發的LLM上,主要是基于文本的模式,同時也考慮了用于感知和控制的多模態方法。我們提供全面的指導原則和示例,以便初學者能夠輕松接觸基于LLM的機器人解決方案。通過教程級別的示例和結構化的提示構建,我們展示了如何將LLM引導的增強功能無縫集成到機器人應用中。本綜述為研究人員在不斷發展的LLM驅動的機器人技術領域中的導航提供了路線圖,提供了全面的概述和實用的指導,以利用語言模型在機器人開發中的潛力。
在過去的十年中,我們見證了機器人學領域在應用語言模型(LMs)方面取得了顯著的進展。這些進展不僅包括類似人類的交流能力,還包括機器人的理解和推理能力,從而顯著提高了它們在從家庭雜務到工業操作等各種任務中的效率。在早期工作中,這些成功源于統計模型分析和預測語言表達中的詞匯。這些模型使機器人能夠解釋人類命令,理解上下文,表征世界,并與人類互動,盡管理解的深度有限。隨后,采用了具有自我注意機制的Transformer架構,尤其是像BERT這樣的預訓練語言模型,提高了捕捉復雜模式的能力,同時為特定任務進行微調。然而,這些模型的性能通常取決于有限的數據集,限制了它們把握更深層次上下文理解和在不同場景中泛化的能力。
隨著大型語言模型(LLMs)的發展,基于語言的機器人引入了各個領域的創新變化,如信息檢索、推理任務、環境適應、持續學習和改進等。這些LLMs,以其龐大的參數規模和在互聯網規模數據集上的訓練為特征,為下游任務提供了零次和少次學習能力,而不需要額外的參數更新。這些顯著的進步來自于文獻中定義為“在小模型中不存在但在大模型中出現的能力”的突現能力。這些能力顯著增強了機器人在理解、推斷和響應開放式指令方面的性能,利用了廣泛的常識知識。此外,稱為提示工程的提示創建技術使LLMs能夠通過自由形式的語言描述或互動對話,整合更豐富的上下文信息,促進了泛化推理。引入上下文學習能力使LLMs能夠根據提供的指示或示例中的提示生成預期格式的輸出,如JSON、YAML或PDDL,甚至代碼。最近的LLMs,如GPT-4,通過與外部機器人工具(如規劃器或翻譯器)的整合,進一步擴展了能力。
盡管LLMs具有多樣的能力,但它們的利用面臨幾個挑戰。首先,LLMs經常生成不準確或意外的響應。由于機器人執行的安全性是最重要的部署因素,基于LLM的機器人應用需要過濾和糾正機制以確保安全。其次,如上下文學習等突現能力尚不可預測且不一致。即使是對輸入文本的輕微更改也可能導致響應的不可預測變化。第三,精心設計的提示使機器人能夠有效地利用LLMs的能力,但缺乏支持機器人系統關鍵組件的系統化指導,阻礙了無縫集成。因此,我們需要研究LLMs在機器人中的逐部件參與,以了解其限制和安全性。 當前,各種綜述已開始探索LLMs與機器人的交集,主要關注LLM驅動的機器人應用或互動維度。然而,仍然存在在機器人系統的關鍵元素,包括通信、感知、規劃和控制方面提供全面評論和可操作見解的空白。此外,研究者們還在探索廣泛的預訓練大容量模型領域,稱為基礎模型,尋求跨模態Transformer模型的泛化能力。然而,這一廣闊領域涵蓋了廣泛的機器人學和多樣的方法論,使得新興研究者錯過深入的評論和指導。 在本文中,如圖1所示,我們旨在分類和分析LLMs如何增強機器人系統的核心元素,以及我們如何指導新興研究者在每個領域內整合LLMs,以促進智能機器人的發展。我們根據三個關鍵問題結構化本文: ? Q1: LLMs在每個機器人領域中如何被利用? ? Q2: 研究人員如何克服LLMs的集成限制? ? Q3: 在每個領域產生最低功能所需的基本提示結構是什么?
