摘要: 圖異常檢測旨在大圖或海量圖數據庫中尋找“陌生”或“不尋常”模式,具有廣泛的應用場景.深度學習可以從數據中學習隱含的規律,在提取數據中潛在復雜模式方面表現出優越的性能. 近年來隨著基于深度神經網絡的圖表示學習取得顯著進展,如何利用深度學習方法進行圖異常檢測引起了學術界和產業界的廣泛關注. 盡管最近一系列研究從圖的角度對異常檢測技術進行了調研,但是缺少對深度學習技術下的圖異常檢測技術的關注. 首先給出了靜態圖和動態圖上各類常見的異常定義,然后調研了基于深度神經網絡的圖表示學習方法,接著從靜態圖和動態圖的角度出發,梳理了基于深度學習的圖異常檢測的研究現狀,并總結了圖異常檢測的應用場景和相關數據集,最后討論了圖異常檢測技術目前面臨的挑戰和未來的研究方向.
//crad.ict.ac.cn/CN/10.7544/issn1000-1239.2021.20200685
圖作為一種通用的數據結構,被廣泛用于表示 復雜的結構化數據.相對于其他數據結構,它能更好 地存儲和表達實體及其聯系.現實世界中,圖在社交 網絡分析、Web網絡分析、交通路網優化、知識圖譜 構建等領域均有廣泛的應用.針對這些語義豐富、樣 式多樣、規模龐大的圖數據,如何快速、準確地檢測 其中的異常引起了學術界和產業界的廣泛關注.圖 異常檢測是指在一個大圖或海量圖數據庫中尋找包 含“陌生”或者“不尋常”模式的結構(包括節點、邊或 者子圖),具有廣泛的應用場景,例如英特網中的惡 意攻擊、社交網絡中的突發事件檢測、電子商務中的 水軍發現等.相較于傳統的異常檢測方法,基于圖的 異常檢測由于圖具有強大的表達能力,不僅可以將 復雜的數據加以直觀的呈現,同時也能將數據中隱 含的相關性融入到異常檢測過程中.
面向圖的異常檢測工作最早發表于2003年[1], 現有工作大致可分為基于靜態圖和基于動態圖 2 類.在基于靜態圖的異常檢測工作中,一類方法利用 ego網絡[2]或者基于團體[3]研究問題;一類方法基 于圖的結構信息進行異常檢測[4G6],也有一些工作基 于子空間選擇,試圖在節點特征的子空間中發現異 常[7G9].還有一些工作通過概率、統計方法獲取圖的 統計信息進行異常檢測[10G13].盡管這些工作在異常 檢測上取得了不錯的進展,但這些方法如利用ego 網絡的方法,由于處理圖數據,必須考慮節點之間的 交互,在圖較為稀疏時難以實現較好的效果;或者如 子空間選擇和統計方法,由于淺層學習機制難以綜 合利用節點的屬性和結構信息.在基于動態圖的異 常檢測方面,同樣有一些工作基于團體[14G15]、基于結 構[6,16]、或基于概率統計[17G19]進行異常檢測.另外一 類典型的方法是首先獲取圖的概要,然后通過聚類 和異常 檢 測 來 確 定 概 要 中 的 異 常,例 如 文 獻 [20G 21],但是這些方法獲得的概要無法保留重要的結構 信息,比如鄰接節點的信息.現有的基于動態圖的異 常檢測方法大多依賴于啟發式規則,通常只是簡單 地考慮某一類特征;雖然有部分方法[22G23]考慮了內 容甚至時間因素,但并不靈活,導致其應用局限于特 定的場景.
近年來,深度學習成為人工智能和機器學習中極為重要的部分,在提取數據中潛在復雜模式方面 表現出優越的性能,并在音頻、圖像和自然語言處理 等領域得到了廣泛應用.深度學習方法能夠合理處 理復雜的屬性信息,并且可以從數據中學習隱含的 規律;此外,通過神經網絡對圖進行嵌入不僅可以很 好地保留信息[24G26],還可以很好地處理節點或邊的 屬性,同時保留結構信息,進而方便檢查隱空間中節 點或邊表示的相似性.近年來隨著對圖進行嵌入表 示取得顯著進展,如何利用深度學習方法進行圖異 常檢測在過去幾年中吸引了廣泛關注.基于深度學 習的圖異常檢測方法通常使用圖的嵌入表示方法先 將圖表示為隱空間中的向量,然后使用該向量重構 圖從而剔除異常信息的影響,最后通過重構誤差進 行異常檢測.
