摘要—終身學習,也稱為持續學習或增量學習,是推進人工通用智能(AGI)的關鍵組成部分,通過使系統在動態環境中持續適應。盡管大規模語言模型(LLM)在自然語言處理領域展現了出色的能力,但現有的LLM智能體通常是為靜態系統設計的,缺乏根據新挑戰隨時間適應的能力。本調查是首個系統總結將終身學習納入基于LLM的智能體的潛在技術的文獻。我們將這些智能體的核心組件分為三個模塊:感知模塊,用于多模態輸入的集成;記憶模塊,用于存儲和檢索不斷發展的知識;以及行動模塊,用于與動態環境的實際互動。我們強調這三個支柱如何共同實現持續適應,緩解災難性遺忘,并提高長期性能。本調查為從事基于LLM智能體的終身學習能力開發的研究人員和從業人員提供了一條發展路線圖,提供了關于新興趨勢、評估指標和應用場景的見解。相關文獻和資源可通過以下鏈接獲取:
//github.com/qianlima-lab/awesome-lifelong-llm-agent.
關鍵詞—終身學習,持續學習,增量學習,大規模語言模型,智能體,人工通用智能(AGI)
1 引言
“智慧是適應變化的能力。” ——斯蒂芬·霍金
終身學習[1],[2],也稱為持續學習或增量學習[3],[4],已成為智能系統發展的關鍵焦點。如圖1所示,終身學習近年來吸引了越來越多的研究關注,它在使這些系統能夠持續適應并不斷改進方面起著至關重要的作用。正如Legg等人[5]所指出的,人的智能本質上是快速適應廣泛環境的能力,這突顯了人工智能系統展現同樣適應性的需求。終身學習指的是系統在避免遺忘已學知識的同時,獲取、整合和保持新知識的能力。對于那些在動態復雜環境中運行的系統,尤其重要,因為這些環境中常常出現新的任務和挑戰。與傳統的機器學習模型不同,后者通常在固定數據集上進行訓練并優化以執行特定任務,終身學習系統則被設計為能夠不斷演變。它們隨著遇到新情境而積累新知識并持續完善其能力。 盡管終身學習具有潛力,但目前人工智能的進展與終身學習的實際應用之間仍存在顯著的差距。雖然人類能夠自然地整合新知識并保留舊知識,但當前的人工智能系統在終身學習方面面臨兩大挑戰:災難性遺忘[6]和可塑性喪失[7],[8]。這些挑戰形成了穩定性與可塑性困境[9]。一方面,災難性遺忘指的是當系統學習新任務時,會忘記之前學到的信息,特別是在環境發生變化時尤為突出。另一方面,可塑性喪失則指系統無法適應新任務或新環境。這兩者代表了學習譜系的兩個對立端:靜態系統避免遺忘,但缺乏適應能力;而注重適應的系統則面臨遺忘過去知識的風險。克服這一困境是推動人工智能發展的關鍵,也是實現人工通用智能(AGI)[5]的基礎性挑戰。
近年來,大規模語言模型(LLM)[11],[12]的進展顯著改變了自然語言處理領域。像GPT-4[12]這樣的模型通過學習海量的文本數據,能夠處理并生成類人文本。它們在文本生成、機器翻譯和問答等任務中表現出色,得益于其理解復雜語言模式的能力。然而,傳統的LLM[11],[12]在訓練完成后是靜態的,這意味著它們無法在部署后適應新任務或環境。它們的知識是固定的,且無法在不重新訓練的情況下整合新信息,這限制了它們在動態現實場景中的應用。與此相比,LLM智能體代表了更高級的人工智能形式。不同于標準的LLM,這些智能體[13],[14]是能夠與環境互動的自治實體。LLM智能體能夠感知多模態數據(例如文本、圖像、傳感數據),將這些信息存儲在記憶中,并采取行動影響或響應其周圍環境[15]–[17]。它們被設計為不斷適應新情境,隨著與環境的互動和經驗的積累,智能體的決策能力得以不斷提高。圖2和圖3提供了相關示意圖。
將終身學習融入LLM智能體的動機源于開發能夠不僅適應新任務,還能在廣泛的動態環境中保留并應用先前知識的智能系統的需求,這與Legg等人[5]將智能定義為快速適應廣泛環境的觀點相契合。目前,現有的LLM智能體通常被開發為靜態系統,限制了它們在面對新挑戰時的演變能力。此外,大多數關于LLM的終身學習研究[1],[4]集中于處理不斷變化的數據分布,而非與環境進行互動。例如,通過持續微調LLM以適應特定領域的指令[1]。然而,這些方法仍將LLM視為靜態黑箱系統,并未解決LLM在真實世界環境中進行互動學習的實際需求。圖2比較了傳統的終身學習范式與本調查中討論的、LLM智能體與動態環境互動的新范式。 在現實世界的應用中,LLM智能體需要適應多樣的環境,如游戲、網頁瀏覽、購物、家庭任務和操作系統,而無需為每個新情境設計單獨的智能體。通過引入終身學習能力,這些智能體可以克服這一局限性。它們能夠持續學習并存儲來自多種模態(如視覺、文本、傳感數據)的知識,使其在環境變化時能夠進行實時適應和決策[18]–[21]。將終身學習融入LLM智能體,可以釋放它們在動態現實應用中的全部潛力[22],[23]。因此,這些智能體能夠不斷演變、獲得新知識,并保持關鍵信息,從而增強其適應性和多功能性。這個持續學習的過程對那些挑戰不斷出現的環境尤為重要,如自主機器人、互動助手和自適應決策支持系統[14]。圖4展示了一個終身學習的LLM智能體示意圖。
本調查提供了關于基于LLM的智能體終身學習系統的關鍵概念、技術和挑戰的全面概述。作為首個系統總結將終身學習納入LLM智能體的潛在技術的文獻,本調查將重點回答以下研究問題(RQ): RQ1:為終身學習設計的LLM智能體的核心概念、開發流程和基本架構是什么?(第3節) RQ2:LLM智能體如何持續感知和處理單模態和多模態數據,以適應新環境和任務?(第4、5節) RQ3:什么策略可以減輕災難性遺忘并保留已學知識?(第6、7、8、9節) RQ4:LLM智能體如何在動態環境中執行各種動作,如扎根、檢索和推理?(第10、11、12節) RQ5:評估終身學習在LLM智能體中表現的評估指標和基準是什么?(第13節) RQ6:終身學習LLM智能體的現實應用和使用案例是什么?它們如何從持續適應中受益?(第14節) RQ7:開發LLM智能體終身學習面臨的關鍵挑戰、局限性和未解問題是什么?(第15節) 通過回答這些研究問題,本調查作為理解LLM智能體中終身學習的設計、挑戰和應用的逐步指南。它回顧了最前沿的技術,并突出了新興趨勢和未來的研究方向。
據我們所知,這是首個系統回顧終身學習與LLM智能體交叉領域最新進展的調查。本調查的主要貢獻如下:
本調查的結構如下:第2節回顧了關于LLM智能體和終身學習的相關調查和文獻;第3節介紹了為終身學習設計的LLM智能體的基礎概念、開發流程和整體架構;第4和第5節從感知角度討論了終身學習LLM智能體的設計,分別聚焦于單模態和多模態方法;第6、7、8和9節從記憶角度探討了LLM智能體的設計,涉及工作記憶、情節記憶、語義記憶和參數記憶;第10、11和12節從行動角度探討了LLM智能體的設計,包括扎根動作、檢索動作和推理動作;第13節介紹了評估終身學習LLM智能體表現的評估指標和基準;第14節深入討論了終身學習LLM智能體的現實應用和使用案例;第15節提供了實踐洞察并概述了未來的研究方向;最后,第16節總結了本調查。
終身學習,也稱為持續學習或增量學習,基于這樣一個理念:智能系統應該像人類一樣,持續地獲取、完善和保留知識,貫穿整個生命周期。與傳統的機器學習方法不同,傳統方法假設數據集是固定的、靜態的,而終身學習框架則面臨數據和任務隨時間演變的現實,模型必須在不遺忘已掌握技能的前提下進行適應。圖5展示了終身學習發展的示意圖。
終身學習的基于LLM的智能體架構旨在持續適應、整合并優化其在一系列任務和環境中的行為。在本小節中,我們識別了三個關鍵模塊——感知、記憶和行動——它們共同支持終身學習。這個劃分遵循了先前工作中提出的框架[14],但有一個顯著的不同:我們沒有保留“腦”模塊,而是采用了[14]中提出的“記憶”模塊,具有更清晰的功能性和改進的模塊化結構。 每個模塊相互作用,確保智能體能夠處理新信息、保留有價值的知識并選擇適應當前情境的合適行動。這三個模塊的設計理念來源于智能體的需求:(i) 感知和解讀不斷變化的數據,(ii) 存儲和管理來自過去經驗的知識,(iii) 執行適應變化環境的任務。 這三個模塊構成了一個動態反饋回路:感知模塊將新信息傳遞給記憶模塊,在記憶模塊中進行存儲和處理。記憶模塊隨后引導行動模塊,影響環境并為未來的感知提供信息。通過這一持續循環,智能體不斷完善其知識,提升適應性,最終提高其在復雜動態環境中的表現。
接下來,我們將詳細描述每個模塊,分析其設計如何貢獻于智能體的終身學習能力。圖6展示了整體架構的示意圖,圖7總結了后續章節的組織結構。
摘要—生成性人工智能(AI)通過使機器能夠以空前的復雜性創建和解釋視覺數據,迅速推動了計算機視覺領域的發展。這一變革建立在生成模型的基礎上,能夠生成逼真的圖像、視頻以及3D/4D內容。傳統上,生成模型主要關注視覺逼真度,而往往忽視了生成內容的物理合理性。這一差距限制了其在需要遵守現實世界物理法則的應用中的效果,如機器人技術、自動化系統和科學模擬。隨著生成性人工智能不斷融入物理現實和動態仿真,其作為“世界模擬器”的潛力不斷擴大——能夠模擬由物理法則主導的交互,架起虛擬與物理現實之間的橋梁。本綜述系統地回顧了這一新興領域——計算機視覺中的物理感知生成性AI,按其如何融入物理知識對方法進行了分類——無論是通過顯式仿真還是隱式學習。我們分析了關鍵范式,討論了評估協議,并指出了未來的研究方向。通過提供全面的概述,本綜述旨在幫助未來在視覺領域的物理基礎生成方面的發展。綜述中提到的論文匯總在
//github.com/BestJunYu/Awesome-Physics-aware-Generation