為了回答這些問題,我們專注于在引入GPT-3.5之后開發的LLMs。我們主要考慮基于文本的模式,但也審查了感知和控制領域的多模態。然而,為了進行深入審查,我們將調查限制在LLMs而非基礎模型上。 此外,我們提供了全面的提示工程指南和示例,旨在使初學者能夠訪問基于LLM的機器人解決方案。我們的教程級示例展示了如何通過引入四種類型的示例提示——對話提示用于互動定位,指令提示用于場景圖生成,計劃提示用于少次計劃,以及代碼生成提示用于獎勵生成——增強或替換機器人組件的基本功能。通過提供提示構建的規則和技巧,我們概述了生成預期格式輸出的良好設計提示的過程。這些原則確保了機器人應用中有效的LLM引導增強,無需參數調整。
本文的其余部分安排如下。第2節概述了機器人學中LMs和LLMs的歷史背景。第3節評審了LLMs賦能機器人通過語言理解和生成進行交流的方式。第4節調查了LLMs如何感知各種傳感器模態并推進感知行為。第5節和第6節分別組織了基于LLM的計劃和控制研究。在第7節中,我們提供了提示工程的全面指南,作為LLM在機器人中集成的起點。最后,第8節總結了這篇綜述。
轉載于“計算機研究與發展”
近年來,大型語言模型的出現和發展對自然語言處理和人工智能領域產生了變革性影響. 隨著不斷增大模型參數量和訓練數據量,語言模型的文本建模困惑度以可預測的形式降低,在各類自然語言處理任務上的表現也持續提升. 因此,增加語言模型的參數和數據規模成為提升系統智能水平的富有前景的途徑.
本文首先回顧了大型語言模型的基本定義,從模型表現和算力需求的角度給出了“大型”語言模型的界定標準. 其次,從數據、算法、模型三個維度梳理了大型語言模型的發展歷程及規律,展示了不同階段各個維度的規模化如何推動語言模型的發展. 接著,考察了大型語言模型所表現出的涌現能力,介紹了思維鏈、情景學習和指令遵循等關鍵涌現能力的相關研究和應用現狀. 最后,展望了大型語言模型的未來發展和技術挑戰.
內容簡介
1.回顧了大型語言模型的基本定義,從模型表現和算力需求的角度給出了“大型”語言模型的界定標準. 2.從數據、算法、模型三個維度梳理了大型語言模型的發展歷程及規律,展示了不同階段各個維度的規模化如何推動語言模型的發展. 3.考察了大型語言模型所表現出的涌現能力,介紹了思維鏈、情景學習和指令遵循等關鍵涌現能力的相關研究和應用現狀. 4.展望了大型語言模型的未來發展和技術挑戰.
亮點圖文 自GPT-3問世以來,國內外多家機構加大對大型語言模型的研發投入,近三年來涌現了一批具有競爭力的大型語言模型. 目前已有的大型語言模型總體上呈現出以工業界投入為主、以英文為主、以閉源為主等特點. 下面的表格1中列舉了當前常見大型語言模型的基本信息.
如下圖展示了語言模型的主要發展路徑:2008年,Collobert等人發現將語言模型作為輔助任務預先訓練可以顯著提升各個下游任務上的性能,初步展示了語言模型的通用性;2013年,Mikolov等人在更大語料上進行語言模型預訓練得到一組詞向量,接著通過遷移學習的手段,以預訓練得到的詞向量作為初始化,使用下游任務來訓練任務特定模型;2018年,Google的Devlin等人將預訓練參數從詞向量擴增到整個模型,同時采用Transformer架構作為骨干模型,顯著增大了模型容量,在諸多自然語言處理任務上僅需少量微調即可取得很好的效果;隨后,研究人員繼續擴增模型參數規模和訓練數據量,同時采取一系列對齊算法使得語言模型具備更高的易用性、忠誠性、無害性,在許多場景下展現出極強的通用能力,OpenAI于2022年底發布的ChatGPT以及2023年發布的GPT-4是其中的代表. 縱觀近十余年來語言模型的發展歷程,不難發現兩個規律:
到目前為止,規模定律仍然是一個非常重要且值得探索的方向,特別是中文語言模型的規模定律尚未有公開研究. 此外,已有的對規模定律的研究主要為通過大量實驗得出的經驗性規律,而缺乏對其理論機理的解釋. 未來發展與挑戰**
** 以ChatGPT、GPT-4為代表的大型語言模型已經在社會各界引起了很大反響,其中GPT-4已經初步具備通用人工智能的雛形. 一方面,大型語言模型的強大能力向人們展現了廣闊的研究和應用空間;而另一方面,這類模型的快速發展也帶來了許多挑戰和應用風險.