關于異常和離群點檢測,已經存在非常全面的 綜述類文章,例如Zimek等人[27]重點介紹了關于高 維離群值檢測,Schubert等人[28]討論了局部離群值 檢測技術.但是,這些文章通常關注多維數據實例的 點,沒有或者不是直接地關注基于圖的檢測技術.盡管文獻[29]從圖的角度對異常檢測技術進行了調 研,但是缺少對深度學習技術下的圖異常檢測技術 的關注.與以往關于異常檢測的綜述不同,本文專注 于大圖或海量圖數據庫中的異常檢測,并對基于深 度學習的圖異常檢測技術進行全面地梳理和總結, 是最早聚焦基于深度學習的圖異常檢測技術方面的研究綜述.
本文首先對圖上的異常定義做了全面的分析, 然后詳細介紹了基于深度神經網絡的圖表示學習方 法,接著從靜態圖和動態圖的角度出發,對現有基于 深度學習的圖異常檢測方法進行系統地總結和歸 類,并討論相關方法的局限性.接著簡單介紹圖異常 檢測技術的實際應用場景和相關的數據集,最后討論基于深度學習的圖異常檢測研究面臨的挑戰及未 來可行的研究方向.本文期望通過對目前基于深度 學習的圖異常檢測研究現狀的梳理,為后續研究提 供可借鑒的思路.
摘要: 數據庫自然語言接口(natural language interface to database, NLIDB)能夠憑借自然語言描述實現數據庫查詢操作,是促進用戶無障礙地與數據庫交互的重要工具.因為NLIDB具有較高的應用價值,近年來一直受到學術與商業領域的關注.目前成熟的NLIDB系統大部分基于經典自然語言處理方法,即通過指定的規則實現自然語言查詢到結構化查詢的轉化.但是基于規則的方法仍然存在拓展性不強的缺陷.深度學習方法具有分布式表示和深層次抽象表示等優勢,能深入挖掘自然語言中潛在的語義特征.因此近年來在NLIDB中,引入深度學習技術成為了熱門的研究方向.針對基于深度學習的NLIDB研究進展進行總結:首先以解碼方法為依據,將現有成果歸納為4種類型分別進行分析;然后匯總了7種模型中常用的輔助方法;最后根據目前尚待解決的問題,提出未來仍需關注的研究方向.
顯著性目標檢測旨在對圖像中最顯著的對象進行檢測和分割,是計算機視覺任務中重要的預處理步驟之一,且在信息檢索、公共安全等領域均有廣泛的應用.本文對近期基于深度學習的顯著性目標檢測模型進行了系統綜述,從檢測粒度的角度出發,綜述了將深度學習引入顯著性目標檢測領域之后的研究成果.首先,從三個方面對顯著性目標檢測方法進行了論述:稀疏檢測方法,密集檢測方法以及弱監督學習下的顯著性目標檢測方法.然后,簡要介紹了用于顯著性目標檢測研究的主流數據集和常用性能評價指標,并對各類主流模型在三個使用最廣泛的數據集上進行了性能比較分析.最后,本文分析了顯著性目標檢測領域目前存在的問題,并對今后可能的研究趨勢進行了展望.
摘要: 語音信息處理技術在深度學習的推動下發展迅速,其中語音合成和轉換技術相結合能實現實時高保真的指定對象、內容的語音輸出,在人機交互、泛娛樂等領域具有廣泛的應用前景。文中旨在對基于深度學習的語音合成與轉換技術進行綜述。首先,簡要回顧了語音合成和轉換技術的發展歷程;接著,列舉了在語音合成、轉換領域的常見公開數據集以便研究者開展相關探索;然后,討論了從文本到語音模型,包括在風格、韻律、速度等方面進行改進的經典和前沿的模型、算法,并分別對比評述了其效果與發展潛力;進一步針對語音轉換進行綜述,歸納總結了轉換方法與優化思路;最后,總結了語音合成與轉換的應用與挑戰,并根據其在模型、應用和規范方面所面臨的問題,展望了未來在模型壓縮、少樣本學習和偽造檢測方面的發展方向。
新聞推薦(NR)可以有效緩解新聞信息過載,是當今人們獲取新聞資訊的重要方式,而深度學習(DL)成為近年來促進新聞推薦發展的主流技術,使新聞推薦的效果得到顯著提升,受到研究者們的廣泛關注。主要對基于深度學習的新聞推薦方法研究現狀進行分類梳理和分析歸納。根據對新聞推薦的核心對象——用戶和新聞的建模思路不同,將基于深度學習的新聞推薦方法分為“兩段式”方法、“融合式”方法和“協同式”方法三類。在每類方法中,根據建模過程中的具體子任務或基于的數據組織結構進行更進一步細分,對代表性模型進行分析介紹,評價其優點和局限性等,并詳細總結每類方法的特點和優缺點。另外還介紹了新聞推薦中常用數據集、基線算法和性能評價指標,最后分析展望了該領域未來可能的研究方向及發展趨勢。
小目標檢測一直是目標檢測領域中的熱點和難點,其主要挑戰是小目標像素少,難以提取有效的特征信息.近年來,隨著深度學習理論和技術的快速發展,基于深度學習的小目標檢測取得了較大進展,研究者從網絡結構、訓練策略、數據處理等方面入手,提出了一系列用于提高小目標檢測性能的方法.該文對基于深度學習的小目標檢測方法進行詳細綜述,按照方法原理將現有的小目標檢測方法分為基于多尺度預測、基于數據增強技術、基于提高特征分辨率、基于上下文信息,以及基于新的主干網絡和訓練策略等5類方法,全面分析總結基于深度學習的小目標檢測方法的研究現狀和最新進展,對比分析這些方法的特點和性能,并介紹常用的小目標檢測數據集.在總體梳理小目標檢測方法的研究進展的基礎上,對未來的研究方向進行展望.