1 引言生成學習一直是現代計算機視覺的基礎支柱,解決了理解、合成和操作視覺數據中的關鍵挑戰。在過去的十年里,該領域見證了多種生成模型的快速發展,包括變分自編碼器(VAE)[1]、生成對抗網絡(GAN)[3]、擴散模型(DM)[4]、[5]、[6]、神經輻射場(NeRF)[7]、高斯濺射(GS)[8] 和視覺自回歸模型(VAR)[9]。這些模型不斷推動生成學習的邊界,利用越來越強大的架構來捕捉視覺數據的潛在分布。其目標是使機器能夠以類似人類的創造性和理解方式推理視覺世界,通過在未見過的場景中想象新的視覺內容實例。在這些進展中,擴散模型因其能夠生成高度逼真的輸出而成為特別值得注意的技術。通過通過學習到的去噪過程迭代地精煉隨機噪聲,擴散模型展現出卓越的魯棒性和多功能性,成為近期生成方法學的基石。生成模型的應用跨越了多種視覺內容的模態,包括具有語義理解的圖像生成、具有動態時間理解的視頻生成、具有增強空間理解的3D內容生成[10]、[11]、[12]以及具有更復雜和綜合理解的4D內容[13]、[14]、[15]、[16]、[17]、[18]、[19]。這些進展突顯了生成學習在日益復雜的視覺任務中的巨大潛力。在這些不同的視覺模態中,視頻生成最近在生成學習領域獲得了顯著關注,它為擴展大型生成模型處理更高維數據提供了一個更加具有挑戰性的試驗平臺。這一復雜性不僅源于單個幀的空間復雜性,還來自于跨序列所需的時間一致性。許多商業視頻生成模型已被開發并引起了廣泛的公眾關注,如OpenAI的Sora [20]、Google的Veo2 [21]、騰訊的Hunyuan [22]和快手的Kling [23]。視頻生成已在多種形式和設置中得到深入研究,從最基本的無條件生成[24]、[25]到圖像到視頻生成[26]、[27]、[28]、[29]、[30]、[31]、[32]、[33]、文本到視頻生成[24]、[25]、[26]、[29]、[30]、[30]、[34]、[35]、[36]、[37]、視頻到視頻生成[38]、[39]、以及視頻編輯或定制[40]、[41]、[42]、[43]。這些設置各自解決了獨特的挑戰,從保持時間連續性到結合來自文本或視覺輸入的語義引導。更重要的是,視頻在生成AI視覺的未來中占據了關鍵地位。互聯網上可用的大量視頻數據封裝了關于現實世界的豐富信息,使視頻成為生成AI可以學習建模復雜現實世界現象的媒介。在這個背景下,視頻可以被視為現實世界決策的“語言”,具有彌合數字和物理領域的潛力[44]。視頻生成有望提供一個統一的接口作為“世界模型”[45],處理物理知識,類似于文本大語言模型(LLM)處理抽象知識的方式。這種模型可以促進大量下游任務的執行,包括自動駕駛、科學仿真、機器人[46]、[47]、[48]、[49]、[50]以及其他形式的具身智能。為了實現這一潛力,生成過程應能夠與人類或其他系統的外部控制進行交互。這種互動性促進了動態決策制定和基于互動優化結果的能力,催生了可以描述為生成交互環境的概念[44]、[51]、[52]、[53]。視頻生成已經與多種交互控制信號相結合,如運動向量或軌跡[54]、[55]、[56]、[57]、[58]、手部掩碼[59]、潛在動作[53]、[60]、機器人操作[47]、相機運動[61]、演示[62]和自然語言描述[63]、[64]、[65]。這些互動元素突顯了生成視頻模型的多功能性和適應性,為其演變為世界模型鋪平了道路。然而,從生成到穩健世界建模的過渡仍然存在一個關鍵差距:真實世界物理的忠實理解和復制能力[66](見圖1)。當前的最先進模型主要針對像素空間中的視覺真實感進行優化,而非在實體或概念空間中的物理合理性。為了使生成模型能夠作為物理世界的模擬器,它們必須融入對物理法則的深刻理解,如動力學、因果關系和材料屬性。這種物理意識對于超越僅生成視覺上吸引人的輸出至關重要,以確保內容與物理世界的約束和行為一致。因此,我們提供本綜述,作為對現有文獻的及時而全面的回顧,旨在將物理感知嵌入生成模型。通過審視這些努力,我們希望突出至今所取得的進展,提供清晰的范式結構,并識別未來的潛在研究方向。綜述范圍:本綜述的范圍是關于增強生成輸出物理感知的計算機視覺生成模型。因此,我們不包括將物理原理作為先驗知識或歸納偏置融入模型或神經架構設計的文獻,例如物理信息神經網絡(PINN)[67]、[68],即使任務與生成學習相關,例如[69]、[70]、[71]。我們專注于生成任務,因此不包括圖像處理任務,如去模糊、去霧和增強,盡管我們注意到這些工作中有大量的物理相關內容。為了專注于計算機視覺,我們還排除了純圖形和渲染研究與物理仿真相結合的文獻。與其他綜述的比較:如同在我們的范圍中所述,本綜述與現有的關于物理信息機器學習[72]、物理信息計算機視覺[73]和物理信息人工智能[74]的綜述不同,因為它們強調的是在物理先驗知識下的模型設計方面。我們的綜述專注于具有物理感知的生成,因此與現有的關于生成模型[75]、擴散模型[76]、[77]、視頻擴散模型[78]、基于擴散的視頻編輯[79]的綜述有所不同。與專注于特定領域的綜述,如人類視頻或運動生成[80]、[81]、[82]相比,我們的綜述也有不同的范圍。
摘要—譜聚類是一種強大的高維數據聚類技術,利用基于圖的表示來檢測復雜的非線性結構和非凸聚類。構建相似度圖對于確保準確有效的聚類至關重要,因此圖結構學習(GSL)在應對日益增長的可擴展解決方案需求中,成為提升譜聚類性能的核心。盡管在GSL方面取得了一定的進展,但目前缺乏專門針對其在譜聚類中的作用的全面調查。為填補這一空白,本調查提供了關于譜聚類方法的全面綜述,重點討論了GSL的關鍵作用。我們探討了多種圖構建技術,包括成對、錨點以及基于超圖的方法,涵蓋固定和自適應設置。此外,我們將譜聚類方法分類為單視角和多視角框架,研究它們在單步和兩步聚類過程中的應用。我們還討論了多視角信息融合技術及其對聚類數據的影響。通過解決當前的挑戰并提出未來的研究方向,本綜述為推動譜聚類方法的發展提供了有價值的見解,并強調了GSL在處理大規模高維數據聚類任務中的關鍵作用。關鍵詞—譜聚類,圖結構學習,譜嵌入,多視角聚類
I. 引言
聚類(Clustering)是無監督學習中的一種基礎技術,旨在將數據點劃分為不同的組或簇,使得簇內的點彼此相似,而與其他簇中的點差異較大【1】–【3】。與監督學習不同,聚類在沒有預定義標簽或類別的情況下運行,而是通過識別數據中的內在模式和結構來實現目標。這使得聚類在探索性數據分析中尤為重要,在此過程中,目標是揭示隱藏的模式,而不依賴于數據結構的先驗假設【4】。聚類被廣泛應用于各個領域,包括市場營銷【5】、社交網絡分析【6】、圖像分割【7】、生物信息學【8】、異常檢測【9】和文檔分類【10】。它簡化了復雜的數據,增強了理解,且常常作為其他機器學習任務(如分類)的預處理步驟。
聚類方法可以大致分為傳統方法和基于降維的聚類方法,如圖1所示。傳統方法包括基于劃分的方法【11】、層次聚類方法【12】、基于密度的方法【13】和概率算法【14】,每種方法都采用不同的策略來對數據進行分組。基于劃分的方法(如K-means)將數據劃分為固定數量的簇,每個簇由一個質心表示【11】。層次方法,如凝聚型和分裂型聚類,通過合并較小的簇(凝聚型)或拆分較大的簇(分裂型)來構建聚類層次【15】【16】。基于密度的方法,如DBSCAN,通過基于高密度區域對數據點進行分組,能夠識別形狀各異的簇【17】。概率方法,如高斯混合模型(GMM),使用概率模型來表示數據分布和聚類【14】。
盡管傳統方法對于低維且結構良好的數據集有效,但當應用于高維或復雜數據時,往往面臨局限性。在高維空間中,點與點之間的距離度量變得困難,通常會導致聚類性能不佳。此外,傳統方法常常無法捕捉非凸形狀和復雜的數據結構。為了應對這些局限性,基于降維的聚類方法應運而生,通過減少特征或維度的數量,使得在較低維度空間中進行聚類,同時保留必要的結構信息。基于降維的聚類方法包括非負矩陣分解(NMF)【18】、譜聚類【19】【20】、核聚類【21】和深度聚類【22】。NMF是一種有效的降維技術,用于將數據矩陣分解為兩個低維的非負矩陣【18】。然而,當處理更加復雜或非線性的數據結構時,可能面臨一定的挑戰。核聚類(包括核K-means和核主成分分析(PCA)等方法)通過應用核函數來處理數據中的非線性關系【21】。譜聚類利用圖論,將數據點表示為圖中的節點,節點之間的相似度則通過邊來表示,并采用如Ratio-cut【23】和Normalized-cut【24】等方法。深度聚類將深度學習與聚類結合,通過神經網絡學習低維表示【22】。盡管深度聚類對于大規模、高維數據非常強大,但它需要大量的計算資源,并且需要細致的超參數調優。在降維技術中,譜聚類因其能夠通過圖結構方法識別非凸簇并捕捉非線性結構,而在處理復雜數據時表現尤為突出。譜聚類通過將數據點表示為圖中的節點,并使用基于圖的嵌入方法,根據數據點之間的連通性和關系來劃分數據。這種靈活性使得譜聚類能夠應用于各種領域中的問題,特別是在結合有效的圖構建技術時。譜聚類尤其適用于高維數據,在這種情況下,譜嵌入通過降低維度同時保留必要的結構信息,從而緩解了“維度災難”問題,并使得非線性模式的聚類變得可靠。對于大規模數據集,基于錨點圖的譜聚類通過使用一部分代表性點(或稱為錨點)來高效近似數據點之間的關系,從而提供了一種可擴展的解決方案,既節省了計算資源,又保證了聚類質量。因此,譜聚類具有很強的靈活性和可擴展性,能夠適應高維和大規模數據的應用,是進行復雜聚類任務的強大工具【21】【25】。譜聚類成功的關鍵因素之一是相似度圖的構建,圖結構是整個過程的基礎。這個圖表示了數據點之間的關系,節點對應數據點,邊表示它們之間的成對相似度。圖的質量顯著影響譜嵌入和聚類結果,因為它直接決定了數據底層結構的捕捉精度【25】。在譜聚類中,常用的圖類型包括成對圖【26】、錨點圖【27】【28】和超圖【29】【30】。不同類型的圖在數據的性質不同的情況下提供了各自的優勢。這些圖可以是固定的,即結構在整個聚類過程中保持不變,也可以是自適應的,即在聚類過程中動態學習并更新圖的結構。盡管在譜聚類,尤其是在圖像分割【31】、文本分類【32】和工業設計【33】等領域取得了進展,但仍缺乏一篇全面的綜述,專門探討圖結構學習(GSL)在譜聚類中的作用。為填補這一空白,本調查提供了關于譜聚類的廣泛綜述,特別強調了圖結構在提升聚類準確性方面的關鍵作用。雖然先前的綜述【34】提供了關于譜聚類的概述,重點討論了圖切割、拉普拉斯矩陣和聚類過程,但我們的綜述深入探討了更為具體且至關重要的GSL方面。先前的綜述側重于譜聚類的數學基礎和應用,但沒有廣泛探討圖的構建方式及其對聚類性能的影響。相較之下,我們的綜述突出了圖構建技術的作用,包括成對、錨點和超圖方法,并探討了固定和自適應形式下的應用。此外,我們將譜聚類方法分類為單視角和多視角方法,分析它們在單步和兩步框架中的應用。這些框架的區別在于聚類是否作為獨立步驟,在譜嵌入之后進行,還是與譜嵌入一起聯合優化。我們還對多視角譜聚類中的信息融合技術進行了更深入的探討,這一領域在先前的綜述中沒有涉及,提供了關于如何通過整合來自多個來源的數據來增強聚類性能的新見解。這對于處理復雜、異構和高維數據尤為重要,是推動多視角譜聚類發展的重要貢獻。