未來發展
1)高效大型語言模型.當前大型語言模型主要采用Transformer架構,能夠充分利用GPU的并行計算能力并取得不俗的性能表現. 但由于其計算和存儲復雜度與輸入文本長度呈平方關系,因此存在推理效率慢、難以處理長文本輸入等缺陷. 2)插件增強的語言模型.集成功能插件已經成為大型語言模型快速獲得新能力的重要手段3)實時交互學習.語言模型能夠在與用戶交互過程中完成實時學習,特別是能夠根據用戶輸入的自然語言指令更新自身知識是邁向通用人工智能的重要步驟.4)語言模型驅動的具身智能.通過多模態深度融合、強化邏輯推理與計劃能力等手段,打造具備強大認知智能的具身系統正在成為大型語言模型和機器人領域的研究熱點.
** 挑戰**1)檢測.大型語言模型生成的文本高度復雜甚至相當精致,在很多場景下難以與人類創作的文本區分開. 因而,語言模型生成文本的檢測和監管成為亟待解決的問題,2)安全性.大型語言模型的訓練數據大量來自互聯網上未經標注的文本,因而不可避免地引入了有害、不實或歧視性內容. 如何構造適合中文環境的安全性評估標準及其相應訓練數據仍然是中文語言模型大規模落地應用的重要挑戰.3)幻覺.目前ChatGPT和GPT-4等高性能語言模型仍然存在較嚴重的幻覺問題,即經常生成包含事實性錯誤、似是而非的文本,這嚴重影響了其在部分專業領域應用的可靠性.有效識別模型的內部知識和能力邊界仍舊是極具挑戰性的未解之題. 總之,大型語言模型給自然語言處理乃至人工智能領域帶來了巨大的范式變革,將原來按不同任務進行橫向劃分的領域設定轉變為按流程階段進行縱向劃分的新型研究分工,并構建了以大型語言模型為中心的人工智能新生態.
引用格式
舒文韜, 李睿瀟 , 孫天祥, 黃萱菁, 邱錫鵬. 大型語言模型:原理、實現與發展[J]. 計算機研究與發展. doi: 10.7544/issn1000-1239.202330303 Shu Wentao, Li Ruixiao, Sun Tianxiang, Huang Xuanjing, Qiu Xipeng. Large Language Models: Theories, Methods, and Progress[J]. Journal of Computer Research and Development. doi: 10.7544/issn1000-1239.202330303
摘要: 隨著人工智能的快速發展,從可行的算法中選擇滿足應用需求的算法已經成為各領域亟待解決的關鍵問題,即算法選擇問題。基于元學習的方法是解決算法選擇問題的重要途徑,被廣泛應用于算法選擇研究并取得了良好成果。方法通過構建問題特征到候選算法性能的映射模型來選擇合適的算法,主要包括提取元特征、計算候選算法性能、構建元數據集以及訓練元模型等步驟。首先,闡述基于元學習的算法選擇概念和框架,回顧簡述相關綜述工作;其次,從元特征、元算法和元模型性能指標三方面總結研究進展,對其中典型的方法進行介紹并比較不同類型方法的優缺點和適用范圍;然后,概述基于元學習的算法選擇在不同學習任務中的應用情況;繼而,使用140個分類數據集、9種候選分類算法和5種性能指標開展算法選擇實驗,對比不同算法選擇方法的性能;最后,分析目前存在的挑戰和問題,探討未來的發展方向。 //fcst.ceaj.org/CN/abstract/abstract3212.shtml
人工智能是數據處理與分析的重要技術,為人 們利用數據進行決策和研究提供了有力支撐。在人 工智能的不同領域中,研究人員提出了大量算法,然 而,不同算法在有限數量的問題上具備優越性能,不 存在一個適用于所有問題的可行算法,該現象被稱 為算法的性能互補性(performance complementarity) 現象[1] ,與“沒有免費午餐”(no free lunch)定理相印 證[2] 。算法的性能互補性現象普遍存在于不同領域, 如何為給定問題從大量可行算法中選擇滿足應用需 求的算法成為了各領域面臨的重要挑戰,即算法選 擇問題(algorithm selection problem)[3] 。算法選擇問 題通常采用人工選擇或自動選擇的方法解決。人工 選擇方法通過實驗試錯或依賴專家選擇合適的算 法,然而實驗試錯方法成本較高,專家選擇與專家的 經驗知識相關且靈活性較低[4] 。自動選擇方法通過 設計算法和模型,根據問題的特點自動選擇滿足應 用需求的算法,包括活躍測試(active test)方法、推薦 系統方法以及基于元學習(meta-learning)的方法[5-7] 。 其中基于元學習的方法研究基礎較為深厚,具備開 銷低和靈活度高等優點,成為了解決算法選擇問題 的主要方法[8-9] 。 本文對基于元學習的算法選擇進行綜述總結, 為研究人員了解相關領域的發展現狀提供參考。