行人檢測技術在智能交通系統,智能安防監控等領域表現出了極高的應用價值,已經成為計算機視覺領域的重要研究方向之一。得益于深度學習的飛速發展,基于深度卷積神經網絡的通用目標檢測模型被不斷擴展應用到行人檢測領域,并取得了良好的性能。但是由于行人目標內在的特殊性、復雜性,特別是考慮到復雜場景下的行人遮擋、尺度變化等問題,深度學習方法也面臨著嚴峻的挑戰。本文針對上述問題,以基于深度學習的行人檢測技術為研究對象,在充分調研文獻的基礎上,分別從基于錨點框、基于無錨點框以及通用技術改進(例如損失函數,非極大值抑制等)三個角度,對各類行人檢測算法進行細分,并選取具有代表性的方法進行詳細介紹和對比分析。此外,本文對行人檢測的通用數據集進行了詳細的介紹,對該領域先進算法的性能進行了對比分析,對行人檢測中待解決的問題與未來的研究方向做出預測和展望。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?flag=2&file_no=2020&journal_id=jig
摘要 在線社交網絡中的消息流行度預測研究,對推薦、廣告、檢索等應用場景都具有非常重要的作用。近年來,深度學習的蓬勃發展和消息傳播數據的積累,為基于深度學習的流行度預測研究提供了堅實的發展基礎。現有的流行度預測研究綜述,主要是圍繞傳統的流行度預測方法展開的,而基于深度學習的流行度預測方法目前仍未得到系統性地歸納和梳理,不利于流行度預測領域的持續發展。鑒于此,該文重點論述和分析現有的基于深度學習的流行度預測相關研究,對近年來基于深度學習的流行度預測研究進行了歸納梳理,將其分為基于深度表示和基于深度融合的流行度預測方法,并對該研究方向的發展現狀和未來趨勢進行了分析展望。
近年來,隨著web2.0的普及,使用圖挖掘技術進行異常檢測受到人們越來越多的關注.圖異常檢測在欺詐檢測、入侵檢測、虛假投票、僵尸粉絲分析等領域發揮著重要作用.本文在廣泛調研國內外大量文獻以及最新科研成果的基礎上,按照數據表示形式將面向圖的異常檢測劃分成靜態圖上的異常檢測與動態圖上的異常檢測兩大類,進一步按照異常類型將靜態圖上的異常分為孤立個體異常和群組異常檢測兩種類別,動態圖上的異常分為孤立個體異常、群體異常以及事件異常三種類型.對每一類異常檢測方法當前的研究進展加以介紹,對每種異常檢測算法的基本思想、優缺點進行分析、對比,總結面向圖的異常檢測的關鍵技術、常用框架、應用領域、常用數據集以及性能評估方法,并對未來可能的發展趨勢進行展望.
//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6100&flag=1
摘要:近年來,基于深度學習的表面缺陷檢測技術廣泛應用在各種工業場景中.本文對近年來基于深度學習的表面缺陷檢測方法進行了梳理,根據數據標簽的不同將其分為全監督學習模型方法、無監督學習模型方法和其他方法三大類,并對各種典型方法進一步細分歸類和對比分析,總結了每種方法的優缺點和應用場景.本文探討了表面缺陷檢測中三個關鍵問題,介紹了工業表面缺陷常用數據集.最后,對表面缺陷檢測的未來發展趨勢進行了展望.