本綜述的貢獻如下:
摘要—基于大規模預訓練基礎模型(PFMs)的生成性人工智能(AI)系統,如視覺-語言模型、大型語言模型(LLMs)、擴散模型和視覺-語言-行動(VLA)模型,已經展示了在廣泛領域和情境中解決復雜且真正非平凡的AI問題的能力。特別是,多模態大型語言模型(MLLMs)通過從大量且多樣的數據源中學習,能夠提供豐富且細致的世界表示,從而具備廣泛的能力,包括推理、進行有意義的對話、與人類及其他代理共同協作解決復雜問題,并理解人類的社會和情感方面。盡管取得了這一令人印象深刻的成就,但基于大規模數據集訓練的最先進LLMs的認知能力仍然表面化且脆弱。因此,通用LLMs在其通才能力方面存在嚴重限制。要使LLMs實現人類級別的通用智能,需要解決一些基礎性問題——具身性、符號基礎、因果性和記憶機制。這些概念更符合人類認知,并為LLMs提供了固有的人類認知特性,從而支持實現具有物理可行性、語義意義、靈活性和更強泛化能力的知識和智能。在本研究中,我們討論了上述基礎性問題,并綜述了實現這些概念的最先進方法。具體而言,我們討論了如何利用具身性、符號基礎、因果性和記憶的原則,以有機的方式促進人工通用智能(AGI)的實現。
關鍵詞—大型語言模型、具身性、符號基礎、因果推理、記憶機制、人工通用智能。
智能與一個系統(無論是生物系統還是其他類型的系統)在特定環境(或多個環境)中實現一個或多個預期目標的能力相關。一個智能系統能夠推斷自身的狀態以及環境的狀態,并能夠將這些推斷轉化為適當的響應,從而實現預期目標。智能是高級生物體的獨特特征,在開發其人工對應物——人工智能的過程中,研究人員常常借鑒生物學的概念。生物智能的一個重要特征是其普遍性,即它能夠處理廣泛不同的問題,適應多種環境。尤其是人類的智能,其復雜性、豐富性和多樣性令人驚嘆,能夠輕松處理許多新穎的任務。人類智能相較于其他高級動物的普遍優越性,主要源于人類通過社會和文化構建(如藝術、規范、儀式、信仰體系和習俗)來組織和傳遞知識的能力 [1]。語言在這些過程中起著至關重要的作用。 盡管創造這種類型的通用智能的想法具有吸引力,但在機器中實現如此高度的復雜性和普適性是極其具有挑戰性的。直到最近,取得顯著成果的AI技術往往集中于特定領域或受限領域,解決單一問題(如面部識別、醫學圖像分割、文本翻譯、股市預測、行人跟蹤等)。近來,基于變分自編碼器(VAE) [2] 和生成對抗網絡(GAN) [3] 的生成式AI技術在革命化AI能力方面作出了巨大貢獻,使得單一模型能夠同時處理多種復雜任務 [4]。更近期的進展是,大規模預訓練基礎模型的出現,如大型語言模型(LLMs) [5]、擴散模型(DMs) [6]、視覺-語言模型(VLMs) [7] 和視覺-語言-行動(VLA)模型 [8],為復制人工智能中的通用性特征帶來了現實的前景。由于它們能夠處理廣泛的開放領域問題 [9],[10],[11],[12],尤其是多模態大型語言模型,大規模預訓練基礎模型重新激發了對發展人工通用智能的興趣 [10]。本文的主要目的是介紹支撐人工通用智能實現的認知基本原理,并綜述在大型語言模型中實現這些概念的最先進技術。
1.2.1 語言作為知識獲取、表示和組織的媒介 研究表明,使用自然語言進行交流是學習現實世界通用知識最有效的方式之一 [13],雖然人類的感官和運動能力通常不優于其他高級動物(包括靈長類動物)(見 [14],[15],[16],[17],[18],[19],[20]),但人類的認知能力遠遠超越其他動物。人類認知能力優于其他動物王國成員,尤其是與人類最親近的靈長類動物,這主要歸因于人類使用語言的能力 [21],[22],[23]。 語言在人體內的抽象概念表示、解釋和推理中發揮著核心作用 [24]。在人的社會中,語言最重要的功能之一是促進新知識的獲取與共享。通過語言——無論是文學、演講還是藝術——人類能夠輕松從他人處學習,不僅通過觀察或與世界的互動,還能獲取其他人積累的知識。此外,語言為表示和內化知識提供了概念框架 [22]。研究表明,一個群體所使用的特定語言結構和詞匯會影響他們對世界的推理和解釋。實際上,語言差異(例如詞匯差異)已被證明影響不同語言群體成員如何記住和描述他們的經歷 [25],[26],[27],[28]。在這方面,語言可以塑造或重塑認知 [29],從而影響主體如何理解和與世界互動 [30],[31]。1.2.2 語言作為認知信息處理工具
除了創建抽象表示來組織感知信息和知識的表示外,語言在促進認知計算操作中起著根本作用 [24]。Lupyan [31] 認為,基本語言元素(如詞語)為其他認知成分提供了構建意義的線索。因此,語言不僅僅是一個用于指代現實世界物體、現象和經驗的靜態符號集合,它還是一個操作這些符號的工具。Clark [24] 專門描述了語言在促進人類認知信息處理和推理中的六種不同方式。研究表明,語言不僅有助于晶化智能(即與表示相關的認知機制),如經驗/刺激的分類 [26] 和記憶 [25],[28],還促進流動智能(即分析性問題解決技能),如感知 [32],[33],[34] 和推理 [24],[31]。此外,接觸多種語言框架已被證明能夠拓寬個體的視野,并幫助他們以更細致的方式理解概念。由于其在生物學認知能力中的中心地位,語言被多次描述為“認知接口” [21]、“智能放大器” [35],并且人類認知本身也被描述為“語言增強的認知” [31]。
雖然文獻中對人工通用智能(AGI)有不同的解釋 [9],[36],[37],[38],[39],[40],但這一概念通常理解為具有廣泛智力能力的AI系統,能夠執行高級認知任務,如感知——包括情境理解和一定程度的自我意識 [41],[42],推理、規劃,以及在新情境下應用學習到的知識。AGI系統是能夠在多個領域成功完成復雜和多樣化的認知任務的強大模型,無需額外訓練。術語“人類水平的智能” [37],[43],[44] 經常被松散地用來指代展示通用智能的AI系統。AGI不應理解為超級全知和全能的機器。這種假設級別的能力被稱為人工超智能 [45],[46]。實際的AGI系統是具備有限但足夠強大且靈活的知識系統,能夠解決涉及傳感-運動控制、感知、情境理解、常識和分析推理能力的廣泛問題。對人工通用智能的這種理解,實際上反映了不僅在嵌入或學習所有相關知識和技能時的實際困難,也反映了這種方法的性能限制。此外,將人工通用智能概念化為有限范圍但適應性強、靈活且可擴展,與生物智能在高級生物體(如人類)中的性質和特性是一致的。盡管文獻中有各種定義,但幾乎對AGI的一些定義特征達成了一致。具體而言,典型AGI系統的最重要特征是(參見例如 [9],[36],[43],[47],[48]):它能夠學習并靈活應用有限且不確定的知識,解決不同情境下的廣泛問題;它的學習和行動是自主且目標驅動的;它能在記憶中保留并積累相關信息,并在未來任務中重新使用這些知識;它能夠理解情境并執行高級認知任務,如抽象和常識推理。 需要強調的是,AGI本質上與強AI(參見 [49],[50],[51])不同。AGI的重點是開發具有廣泛認知能力、能夠解決真正非平凡問題的智能系統,而強AI旨在創造極其強大的智能,不僅在功能層面模仿人類的認知能力,還具有如內在心理狀態和主觀經驗(包括意圖性、道德、情感和自我意識等) [52],[53],在意識和感知方面具有真實的人類認知特征。對此感興趣的讀者可以參考 [54],[55],[56],[57],[58],以獲得關于強AI概念的更詳細討論,包括意識 [54],[56],[57],意識 [55],[57],[59] 和AI系統的道德問題 [60],[61]。
在這項工作中,我們詳細討論了實現通用智能的核心原理。我們還討論了在人工智能和LLM系統中實現這些概念的各種方法。這里討論的概念不是實現AGI的算法解決方案,而是生物智能的一般原理和特性,這些原理和特性必須嵌入到基于大型語言模型的AI系統中 事實上,這些核心概念本質上是與算法無關的,即它們的實現并不局限于任何特定的技術或一組方法。然而,需要注意的是,特定的認知功能(如感知、推理、規劃、行動等)可以通過這些通用概念和原理得到增強。本文的其余部分安排如下: 在第2節,我們概述了大型語言模型(LLM)的關鍵要素,這些要素使其具有強大的能力,并能夠解決需要人類水平通用智能的復雜問題。 第3至第6節討論了實現通用智能所需的重要基礎性原則,包括具身性(第3節)、符號基礎(第4節)、因果性(第5節)和記憶機制(第6節)。 在第7節,我們探討了這些認知原則之間的相互關系和交互作用,并基于這些相互作用合成了一個整體的認知模型。 最后,在第8節中,我們對所討論的概念進行了總結,并在第9節給出了結論。
摘要