摘要: 近年來,由于大規模數據集的出現,圖像語義分割技術得到快速發展。但在實際場景中,并不容易獲取到大規模、高質量的圖像,圖像的標注也需要消耗大量的人力和時間成本。為了擺脫對樣本數量的依賴,小樣本語義分割技術逐漸成為研究熱點。當前小樣本語義分割的方法主要利用了元學習的思想,按照不同的模型結構可劃分為基于孿生神經網絡、基于原型網絡和基于注意力機制三大類。基于近年來小樣本語義分割的發展現狀,介紹了小樣本語義分割各類方法的發展及優缺點,以及小樣本語義分割任務中常用的數據集及實驗設計。在此基礎上,總結了小樣本語義分割技術的應用場景及未來的發展方向。
摘要: 近年來,預訓練語言模型發展迅速,將自然語言處理推到了一個全新的發展階段。文中的綜述旨在幫助研究人員了解強大的預訓練語言模型在何處以及如何應用于自然語言處理。具體來講,首先簡要回顧了典型的預訓練模型,包括單語言預訓練模型、多語言預訓練模型以及中文預訓練模型;然后討論了這些預訓練模型對5個不同的自然語言處理任務的貢獻,即信息提取、情感分析、問答系統、文本摘要和機器翻譯;最后討論了預訓練模型的應用所面臨的一些挑戰。
//www.jsjkx.com/CN/10.11896/jsjkx.220800223
在早期的自然語言 處 理(NaturalLanguageProcessing, NLP)任務中,人們通常利用各種深度神經網絡[1],使用低維 密集向量來表示語言的句法或語義特征.然而,由于深度神 經網絡參數量大,并且是在有限的數據集上進行訓練的,往往 會導致過度擬合.因此,Vaswanid等[2]提出了深度學習模型 Transformer,用于解決循環神經網絡(RecurrentNeuralNetG work,RNN)訓 練 緩 慢、效 率 低 下 和 過 度 擬 合 的 問 題[3].同 時,將 Transformer與自我注意力機制相結合,實現了快速并 行的 效 果. 從 此,預 訓 練 語 言 模 型 (Pretrained Language Model,PLM)進入了蓬勃發展的階段.各種大規模的單語言 PLM(如 BERT [4]和 GPT [5])在各種 NLP任務中獲得了巨大 成功,并催生了許多不同的改進模型和多語言 PLM. 近兩年來,PLM 在 NLP 領 域 應 用 得 非 常 廣 泛,原 因 是 PLM 可以將各種困難復雜的 NLP任務簡化為簡單的微調問 題.PLM 通過自我監督學習在大規模文本語料庫上進行預 訓練,預訓練過程包括從大型語料庫中學習常識(與特定的下 游 NLP任務無關),以防止模型在小數據上過度擬合[6].在 預訓練之后,PLM 需要針對具體的下游任務進行微調. 由于 PLM 對 NLP至關重要,為了幫助研究人員快速掌 握 PLM 的應用現狀,本文綜述了 PLM 在 NLP 領域5個最 熱門的任務中的應用:信息提取(InformationExtraction,IE)、 情感分析(SentimentAnalysis,SA)、文本摘要(TextSummaGrization,TS)、問題回答(QuestionAnswering,QA)和機器翻 譯(MachineTranslation,MT).此 外,我 們 還 討 論 了 當 前 PLM 應用中的重要挑戰. 其他研究人員也綜述了 PLM,但本文的綜述與他們的不 同.2020年,Qiu等[7]對 PLM 在 NLP領域的應用進行了調 查,但只進行了簡單的概述.2020年,Zaib等[8]對 PLM 的對 話式人工智能做了一個簡短的綜述,但未涉及 PLM 在其他 領域的應用.2021年,Luo等[9]調查了 PLM 在跨語言SA 中 的應用.2021年,Kalyan等[10]回顧了基于轉換的生物醫學 PLM.然而,他們的 PLM 只涉及生物醫學領域,這些綜述都 沒有包含最新的進展,且所做的綜述單一或者不夠詳盡.本 文不僅討論了 PLM 在 NLP領域的最新應用,而且詳細地介 紹了這個主題,涵蓋了信息提取、情感分析、自動問答、文本摘 要和機器翻譯5個 NLP熱門領域. 本文第2節簡要介紹了一些典型的 PLM,包括國內外的 單語和多語 PLM;第3節總結了一些基于 PLM 的信息提取 方法;第4節回顧了一些基于 PLM 的情感分析技術;第5節 考察了用于問答系統的 PLM 模型;第6節討論了基于 PLM 的文本摘要方法;第7節評論了一些關于PLM 的機器翻譯的 研究;第8節討論了未來工作的挑戰;最后總結全文.
摘要
遷移學習是指從源領域提取可遷移知識并將其重用到目標領域的行為,已成為人工智能領域的研究熱點。概率圖模型(PGMs)作為一種建模復雜系統的強大工具,具有處理不確定性的能力和良好的可解釋性。考慮到上述兩個研究領域的成功,將PGMs應用于遷移學習似乎是很自然的。然而,盡管在文獻中已經有一些優秀的遷移學習特異性PGMs,但PGMs在這一問題上的潛力仍然被嚴重低估。本文旨在通過以下幾個方面促進遷移學習的知識遷移模型的發展:1)考察遷移學習的知識遷移模型的試點研究,即分析和總結現有的專門設計的知識遷移機制;2)討論現有PGM成功應用于實際遷移問題的例子;3)利用PGM探討遷移學習的幾個潛在研究方向。
引言
遷移學習是從源領域中提取可遷移的知識,并在目標領域中重用該知識的行為,這是一種自然的人類現象,即使對于非常小的兒童(Brown & Kane, 1988)。形式定義如下(Pan & Yang, 2010):“給定源域DS = {XS, PS(X)}和目標域DT = {XT, PT (X)},遷移學習的目的是借助DS改進DT中的學習任務,其中X為特征空間,P(X)為數據分布。”當XS = XT時,為同質遷移學習;當XS= XT時,為異質遷移學習。需要注意的是,遷移學習可以被看作是前面提到的問題,也可以看作是解決這個問題的方法。一個經典的激勵例子是產品評論的跨領域(如電影和計算機領域) 情感預測: 1) 在電影領域有大量的標簽產品評論,因此可以訓練一個分類器,并應用于該領域的預測; 2)新計算機的評論標簽不足以訓練分類器進行進一步的情感預測; 3) 一個簡單的想法是直接來自電影領域的分類器應用到新電腦領域考慮兩個域之間的相似之處(例如,人們傾向于使用類似的詞語來表達他們的喜歡或不喜歡在不同的產品), 但它并不總是工作很可能導致負遷移(Weiss, Khoshgoftaar, & Wang, 2016). 因為它們在不同的上下文中存在差異(例如,在電影領域中,“觸摸我的心”是褒義詞,而在計算機領域中,“觸摸板”是中義詞)。如何結合源域和目標域提取可遷移知識是遷移學習的藝術。在文獻中,有幾個與遷移學習密切相關的概念誤導了讀者,如樣本選擇偏差、協變量轉移、類別不平衡、領域適應和多任務學習。(Pan & Yang, 2010)的研究試圖根據源域和目標域的設置來區分和組織它們,例如目標域中是否有標記數據。本文并沒有明確區分它們,但我們認為它們都是遷移學習。對這些概念及其區別的進一步討論可以在(Pan & Yang, 2010;Weiss et al., 2016)。識別、建模和利用兩個領域之間可遷移的知識的能力不僅提高了具體現實問題的性能,而且在促進機器人在沒有任何人類干預的情況下的自學習(像人類)方面邁出了重要的一步。想象一下這樣的場景:一個智能機器人面臨一個自己沒有知識的新問題,它向其他類似領域的機器人尋求幫助,并向他們學習,問題就解決了。因此,我們認為遷移學習不僅在統計機器學習領域,而且在機器人甚至一般人工智能領域都有很好的前景。
概率圖模型(PGM) (Wainwright, Jordan等,2008;Koller & Friedman, 2009)是統計機器學習的一個重要分支,它是一個豐富的框架,用于通過概率分布或隨機過程來建模(表達)來自領域的有限或無限個(可觀察或潛在)變量之間的復雜交互作用。它的名字來自于它的結構——一個以隨機變量為節點,以概率相關性為邊的圖,如圖1所示。根據節點/變量之間的邊緣類型(即有向或無向),概率圖模型分為有向和無向兩類。例如,隱馬爾可夫模型(Rabiner, 1989)是一種有向圖模型; 條件隨機場(Lafferty, McCallum, & Pereira, 2001)是無向圖模型的一個例子。