大規模語言模型(LLM)在多個領域具有變革性的潛力,包括推薦系統(RS)。已有一些研究專注于通過LLM賦能推薦系統。然而,之前的工作主要集中于將LLM作為推薦系統,這可能面臨LLM推理成本過高的問題。最近,LLM與推薦系統的結合——即LLM增強推薦系統(LLMERS)——因其在實際應用中解決延遲和內存限制的潛力,受到了廣泛關注。本文對最新的研究工作進行了全面的綜述,旨在利用LLM提升推薦系統的能力。我們發現,隨著LLM被引入在線系統,特別是通過避免在推理階段使用LLM,領域內出現了一個關鍵的轉變。我們的綜述將現有的LLMERS方法按推薦系統模型增強的組件分為三種主要類型:知識增強、交互增強和模型增強。我們深入分析了每個類別,討論了相關方法、挑戰以及近期研究的貢獻。此外,我們還指出了幾個有前景的研究方向,這些方向可能進一步推動LLMERS領域的發展。
大規模語言模型(LLM)在語言理解和推理方面展現了前所未有的能力 [3, 69, 87]。考慮到傳統推薦系統(RS)僅利用協同信號 [2, 65, 66],通過LLM為推薦系統提供語義信息顯得尤為有吸引力。因此,許多研究提出了彌合自然語言與推薦之間差距的方法,從而打造更強大的推薦系統。盡管將LLM應用于推薦系統取得了一定的成功,但對話系統與推薦系統之間的一個顯著區別在于推理延遲。推薦系統通常要求對大量請求提供低延遲響應,而LLM(例如LLaMA-7B)在響應時間上通常需要幾秒鐘。然而,許多早期的研究主要集中在直接使用LLM進行推薦 [13],這使得它們難以滿足實際應用的需求。最近,越來越多的研究者開始關注這一問題,并深入探索LLM增強推薦系統的實踐應用。因此,本文旨在總結和概述該領域的最新研究成果。為了明確本綜述的范圍,我們首先給出LLMERS的定義:傳統推薦系統通過LLM的輔助來增強訓練或補充數據,但在服務過程中無需使用LLM進行推理。盡管已有一些關于LLM在推薦系統中應用的綜述,但存在三點關鍵差異: i) 目前的大多數綜述集中在如何將LLM本身作為更好的推薦系統,包括生成推薦 [28, 31, 70] 和判別推薦 [4, 6, 20, 33, 56, 89]。相比之下,我們的綜述專門探討LLM增強推薦系統(LLMERS)。 ii) LLM在推薦系統中的應用是一個前沿方向,發展迅速。一些綜述 [4, 33, 70, 89] 并未涵蓋最新的論文。相比之下,本綜述包含了超過50篇2024年后發布的工作。 iii) 很少有綜述提及LLM增強推薦系統 [4, 33],但它們僅關注特征工程方面的增強。而本綜述則首次從綜合視角總結了LLMERS,包括特征和模型兩個方面。
由于LLM增強推薦系統是基于傳統推薦系統的,因此有必要先介紹其組件和面臨的挑戰,以便理解為什么以及在何處需要使用LLM。如圖1所示,傳統推薦系統通常由交互數據和推薦模型組成。
交互數據
傳統推薦系統通過捕捉用戶-物品記錄中的協同信號 [26] 來進行訓練,因此數據中的交互信息對訓練是必不可少的。此外,許多基于內容的模型 [43] 提取用戶和物品特征中的共現關系來進行推薦。因此,特征和交互數據是數據中的兩個必要組成部分。然而,數據面臨的兩個挑戰限制了傳統推薦系統的進一步發展:
推薦模型
隨著深度學習技術的廣泛應用,推薦模型遵循“嵌入-深度網絡”的模式。嵌入層將原始特征轉化為密集的表示 [88],而深度網絡則捕捉用戶的興趣 [84]。然而,它們也面臨一個獨特的挑戰:
LLMERS通過增強傳統推薦系統的基本組件,即交互數據和推薦模型,從而在服務過程中僅使用傳統的推薦系統模型。根據LLM在解決這些挑戰時的作用,我們將LLM增強推薦系統分為三大類,如圖1所示:
這類方法利用LLM的推理能力和世界知識為用戶或物品生成文本描述。這些描述作為額外的特征,補充推理和理解的知識,從而解決挑戰1。(第二部分)
為了解決數據稀疏性問題(即挑戰2),一些研究采用LLM生成新的用戶-物品交互數據。(第三部分)
LLM能夠從語義角度分析交互數據,因此一些研究嘗試利用LLM來輔助傳統的推薦模型,從而解決挑戰3。(第四部分) 為清晰起見,我們在圖2中根據分類法展示了所有相關的LLMERS論文。
摘要—人工智能(AI)通過計算能力的提升和海量數據集的增長迅速發展。然而,這一進展也加劇了對AI模型“黑箱”性質的解釋挑戰。為了解決這些問題,可解釋人工智能(XAI)應運而生,重點關注透明性和可解釋性,以增強人類對AI決策過程的理解和信任。在多模態數據融合和復雜推理場景中,多模態可解釋人工智能(MXAI)的提出將多種模態整合用于預測和解釋任務。同時,大型語言模型(LLMs)的出現推動了自然語言處理領域的顯著突破,但它們的復雜性進一步加劇了MXAI問題。為了深入了解MXAI方法的發展,并為構建更加透明、公平和可信的AI系統提供重要指導,我們從歷史的角度回顧了MXAI方法,并將其劃分為四個發展階段:傳統機器學習、深度學習、判別式基礎模型和生成式大型語言模型。我們還回顧了MXAI研究中使用的評估指標和數據集,最后討論了未來的挑戰和發展方向。與此綜述相關的項目已創建在 //github.com/ShilinSun/mxai_review。
關鍵詞—大型語言模型(LLMs)、多模態可解釋人工智能(MXAI)、歷史視角、生成式。
人工智能(AI)的進展對計算機科學產生了重大影響,如Transformer [1]、BLIP-2 [2] 和 ChatGPT [3] 在自然語言處理(NLP)、計算機視覺和多模態任務中表現出色,通過集成多種數據類型。這些相關技術的發展推動了具體應用的進步。例如,在自動駕駛中,系統需要整合來自不同傳感器的數據,包括視覺、雷達和激光雷達(LiDAR),以確保在復雜道路環境中的安全運行 [4]。類似地,健康助手需要具備透明性和可信度,以便醫生和患者都能輕松理解和驗證 [5]。理解這些模型如何結合和解釋不同模態對于提升模型可信度和用戶信任至關重要。此外,模型規模的不斷增大帶來了計算成本、可解釋性和公平性等挑戰,推動了可解釋人工智能(XAI)的需求 [6]。隨著包括生成式大型語言模型(LLMs)在內的模型變得越來越復雜,數據模態也更加多樣化,單一模態的XAI方法已無法滿足用戶需求。因此,多模態可解釋人工智能(MXAI)通過在模型的預測或解釋任務中利用多模態數據來解決這些挑戰,如圖1所示。我們根據數據處理順序將MXAI分為三種類型:數據可解釋性(預模型)、模型可解釋性(模型內)和事后可解釋性(模型后)。在多模態預測任務中,模型處理多個數據模態,如文本、圖像和音頻;在多模態解釋任務中,利用多種模態來解釋結果,從而提供更全面的最終輸出解釋。
為了回顧MXAI的歷史并預測其發展,我們首先將不同階段進行分類,并從歷史角度回顧了各種模型(如圖2所示)。在傳統機器學習時代(2000-2009年),有限的結構化數據的可用性促進了像決策樹這樣的可解釋模型的出現。在深度學習時代(2010-2016年),隨著大型標注數據集(如ImageNet [7])的出現以及計算能力的提升,復雜模型和可解釋性研究嶄露頭角,包括神經網絡核的可視化 [8]。在判別式基礎模型時代(2017-2021年),Transformer模型的出現,利用大規模文本數據和自監督學習,徹底改變了自然語言處理(NLP)。這一轉變引發了對注意力機制的解釋研究 [1],[9]–[11]。在生成式大型語言模型時代(2022-2024年),大量多模態數據的集成推動了生成式大型語言模型(LLMs)的發展,如ChatGPT [3],以及多模態融合技術。這些進展提供了全面的解釋,增強了模型的透明性和可信度。這一演變導致了對MXAI的關注,它解釋了處理多樣數據類型的模型 [6]。
然而,最近的XAI綜述通常忽視了歷史發展,主要集中在單模態方法上。例如,盡管[6]將MXAI方法按模態數、解釋階段和方法類型進行了分類,但忽略了LLMs的可解釋性技術。雖然Ali等人 [12] 提出了一個全面的四軸分類法,但缺少關于多模態和LLMs的總結。然而,像[13]、[14]和[15]這樣的綜述僅關注LLMs的可解釋性。我們的研究解決了這些不足,通過提供MXAI的歷史視角,分類了MXAI方法的四個時代(傳統機器學習、深度學習、判別式基礎模型和生成式大型語言模型),并將每個時代分為三個類別(數據、模型和事后可解釋性)。本文的主要創新貢獻總結如下:
這一時代的重點是通過判別模型(2017-2021年)奠定的基礎來推進生成任務。與前輩不同,這些模型,如GPT-4 [240]、BLIP-2 [2] 及其繼任者,通過生成連貫且語境相關的文本來增強可解釋性,為輸出提供自然語言解釋。這一進展彌合了人類理解和機器決策之間的鴻溝,使得與模型的互動更加細致,并為模型行為提供了更多的洞察。我們在表V中總結了相關工作。
本文將多模態可解釋人工智能(MXAI)方法按歷史發展分為四個時代:傳統機器學習、深度學習、判別基礎模型和生成式大型語言模型。我們從數據、模型和后驗可解釋性三個方面分析了MXAI的演變,并回顧了相關的評估指標和數據集。展望未來,主要挑戰包括可解釋性技術的規模化、平衡模型的準確性與可解釋性以及解決倫理問題。MXAI的持續進展對于確保AI系統的透明性、公正性和可信性至關重要。
摘要
語音合成(TTS),也稱為文本轉語音,是一項重要的研究領域,旨在從文本生成自然的語音。近年來,隨著工業需求的增加,TTS技術已從簡單的人類語音合成發展到可控語音生成。這包括對合成語音中各種屬性(如情感、韻律、音色和時長)的細粒度控制。此外,深度學習領域的進展,尤其是擴散模型和大語言模型,極大地提升了可控TTS的效果。本文全面綜述了可控TTS的研究進展,涵蓋了從基本控制技術到利用自然語言提示的方法,旨在為當前的研究狀態提供清晰的理解。我們探討了通用的可控TTS流程、面臨的挑戰、模型架構和控制策略,并提供了現有方法的全面分類。此外,我們還詳細總結了數據集和評估指標,并探討了可控TTS的應用和未來發展方向。據我們所知,本文是首次對新興的可控TTS方法進行全面綜述,既可以為學術研究人員提供有價值的資源,也可為行業從業者提供參考。
關鍵詞