將概率圖模型應用于目標任務包括以下兩個步驟: 1)模型設計和 2)模型推理。給定一個任務,第一步是分析問題的本質,然后設計一些變量及其關系來捕捉這種本質。換句話說,這一步是設計PGM的圖結構,該結構應共同考慮觀測數據和目標任務的附加知識。請注意,這個步驟沒有確切的過程,因為它嚴重依賴于處理同一問題的不同人員的視圖/理解。例如,在Latent Dirichlet Allocation模型(Blei, Ng, & Jordan, 2003)中,文檔由滿足Dirichlet或多項分布的隨機變量建模,變量之間通過Dirichlet-多項關系連接;在Gamma-Poisson模型(Ogura, Amano, & Kondo, 2013)中,文檔由滿足Gamma或Poisson分布的隨機變量建模,變量之間通過Gamma-Poisson關系連接。在不考慮具體任務的情況下,討論優點和缺點通常是困難和毫無意義的。PGM的輸出是給定觀測數據的圖模型定義的感興趣的邊際或關節后驗分布。另外,從第一步開始的PGM實際上是一組模型,因為所設計的概率分布通常帶有未知的參數,不同的參數設置會導致不同的模型。有了觀測數據(圖模型中的一些變量/節點的值是已知的),第二步是推斷潛在變量的后驗分布,并估計模型參數。對于一些稀疏圖,有一個精確的算法來學習PGM: 結點樹算法(Paskin & Lawrence, 2003; Wainwright et al., 2008)。但該算法不適用于任務復雜的復雜圖模型。因此,一些近似算法被發展來解決這個問題:期望最大化(Dempster, Laird, & Rubin, 1977),拉普拉斯近似,期望傳播(Minka, 2001),蒙特卡洛馬爾可夫鏈(Neal, 1993),變分推理(Blei, Kucukelbir, & McAuliffe, 2017)。此外,設計的變量之間的概率相關性也可能不是固定的,而是從數據中學習的(所謂結構學習)。一個例子是貝葉斯網絡,其中的網絡結構(即變量之間的依賴關系)可以從數據中學習。由于其強大的建模能力和堅實的理論基礎,概率圖模型受到了分子生物學(Friedman, 2004)、文本挖掘(Blei et al., 2003)、自然語言處理(Sultan, Boyd-Graber, & Sumner, 2016) 和 計算機視覺(Gupta, Phung, & Venkatesh, 2012) 等多個領域研究者的關注。
與機器學習中的其他模型(如支持向量機)相比,概率圖模型具有以下優點,這些優點可能有利于遷移學習: 1) 處理不確定性。不確定性幾乎出現在任何現實世界的問題中,當然也出現在他們的觀察(數據)中。例如,人們在編寫關于特定主題的文檔時可能會使用不同的詞匯,所以我們在構建模型以揭示隱藏的主題時需要考慮這種不確定性。PGMs能夠借助概率分布或隨機過程很好地處理(模型)這種不確定性; 2) 處理缺失數據。丟失數據的一個典型例子是來自推薦系統,用戶只對有限數量的項目進行評級,因此對其他項目的評級也會丟失。PGM可以通過潛在變量設計很好地處理這一問題(Mohan, Pearl, & Tian, 2013); 3) 可解釋性。PGM由定義的概率分布(或隨機過程)組成,因此人類專家可以評估其語義和屬性,甚至將他們的知識納入模型。通過PGM的結構,人們可以很容易地理解問題和領域; 4) 泛化能力。定向PGMs(也稱為生成模型)具有很好的泛化能力,可以比較鑒別模型,特別是在數據數量有限的情況下(Ng & Jordan, 2002)。盡管在文獻中已經發表了一些關于遷移學習的優秀研究,如: 綜合研究(Pan & Yang, 2010;Weiss et al., 2016),應用,如強化學習(Taylor & Stone, 2009),協同過濾(Li, 2011),視覺分類(Shao, Zhu, & Li, 2015),人臉和物體識別(Patel, Gopalan, Li, & Chellappa, 2015),語音和語言處理(Wang & Zheng, 2015),活動識別(Cook, Feuz, & Krishnan, 2013),和方法論,如計算智能(Lu, Behbood, Hao, Zuo, Xue, & Zhang, 2015),在使用PGMs進行遷移學習方面沒有一個具體的工作。本文綜述了該領域的主要研究成果,總結了已有的遷移研究的基本方法,為今后在該領域的進一步研究奠定了基礎。本文對遷移學習領域的研究人員進行了綜述,并對遷移學習方法的應用進行了推廣。本文還綜述了已有的遷移學習理論在遷移學習中的成功應用,并促進了遷移學習理論的發展。本文假設讀者已經具備遷移學習的基本知識。
本文的其余部分結構如下。第2節討論了現有的最先進的方法使用的概率圖模型遷移學習。第3節介紹了現實世界中使用概率圖模型解決的遷移學習問題。最后,第四部分對本文進行了總結,并提出了進一步研究可能面臨的挑戰。
摘要:隨著自然語言處理(NLP)領域中預訓練技術的快速發展,將外部知識引入到預訓練語言模型的知識驅動方法在NLP任務中表現優異,知識表示學習和預訓練技術為知識融合的預訓練方法提供了理論依據。概述目前經典預訓練方法的相關研究成果,分析在新興預訓練技術支持下具有代表性的知識感知的預訓練語言模型,分別介紹引入不同外部知識的預訓練語言模型,并結合相關實驗數據評估知識感知的預訓練語言模型在NLP各個下游任務中的性能表現。在此基礎上,分析當前預訓練語言模型發展過程中所面臨的問題和挑戰,并對領域發展前景進行展望。
摘要: 形式化方法是在安全關鍵軟件系統中被廣泛采用而有效的基于數學的驗證方法,而智能合約屬于安全關鍵代碼,采用形式化方法驗證智能合約已經成為熱點研究領域.本文對自2015年以來的47篇典型相關論文進行了研究分析,對技術進行了詳細的分類研究和對比分析;對形式化驗證智能合約的過程中使用的形式化方法、語言、工具和框架進行綜述.研究表明,其中定理證明技術和符號執行技術適用范圍最廣,可驗證性質最多,很多底層框架均有所涉及,而運行時驗證技術屬于輕量級的新驗證技術,仍處于探索階段.由此我們列出了一些關鍵問題如智能合約的自動化驗證問題,轉換一致性問題,形式化工具的信任問題和形式化驗證的評判標準問題.本文還展望了未來形式化方法與智能合約結合的研究方向,對領域研究有一定的推動作用.
摘要 近年來,跨模態研究吸引了越來越多學者的關注,尤其是連接視覺和語言的相關課題。該文針對跨視覺和語言模態研究中的核心任務——圖像描述生成,進行文獻綜述。該文從基于視覺的文本生成框架、基于視覺的文本生成研究中的關鍵問題、圖像描述生成模型的性能評價和圖像描述生成模型的主要發展過程四個方面對相關文獻進行介紹和總結。最后,該文給出了幾個未來的重點研究方向,包括跨視覺和語言模態的特征對齊、自動化評價指標的設計以及多樣化圖像描述生成。
摘要:大數據是多源異構的。在信息技術飛速發展的今天,多模態數據已成為近來數據資源的主要形式。研究多模態學習方法,賦予計算機理解多源異構海量數據的能力具有重要價值。本文歸納了多模態的定義與多模態學習的基本任務,介紹了多模態學習的認知機理與發展過程。在此基礎上,重點綜述了多模態統計學習方法與深度學習方法。此外,本文系統歸納了近兩年較為新穎的基于對抗學習的跨模態匹配與生成技術。本文總結了多模態學習的主要形式,并對未來可能的研究方向進行思考與展望。