文本轉語音、可控TTS、語音合成、TTS綜述、大語言模型、擴散模型
I. 引言
語音合成(TTS),也稱為文本轉語音,是一項長期發展的技術,旨在從文本生成類人語音[1][2],并廣泛應用于我們的日常生活中,如健康護理[3][4]、個人助手[5]、娛樂[6][7]和機器人[8][9]等領域。近年來,隨著大語言模型(LLM)驅動的聊天機器人(如ChatGPT[10]和Llama[11])的興起,TTS技術因其自然性和便捷性,成為了人機交互中備受關注的技術。與此同時,能夠對合成語音的屬性進行細粒度控制(如情感、韻律、音色和時長)已成為學術界和工業界的熱點研究方向,因其在多種應用中的廣泛潛力。 在過去的十年里,深度學習[12]取得了顯著進展,尤其是GPU等計算資源的指數級增長[13],促使TTS領域涌現出大量優秀的研究成果[14]–[17]。這些方法不僅能夠生成更高質量的語音[14],還能夠對生成的語音進行細粒度的控制[18]–[22]。此外,一些最新的研究開始嘗試在多模態輸入(如面部圖像[23][24]、卡通[7]和視頻[25])的支持下合成語音。隨著開源大語言模型(LLMs)[11][26]–[29]的快速發展,部分研究者提出了通過自然語言描述生成可控語音的新方法[30]–[32],開創了生成定制語音的新途徑。 此外,將語音合成與LLMs結合也成為近年來的熱門研究方向[33]–[35]。隨著TTS方法的不斷發展,研究者迫切需要對當前的研究趨勢,特別是可控TTS,進行全面的了解,以便在這一快速發展的領域中識別未來可能的研究方向。因此,迫切需要一篇關于TTS技術的最新綜述。盡管已有幾篇綜述涵蓋了基于參數的方法[36]–[41]和基于深度學習的TTS[42]–[48],但這些綜述大多忽視了TTS的可控性問題,且沒有覆蓋近年來的最新進展,如基于自然語言描述的TTS方法。 本文提供了一篇全面且深入的綜述,重點介紹現有及新興的TTS技術,特別是可控TTS方法。圖1展示了近年來可控TTS方法的發展,展示了其核心框架、特征表示和控制能力。本文的其余部分將簡要對比本綜述與先前的研究綜述,概述可控TTS技術的發展歷史,并從早期的里程碑到最新的先進技術,介紹可控TTS的研究進展。最后,我們介紹了本文的分類和組織結構。 A. 與現有綜述的比較
已有幾篇綜述論文回顧了TTS技術,涵蓋了從早期方法到最近的進展[36][37][40][49]。然而,本文是首次專門關注可控TTS。與以往的研究綜述相比,本文的主要區別如下: * 不同的范圍。Klatt等人[36]提供了關于共振峰、拼接和發音TTS方法的首個全面綜述,重點關注文本分析。進入2010年代初,Tabet等人[49]和King等人[40]探索了基于規則、拼接和HMM的方法。隨著深度學習的出現,許多基于神經網絡的TTS方法應運而生。Ning等人[43]和Tan等人[42]分別對基于神經網絡的聲學模型和聲碼器進行了詳細的綜述,Zhang等人[50]則介紹了基于擴散模型的TTS技術的首個綜述。然而,這些研究對TTS系統的可控性討論較少。為填補這一空白,本文首次從可控性的角度對TTS方法進行了全面綜述,深入分析了模型架構和合成語音的控制策略。 * 貼近當前需求。隨著硬件(如GPU)和人工智能技術(如變換器、LLMs、擴散模型)的快速發展,TTS技術對可控性需求的迫切性日益增強,尤其在電影制作、游戲、機器人和個人助手等行業中有廣泛應用。盡管這一需求日益增長,但現有的綜述未充分關注TTS技術中的控制方法。為填補這一空白,本文對當前的可控TTS方法及其面臨的挑戰進行了系統分析,并全面理解了該領域的研究現狀。 * 新見解與方向。本文通過全面分析可控TTS系統中的模型架構和控制方法,提出了新的見解。此外,我們深入探討了各種可控TTS任務中的挑戰,并探討了“我們距離實現完全可控的TTS技術有多遠?”這一問題,分析了當前TTS方法與工業需求之間的關系和差距。基于這些分析,我們確定了未來TTS技術研究的有前景的方向。
表I總結了代表性綜述和本文在主要關注點和發布時間上的比較。 B. 可控TTS的發展歷史
可控TTS旨在控制合成語音的各個方面,如音高、能量、速度/時長、韻律、音色、情感、性別或高層次風格。本小節簡要回顧了可控TTS從早期方法到近年來的最新進展的歷史。 * 早期方法。在深度神經網絡(DNNs)流行之前,可控TTS技術主要基于基于規則、拼接和統計的方法。這些方法能夠提供一定程度的定制和控制,盡管受限于底層模型和可用計算資源的局限性。
基于規則的TTS系統[51]–[54],如共振峰合成,是早期語音生成的主要方法之一。這些系統通過手工設計規則模擬語音生成過程,控制音高、時長和共振峰頻率等聲學參數,允許通過調整規則顯式地操控韻律和語音的音素細節。 1. 拼接式TTS[55]–[58],在1990年代末和2000年代初主導了TTS領域,通過將預錄音的語音片段(如音素或雙音素)拼接在一起合成語音[59]。這些方法通過拼接過程中調整音高、時長和音量來改變韻律,也可以通過選擇不同說話人的語音單元來實現有限的聲音定制。 1. 參數化方法,尤其是基于HMM的TTS[60]–[65],在2000年代末逐漸成為主流。這些系統通過建模語言特征和聲學參數之間的關系,為控制韻律、音高、語速和音色提供了更多靈活性。一些HMM系統還支持說話人適應[66][67]和語音轉換[68][69],在一定程度上實現了語音克隆。此外,一些方法還能夠有限地控制情感[60][70]–[72]。這些方法相比拼接式TTS占用更少的存儲空間,并且能提供更平滑的語音單元過渡。 * 基于神經網絡的合成。隨著深度學習的出現,基于神經網絡的TTS技術為該領域帶來了巨大的進步,使得語音合成更加靈活、自然和富有表現力。與傳統方法不同,基于神經網絡的TTS通過DNN建模輸入文本和語音之間的復雜關系,從而實現對各種語音特征的細粒度控制。早期的神經TTS系統如WaveNet[73]和Tacotron[74]為可控性奠定了基礎。
韻律控制:韻律特征如節奏和語調的控制對于生成富有表現力和語境適應的語音至關重要。基于神經網絡的TTS模型通過顯式條件化或學習的潛在表示來實現韻律控制[15][75]–[78]。 1. 說話人控制:通過說話人嵌入或適應技術,基于神經網絡的TTS在說話人控制方面也得到了顯著提升[79]–[82]。 1. 情感控制:情感可控的TTS[20][22][31][32][83]已經成為熱門研究話題,得益于DNN強大的建模能力,能夠合成具有特定情感色彩(如快樂、悲傷、憤怒或中性)的語音
在本節中,我們特別關注基于 LLM(大語言模型) 的語音合成方法,因為與其他基于神經網絡的TTS方法相比,LLM具有更強的上下文建模能力。LLM(如 GPT [97]、T5 [99] 和 PaLM [100])已經通過其生成連貫的、上下文感知的文本的能力,革新了各種 自然語言處理(NLP) 任務。近年來,LLM的應用已經擴展到 可控TTS技術 中 [17],[101]–[104]。例如,用戶可以通過描述語音的特征來合成目標語音,例如:“一個年輕女孩用快樂的語氣說‘我真的很喜歡,謝謝!’”,使得語音生成變得更加直觀和用戶友好。具體而言,LLM能夠在句子中檢測情感意圖(例如,“我很激動”→快樂,“這真不幸”→悲傷)。檢測到的情感會被編碼為TTS模型的輔助輸入,從而調節聲學特征,如韻律、音高和能量,使其與所表達的情感相匹配。通過利用LLM在理解和生成豐富上下文信息方面的能力,這些系統可以對語音的各種屬性(如韻律、情感、風格和說話人特征)實現更精細的控制 [31],[105],[106]。將LLM集成到TTS系統中,代表了一個重要的進步,使得語音合成變得更加動態和富有表現力。
本文首先對可控TTS技術進行了全面和系統的回顧,重點關注模型架構、控制方法和特征表示。為建立基礎理解,本綜述在第二節介紹了TTS管道。雖然本文的重點仍然是可控TTS,但第三節回顧了對該領域發展具有重要影響的經典的不可控TTS工作。第四節深入調查了可控TTS方法,分析了它們的模型架構和控制策略。第五節提供了數據集和評估指標的全面回顧。第六節對實現可控TTS系統所面臨的挑戰進行了深入分析,并討論了未來的研究方向。第七節探討了可控TTS技術的更廣泛影響,并確定了有前景的未來研究方向,最后在第八節作出結論。
摘要—持續學習(CL)旨在使機器學習模型能夠從新數據中不斷學習,同時在不遺忘已獲得知識的基礎上進行擴展。隨著機器學習模型從小規模到大規模預訓練架構的演變,以及從支持單一模態數據到支持多模態數據,多模態持續學習(MMCL)方法最近開始出現。MMCL的主要挑戰在于,它超越了簡單的單模態持續學習方法的疊加,因為這種直接的方法通常會產生不理想的效果。在本研究中,我們首次對MMCL進行了全面綜述。我們提供了MMCL的基本背景知識和設定,并提出了結構化的MMCL方法分類法。我們將現有的MMCL方法分為四類,即基于正則化、基于架構、基于重放和基于提示的方法,闡述它們的方法論并強調其關鍵創新。此外,為了激發該領域的進一步研究,我們總結了開放的MMCL數據集和基準,并討論了若干未來有前景的研究和發展方向。我們還創建了一個GitHub倉庫,用于索引相關的MMCL論文和開放資源,網址為://github.com/LucyDYu/Awesome-Multimodal-Continual-Learning。
關鍵詞—多模態持續學習,多模態數據,終身學習,增量學習
1 引言近年來,機器學習(ML)取得了顯著的進展,為解決各種實際問題作出了重要貢獻。在傳統設置中,大多數ML模型在所謂的“單一階段”范式下運行,即在靜態和單一數據集上進行訓練,并在獨立同分布(i.i.d.)假設下進行評估【1】。然而,這種“單一階段”范式無法賦予訓練模型適應新數據或執行新任務的能力,因此難以滿足開發能夠應對動態變化環境的智能體的需求。為解決這一問題,ML社區致力于發展持續學習(CL),也稱為終身學習或增量學習,它通過在新任務上逐步訓練模型并保留早期知識,無需對完整數據進行重新訓練【2-5】。 CL的主要挑戰是災難性遺忘:當任務按順序進行訓練時,針對新任務的訓練會嚴重影響之前已學習任務的性能【6, 7】,這是因為不受約束的微調會使參數遠離舊的最優狀態【8】。CL的目標是開發能夠持續獲取知識并保留已學習信息的學習系統。這一過程本質上模仿了生物大腦的認知靈活性,生物大腦在整個生命過程中不斷學習各種技能【9】。通過使模型能夠在不遺忘的情況下適應新任務,CL在資源和時間效率方面相較于傳統的模型全數據重新訓練方法具有顯著優勢。此外,由于存儲限制、隱私問題等原因,歷史訓練數據可能無法訪問,這使得全數據訓練變得不可行,進一步突顯了CL在記憶舊知識并從動態環境中獲取最新知識方面的效率和有效性。盡管CL取得了顯著進展,大多數研究仍集中在單一數據模態上,如視覺【10-13】、語言【14-16】、圖【17, 18】或音頻【19】。這種單模態的關注忽略了真實世界環境的多模態特性,這些環境本質上是復雜的,由多種數據模態組成而非單一模態。隨著多模態數據的快速增長,例如Meta和TikTok等平臺上圖像、文本和視頻數據的激增,開發能夠從多模態源中持續學習的AI系統變得至關重要,因此出現了多模態持續學習(MMCL)設置。這些MMCL系統需要有效地整合和處理多模態數據流【20, 21】,同時還要能夠保留先前獲取的知識。更重要的是,這種MMCL設置更接近于人類生物系統在應對現實世界復雜性時跨模態學習和整合信息的過程【22, 23】。MMCL的挑戰。盡管傳統單模態CL與MMCL之間存在聯系,MMCL的挑戰遠不止是簡單地將CL方法疊加在多模態數據上。事實證明,這種直接的嘗試通常會產生次優性能【31-33】。具體來說,如圖2所示,除CL中已有的災難性遺忘問題外,MMCL的多模態特性還引入了以下四個挑戰。這些挑戰不僅獨立存在,還可能加劇災難性遺忘問題:
多模態持續學習根據輸入模態的不同,多模態持續學習可以分為五種主要場景:
在多模態持續學習(MMCL)中,有多種方法學策略。本文將MMCL方法分為四大類:基于正則化、基于架構、基于重放以及基于提示的方法。圖5對這些方法進行了分類,并在后續的小節中詳細說明。表2總結了各類MMCL方法的具體特性,而圖6展示了代表性架構,主要以視覺和語言模態為主。對于其他模態的方法,在表3中進行了匯總。在正式介紹MMCL方法之前,我們將首先介紹一些經典的單模態持續學習(CL)方法,因為它們既是MMCL方法的前身,也在MMCL研究中被廣泛用作對比。
基于正則化的方法旨在通過對參數施加約束來減少災難性遺忘現象【8】。這類方法根據約束方式的不同,分為顯式正則化和隱式正則化兩種。下圖(圖6a)總結了顯式和隱式正則化方法的代表性架構。3.1.1 顯式正則化顯式正則化方法通過直接為參數賦予重要性權重來抑制模型的參數變化。它通過懲罰那些偏離先前最優狀態的參數,以減緩模型的遺忘。其關鍵思想是對模型的參數偏移施加顯式約束,以保護模型在先前任務中的知識。在這種方法中,常用的技術包括:
架構方法通過引入任務特定組件來減少不同任務之間的干擾,通常分為固定架構和動態架構兩種。
固定架構方法在整個任務序列中保持相同的模型結構,通過任務掩碼選擇性地激活或抑制特定參數,從而使各個任務使用不同的參數組合。這種方式通過分配任務特定的參數部分來減輕遺忘現象。單模態模型中,HAT(Hard Attention to the Task)通過學習接近于二值的注意力向量,在模型層次上選擇性激活或抑制參數。它通過掩碼來固定特定參數,以保留早期任務的知識。在多模態模型中,RATT(Recurrent Attention Task Transformer)使用固定架構進行圖像描述生成。它結合了卷積神經網絡(CNN)和長短時記憶網絡(LSTM),并通過注意力掩碼實現特定任務的激活,以便針對不同任務分配不同的模型層激活狀態。
動態架構方法則允許模型結構隨著任務的引入而動態擴展,通常通過添加新模塊來增加模型容量。與固定架構不同,動態架構可以在新任務到來時擴展新的任務特定模塊,因此性能不會受到初始容量的限制。在單模態模型中,進步網絡(Progressive Network)是一種早期的動態架構,它通過為每個新任務初始化一個新網絡來避免遺忘。這種方法使用橫向連接來支持特征共享和知識轉移。多模態模型中的動態架構方法則可以通過任務特定、模態特定等多種策略來決定如何擴展網絡結構。例如,MoE-Adapters4CL在多模態模型CLIP的基礎上為每個新任務添加模塊,減少了新任務對已有知識的干擾。此外,ODU和CMR-MFN都設計了模態融合模塊,以應對多模態數據中模態組合多變的特性。
重放方法使用一個記憶緩沖區來存儲歷史實例,以幫助在學習新任務時維護早期任務的知識。這些方法無需動態調整網絡架構,也不需約束參數自由度。基于獲取重放數據的不同方式,重放方法可以分為直接重放和偽重放兩種。
直接重放方法通過將舊任務中的少量樣本存儲在記憶緩沖區中,以在新任務訓練時進行重放。此類方法的關鍵在于如何選擇代表性樣本以充分利用有限的記憶空間。在多模態模型中,例如VQACL和SAMM采用隨機選擇策略直接重放多模態樣本。實驗表明,與單模態重放相比,多模態重放能顯著提升模型的穩定性和靈活性。此外,KDR通過在跨模態相似度矩陣上引入KD,以確保模型更新前后的交互一致性,從而進一步鞏固知識。
偽重放方法利用生成模型學習舊任務的數據分布,從而在當前階段生成偽造數據,避免了直接重放方法的存儲需求和隱私問題。例如,單模態模型中DGR(Deep Generative Replay)通過訓練生成對抗網絡(GAN)來生成數據樣本以進行重放。后續研究擴展了偽重放策略,包括在特征層面進行偽重放,以強化特征表示,減少遺忘現象。在多模態模型中,SGP通過保存場景圖和語言模型生成偽造數據以進行偽重放。此外,AID通過偽原型重放策略處理模態不平衡問題,從而提升分類器的區分能力。這些方法解決了多模態學習環境中數據類型多樣性和平衡性的問題。
基于提示的方法利用預訓練大模型,通過修改輸入而非調整模型結構來保留原始知識并學習新任務。此類方法減少了大規模微調的需求,并能夠更好地保留預訓練模型的零樣本能力。在多模態模型中,例如Fwd-Prompt和S-liPrompts分別采用共享提示和任務特定提示策略,增強了視覺-語言模型在跨模態信息融合中的表現。CPE-CLIP通過將視覺提示設計為語言提示的函數來連接多模態信息,使模型在新任務中具備更好的適應性。
本節對當前多模態持續學習(MMCL)領域的主要數據集和基準進行了綜述。MMCL中的大多數數據集都是從最初為非持續學習(CL)任務設計的知名數據集中改編而來,研究人員常常利用多個數據集或將單一數據集劃分為多個子集,以便在MMCL設置中模擬任務【39】。此外,也存在一些專門為MMCL構建的數據集,例如P9D【68】和UESTC-MMEA-CL【39】。表4匯總了涵蓋各種CL場景、模態和任務類型的MMCL基準。以下將具體介紹這些基準,若數據集和代碼為公開可訪問,將在相應位置標明。
這一部分總結了兩個專門為MMCL構建的數據集:
除了專門的數據集外,也有一些基準通過使用多個數據集來模擬MMCL任務。以下是一些此類基準的簡要介紹:
隨著多模態模型的快速發展,多模態持續學習(MMCL)已成為一個活躍且前景廣闊的研究課題。在本節中,我們提出了幾個值得進一步探索和研究的未來方向。
當前的MMCL研究中,多模態數據的數量和質量直接影響模型的性能。然而,由于不同模態的數據特性和收集難度,提升模態數量和質量仍面臨諸多挑戰:
MMCL中的模型往往依賴大規模預訓練模型,并在多個模態和任務上進行持續訓練,這對計算資源提出了更高要求。為提高資源利用效率,未來可以在以下幾個方面展開研究:
MMCL中的一個關鍵挑戰是如何在不忘舊任務的同時提升對新任務的零樣本適應能力及泛化性能:
在多模態環境下,模態數據的分布和數量可能存在不平衡,這會影響MMCL的表現。未來的研究可以關注以下方面:
隨著隱私和數據安全需求的增加,未來MMCL研究需要更好地應對這些問題:
結論
以上是未來研究方向的詳盡討論,為進一步發展多模態持續學習(MMCL)領域提供了切實可行的建議和探索路徑。通過提升模態數量與質量、提高計算資源效率、增強零樣本能力與泛化性能、應對模態失衡問題,以及加強隱私與數據安全的適應性,研究人員可以應對MMCL的挑戰,推動模型更好地適應現實環境的需求。這些方向的研究不僅能解決當前的技術難題,還將推動更為廣泛和深入的實際應用,從而實現更加智能化和多樣化的學習系統。
摘要——目前,大多數工業物聯網(IIoT)應用仍然依賴于基于卷積神經網絡(CNN)的神經網絡。盡管基于Transformer的大模型(LMs),包括語言、視覺和多模態模型,已經在AI生成內容(AIGC)中展示了令人印象深刻的能力,但它們在工業領域(如檢測、規劃和控制)中的應用仍然相對有限。在工業環境中部署預訓練的大模型往往面臨穩定性與可塑性之間的挑戰,這主要是由于任務的復雜性、數據的多樣性以及用戶需求的動態性。為了應對這些挑戰,預訓練與微調策略結合持續學習已被證明是一種有效的解決方案,使模型能夠適應動態需求,同時不斷優化其推理和決策能力。本文綜述了大模型在工業物聯網增強的通用工業智能(GII)中的集成,重點關注兩個關鍵領域:大模型賦能GII和GII環境下的大模型。前者側重于利用大模型為工業應用中的挑戰提供優化解決方案,而后者則研究在涉及工業設備、邊緣計算和云計算的協同場景中,持續優化大模型的學習和推理能力。本文為GII的未來發展提供了洞見,旨在建立一個全面的理論框架和研究方向,從而推動GII向更加通用和適應性強的未來發展。 關鍵詞——通用工業智能、大語言模型、持續學習、工業物聯網、邊緣計算。
工業5.0將網絡-物理-社會元素集成到制造業中,強調數字與物理系統的交互以及人機協作,通過互聯網有效地連接設備、物體和人[1]。隨著物聯網(IIoT)的快速發展[2]-[4]、通信技術[5], [6]、AI生成內容(AIGC)[7]、機器人和數字孿生技術[8]-[10],現代工業系統變得越來越復雜。這些系統不僅生成高頻的單模態數據,還包括文本、圖像、視頻、代碼和音頻等多模態數據類型。工業大數據可以用于創建數字化制造工作流程和工業流程,極大地推動了工業5.0和網絡-物理-社會系統中生產力、效率和效能的提升。 如圖1所示,數據集和模型構成了GII生態系統的基礎要素,推動了更高層次算法和應用的快速發展。這些應用包括智能控制系統、預測性維護[11]、故障診斷[12], [13]和異常檢測[14],這些都高度依賴于對IIoT數據的提取和分析。GII的成功特別依賴于其從這些IIoT數據集中高效學習和提取有價值特征的能力。基于Transformer的大模型(LMs),例如大語言模型(LLMs)[16]–[18]、視覺模型[19], [20]、時間序列模型[21]以及多模態模型[22], [23],由于其獨特優勢,受到廣泛關注。通過在大規模數據集上進行預訓練,這些擁有數十億到數萬億參數的模型積累了廣泛的知識,極大地推動了數據處理的自動化和多樣化,同時減少了對人類專業知識的依賴。
在工業領域,大模型的精度和可擴展性使其在提高工業流程的準確性方面非常有效。然而,在工業環境中部署預訓練大模型時,需要根據具體任務架構、動態數據分布和用戶偏好進行謹慎的適配。盡管大模型在多任務泛化、小樣本學習和推理方面具有優勢,但在這些環境中平衡穩定性和適應性仍然是一個顯著挑戰。受到大模型在自然語言處理(NLP)中成功的啟發,工業界越來越多地探索其在GII中的潛力。一種方法是從頭構建行業特定的基礎模型[24],但特定領域數據規模的限制通常阻礙了涌現能力的發展。另一種方法是通過大數據集上的預訓練,然后進行特定任務的微調,這已顯示出在構建穩健的工業模型方面的巨大潛力,顯著提高了各類任務的性能。這種方法有效地應對了特定領域數據匱乏的挑戰,同時加速了工業應用中先進能力的發展。
為工業任務調整大模型是一個重要的研究方向[25]。這些模型在跨任務泛化、零樣本/小樣本學習和推理能力方面的優勢,為解決知識遷移、數據稀缺性和解釋性問題提供了新的途徑。 ****持續大模型(CLMs)****在維持和發展這些工業模型的能力方面發揮了關鍵作用。CLMs在大規模數據集上進行預訓練,并由Transformer架構驅動,設計用于持續學習和適應,確保工業大模型在滿足GII不斷變化的需求時仍然保持相關性和有效性。
本文旨在建立一個全面的視角,并對IIoT增強的GII進行深入分析。它提出了將GII分為兩個主要類別的概念:
本文通過一個示意圖(圖2)進一步明確了這些類別的引入,幫助闡明了兩種方法之間的結構性差異和操作機制。
近年來,持續學習(CL)作為一個研究課題獲得了顯著關注,許多研究探討了其在設備健康管理[26]、機器人[27]和流數據[28]等領域的應用。在大模型的背景下,由于這些模型的規模巨大,頻繁的再訓練成本高昂,因此CL已被認為是至關重要的[29]。盡管CL的文獻廣泛,但我們的綜述獨特地關注了CL在IIoT增強的工業系統中的大模型的持續適應性——這是現有文獻中未被充分覆蓋的領域。本綜述首次為大模型在四個不同的IIoT工業場景中應用的CL方法提供了全面而系統的回顧。
如表I所示,本文通過以下幾個關鍵貢獻來區分自身:
新穎的分類體系:我們引入了一個新的GII理論框架。通過將大模型的應用分為兩個維度——“LMs for GII”和“LMs on GII”,本文不僅探討了如何利用大模型優化工業應用,還研究了這些應用如何反過來優化模型本身。這種雙向交互視角顯著豐富了現有文獻。
跨領域多模態集成:與大多數僅專注于特定類型大模型(如語言模型或視覺模型)的現有研究不同,本綜述涵蓋了大語言模型(LLMs)、視覺Transformer、多模態模型和時間序列模型。這種跨模態集成增強了復雜儀器和測量系統的設計、開發和評估,這些系統用于信號的生成、獲取、調理和處理。通過利用不同模型的獨特優勢,它為推進測量科學及其應用提供了更全面和深入的視角,從而更有效地應對復雜的工業挑戰。
持續學習的實際應用:本文強調了持續學習策略在IIoT增強的工業系統,特別是邊緣計算和云計算協同環境中的實際應用。這個重點確保了模型不僅能適應新數據和變化的條件,還能資源高效。通過減少計算需求和訓練成本,我們的方法解決了工業應用中的關鍵約束。
摘要——從演示中學習(Learning from Demonstrations),即通過數據學習機器人行為模型的領域,隨著深度生成模型的出現,正在越來越受到關注。盡管這一問題在“模仿學習”、“行為克隆”或“逆強化學習”等名稱下已經被研究了多年,但傳統方法依賴的模型往往難以有效捕捉復雜的數據分布,或者無法很好地擴展至大量演示數據。近年來,機器人學習社區對于使用深度生成模型來捕捉大數據集的復雜性表現出了越來越濃厚的興趣。在本綜述中,我們旨在提供對去年機器人領域中使用深度生成模型的進展的統一且全面的回顧。我們介紹了社區探索的不同類型的模型,如基于能量的模型、擴散模型、動作值圖、生成對抗網絡等。我們還展示了深度生成模型在不同應用中的使用情況,從抓取生成到軌跡生成或成本學習等。生成模型的一個重要元素是分布外的泛化能力。在我們的綜述中,我們回顧了社區為改善所學模型的泛化能力而做出的不同決策。最后,我們強調了研究中的挑戰,并提出了未來在機器人領域學習深度生成模型的一些研究方向。關鍵詞——機器人,生成模型,決策制定,控制,模仿學習,行為克隆,從演示中學習
I. 引言**
從演示中學習(Learning from Demonstration, LfD)[1], [2],也稱為模仿學習(Imitation Learning)[3], [4],是通過觀察和模仿一組專家演示來學習期望的機器人行為模型的領域**。基于場景的觀察和所需任務的條件,模型(通常稱為策略)被訓練生成與專家演示中行為相似的動作。根據任務的不同,這些動作可能代表期望的末端執行器姿態 [5], [6]、機器人軌跡 [7], [8] 或期望的場景安排 [9], [10] 等。LfD 包括幾種解決這一問題的方法。行為克隆(Behavioral Cloning, BC)方法 [1] 將條件生成模型擬合到基于觀察的動作上。盡管在序列決策問題中存在一些缺點(例如,錯誤累積導致的協變量偏移 [11]),但在實踐中,由于其穩定且高效的訓練算法,它已經展示了一些最為令人印象深刻的結果 [6], [12], [7], [13]。另一種方法是逆強化學習(Inverse Reinforcement Learning, IRL)[14], [15], [16] 或其變體 [17], [18], [19],結合了演示數據與環境中的試錯(即強化學習(Reinforcement Learning, RL)),生成的策略比 BC 更具魯棒性,但受到訓練算法穩定性較差的限制。與直接模仿演示動作的 BC 不同,IRL 側重于推斷演示行為所優化的潛在獎勵函數,并應用 RL 來推斷策略。IRL 的一個關鍵優勢在于它能夠僅通過觀察進行學習 [20], [21],而無需明確的演示動作信息。在 LfD 中,演示的固有特性帶來了重大挑戰。通常,收集的數據是次優的、噪聲較大的、基于高維觀察條件的,并且包含多種行為模式 [22], [23], [24]。這種多樣性可以在對給定物體的多種抓取方式、專家提供演示的偏好或專家之間的分歧中體現出來。數據的這些固有屬性促使研究人員尋找能夠恰當地捕捉其分布的模型。傳統上,在深度學習成為主流之前,LfD 方法通常使用高斯過程(Gaussian Process, GP)[25], [26]、隱馬爾可夫模型(Hidden Markov Model, HMM)[27], [28] 或高斯混合模型(Gaussian Mixture Models, GMM)[29] 來表示生成模型。然而,這些模型無法擴展至大數據集,也無法在圖像等高維上下文中表示條件分布。基于神經網絡的模型允許在圖像 [30], [31] 或文本 [32], [33] 等高維變量上進行條件設定,但它們通常被訓練為單峰模型。這些模型與收集的演示數據的多模式特性相沖突。這些模型無法捕捉數據中的固有多樣性和多模式,導致研究人員不得不將自己局限于較小的 [34] 或高度策劃的數據集,以確保單峰性,從而簡化建模過程。
近年來,深度生成模型(Deep Generative Models, DGM)在圖像 [35] 和文本生成 [36] 中的成功展示了其捕捉高度多模態數據分布的能力。近年來,這些表現力強的模型在機器人領域的模仿學習應用中引起了廣泛關注(見圖2)。例如,擴散模型(Diffusion Models, DM)[37], [35] 已被有效用于學習高維軌跡分布 [38], [7], [8];基于語言和圖像的策略使用類似GPT的模型來表示動作空間中的類別分布 [39];變分自編碼器(Variational Autoencoders, VAE)[40] 被應用于生成任意物體的六自由度(6-DoF)抓取姿態 [5]。本文統一且全面地回顧了機器人領域中為捕捉數據固有的多模態性而從演示中學習 DGM 的各種方法。盡管其中一些模型借鑒了其他機器學習領域的成果,如 DM,但我們也重點介紹了在機器人動作分布表示中特別有影響力的方法,如動作價值圖(Action Value Maps)[41], [42], [43]。本綜述主要關注使用離線數據的方法,即不收集額外的在線或交互數據,以及離線監督,即除了專家動作外不使用額外的監督。盡管在從視覺到文本生成的各個領域中,從離線數據集中學習 DGM 已被廣泛研究,但機器人領域有其固有的挑戰,需要謹慎的設計選擇。為了激發機器人應用中的具體設計選擇,我們將在 I-A 節中介紹從演示中學習策略的基本挑戰。我們將綜述分為六個部分(見圖1): 在第二部分中,我們將形式化問題并提供整個綜述中使用的術語。 在第三部分中,我們介紹了機器人領域中最常用的 DGM,展示了它們的固有屬性,簡要列出了應用這些方法的各種工作,并介紹了每種模型的訓練和采樣算法。 在第四部分中,我們展示了深度生成模型應用的不同類型,重點介紹了模型生成的數據類型以及考慮的條件變量類型。 在第五部分中,我們提出了一系列設計和算法歸納偏差,以提高從學習模型的數據分布中的泛化能力。我們如何保證在上下文觀察中生成有用的動作,而這些動作在演示中沒有出現?我們提出的選項包括生成模型的模塊化組合、從觀察中提取有用特征以及利用觀察與動作之間的對稱性。 最后,在第六部分中,我們強調了該領域當前的研究挑戰,并提出了未來的研究方向。
A. 從離線演示中學習的挑戰從離線演示中學習機器人策略面臨著若干挑戰。盡管其中許多挑戰(例如演示中的多模態)與其他研究領域(如圖像生成或文本生成)共享,但在機器人領域中,我們還需要考慮一些特有的挑戰。以下是從離線數據中學習機器人策略的主要挑戰。演示的多樣性。主要挑戰之一是演示本身的固有變化。不同的演示者可能具有不同的技能水平、偏好和完成相同任務的策略,導致數據集中包含廣泛的方法。單峰分布缺乏表達能力,無法捕捉演示中的這種變化,從而導致性能不佳。DGM 是解決這一挑戰的有前景的方法。通過捕捉復雜的多模態分布,這些模型可以學習表示演示中展現的不同策略和行為。異質的動作和狀態空間。與數據空間定義明確的計算機視覺不同,在機器人領域中,沒有單一的狀態-動作空間。機器人動作可以包括從力矩命令到期望的目標位置或期望的軌跡。此外,機器人行為可以在機器人的配置空間和任務空間中建模。這種多樣性導致了異質的數據集和用于學習機器人策略的異質解決方案。部分可觀察的演示。當人類執行演示時,其動作不僅基于可觀察到的元素,還受到任務知識和觀察歷史影響的內部狀態驅動。此外,人類可以整合環境中的信息,這些信息可能無法被機器人的傳感器輕易獲得或觀察到,例如人類視覺捕捉到的外圍細節但被機器人的攝像頭遺漏。這種不匹配往往導致演示僅部分代表任務的上下文,從而導致機器人學習的策略中出現歧義。關于部分可觀測性的問題已經在文獻中得到了廣泛研究 [44]。一種常見的實際方法是將觀察歷史編碼為上下文,而不是單一的觀察,允許模型提取內部狀態,從而減少歧義 [45]。時間依賴性和長視距規劃。機器人任務通常涉及序列決策,其中動作在時間上是相互關聯的。這種序列性可能導致錯誤的累積,將機器人引向訓練演示中未遇到的情況。為解決此問題,已有多種方法提出。一些工作建議學習短視距技能,然后與高層規劃器連接。另一方向是,許多工作 [38], [13] 提出學習生成動作軌跡而不是單步動作的策略,從而減少序列累積錯誤。此外,其他選項包括在生成演示時注入噪聲 [46] 或交互式擴展數據集 [11]。訓練和評估目標之間的不匹配。從離線演示中學習通常被定義為密度估計問題。學習的模型經過訓練以生成類似于訓練數據集的樣本。然而,學習的模型用于解決特定任務,最大化的度量是任務成功率。這種訓練目標與評估目標之間的不匹配可能導致在機器人用于解決特定任務時表現不佳。解決這一問題的一個可能方向是將行為克隆階段與后續強化學習微調相結合 [47]。分布偏移和泛化。從離線演示中學習的一個基本挑戰是演示數據與實際場景之間的分布偏移,在這些場景中,學習的策略被部署。演示通常在受控環境或特定上下文中收集,但機器人必須在演示未覆蓋的潛在新環境中運行。這種不匹配可能導致泛化失敗和性能下降。解決這一挑戰需要能夠從給定演示中推斷并適應新環境的技術。我們將在第五部分中探討提高機器人應用中泛化能力的不同方法。
B. 相關綜述
LfD 領域有著悠久的歷史,已有多篇綜述對此進行了探討。在基于深度學習的方法成為主流之前,已有幾篇綜述 [50], [51], [52], [53] 探討了模仿學習的基本問題。這些綜述回答了諸如我們應該如何獲取數據?我們應該學習什么模型?或我們應該如何學習策略?等問題。近年來,一些最新的研究 [54], [3], [55] 更新了基于深度學習模型在 LfD 問題中的應用的綜述。特別是 [3] 從算法的角度審視了模仿學習,使得不同算法的比較可以從信息論的角度進行。機器人學習社區的當前階段,隨著大規模機器人演示數據集的增加(無論是在模擬中還是在現實中),模仿學習方法的重要性日益增加,以及廉價機器人硬件的日益普及,當前適時提供一個涵蓋過去幾年研究進展并專注于該領域當前面臨挑戰(多模態性、泛化、異質數據集等)的綜述。最近,幾篇綜述 [56], [57] 探討了學習機器人基礎模型的問題,主要集中在將互聯網規模的視覺和語言基礎模型整合到機器人問題中。盡管將視覺-語言基礎模型應用于機器人問題具有潛力,但我們的綜述關注于不同的問題。本綜述的興趣在于探索如何直接從具體現體機器人的數據中學習策略(部分原因是大規模數據集的日益豐富 [24], [58]),而不是將視覺-語言模型適應于機器人。
摘要
遷移學習是指從源領域提取可遷移知識并將其重用到目標領域的行為,已成為人工智能領域的研究熱點。概率圖模型(PGMs)作為一種建模復雜系統的強大工具,具有處理不確定性的能力和良好的可解釋性。考慮到上述兩個研究領域的成功,將PGMs應用于遷移學習似乎是很自然的。然而,盡管在文獻中已經有一些優秀的遷移學習特異性PGMs,但PGMs在這一問題上的潛力仍然被嚴重低估。本文旨在通過以下幾個方面促進遷移學習的知識遷移模型的發展:1)考察遷移學習的知識遷移模型的試點研究,即分析和總結現有的專門設計的知識遷移機制;2)討論現有PGM成功應用于實際遷移問題的例子;3)利用PGM探討遷移學習的幾個潛在研究方向。
引言
遷移學習是從源領域中提取可遷移的知識,并在目標領域中重用該知識的行為,這是一種自然的人類現象,即使對于非常小的兒童(Brown & Kane, 1988)。形式定義如下(Pan & Yang, 2010):“給定源域DS = {XS, PS(X)}和目標域DT = {XT, PT (X)},遷移學習的目的是借助DS改進DT中的學習任務,其中X為特征空間,P(X)為數據分布。”當XS = XT時,為同質遷移學習;當XS= XT時,為異質遷移學習。需要注意的是,遷移學習可以被看作是前面提到的問題,也可以看作是解決這個問題的方法。一個經典的激勵例子是產品評論的跨領域(如電影和計算機領域) 情感預測: 1) 在電影領域有大量的標簽產品評論,因此可以訓練一個分類器,并應用于該領域的預測; 2)新計算機的評論標簽不足以訓練分類器進行進一步的情感預測; 3) 一個簡單的想法是直接來自電影領域的分類器應用到新電腦領域考慮兩個域之間的相似之處(例如,人們傾向于使用類似的詞語來表達他們的喜歡或不喜歡在不同的產品), 但它并不總是工作很可能導致負遷移(Weiss, Khoshgoftaar, & Wang, 2016). 因為它們在不同的上下文中存在差異(例如,在電影領域中,“觸摸我的心”是褒義詞,而在計算機領域中,“觸摸板”是中義詞)。如何結合源域和目標域提取可遷移知識是遷移學習的藝術。在文獻中,有幾個與遷移學習密切相關的概念誤導了讀者,如樣本選擇偏差、協變量轉移、類別不平衡、領域適應和多任務學習。(Pan & Yang, 2010)的研究試圖根據源域和目標域的設置來區分和組織它們,例如目標域中是否有標記數據。本文并沒有明確區分它們,但我們認為它們都是遷移學習。對這些概念及其區別的進一步討論可以在(Pan & Yang, 2010;Weiss et al., 2016)。識別、建模和利用兩個領域之間可遷移的知識的能力不僅提高了具體現實問題的性能,而且在促進機器人在沒有任何人類干預的情況下的自學習(像人類)方面邁出了重要的一步。想象一下這樣的場景:一個智能機器人面臨一個自己沒有知識的新問題,它向其他類似領域的機器人尋求幫助,并向他們學習,問題就解決了。因此,我們認為遷移學習不僅在統計機器學習領域,而且在機器人甚至一般人工智能領域都有很好的前景。
概率圖模型(PGM) (Wainwright, Jordan等,2008;Koller & Friedman, 2009)是統計機器學習的一個重要分支,它是一個豐富的框架,用于通過概率分布或隨機過程來建模(表達)來自領域的有限或無限個(可觀察或潛在)變量之間的復雜交互作用。它的名字來自于它的結構——一個以隨機變量為節點,以概率相關性為邊的圖,如圖1所示。根據節點/變量之間的邊緣類型(即有向或無向),概率圖模型分為有向和無向兩類。例如,隱馬爾可夫模型(Rabiner, 1989)是一種有向圖模型; 條件隨機場(Lafferty, McCallum, & Pereira, 2001)是無向圖模型的一個例子。將概率圖模型應用于目標任務包括以下兩個步驟: 1)模型設計和 2)模型推理。給定一個任務,第一步是分析問題的本質,然后設計一些變量及其關系來捕捉這種本質。換句話說,這一步是設計PGM的圖結構,該結構應共同考慮觀測數據和目標任務的附加知識。請注意,這個步驟沒有確切的過程,因為它嚴重依賴于處理同一問題的不同人員的視圖/理解。例如,在Latent Dirichlet Allocation模型(Blei, Ng, & Jordan, 2003)中,文檔由滿足Dirichlet或多項分布的隨機變量建模,變量之間通過Dirichlet-多項關系連接;在Gamma-Poisson模型(Ogura, Amano, & Kondo, 2013)中,文檔由滿足Gamma或Poisson分布的隨機變量建模,變量之間通過Gamma-Poisson關系連接。在不考慮具體任務的情況下,討論優點和缺點通常是困難和毫無意義的。PGM的輸出是給定觀測數據的圖模型定義的感興趣的邊際或關節后驗分布。另外,從第一步開始的PGM實際上是一組模型,因為所設計的概率分布通常帶有未知的參數,不同的參數設置會導致不同的模型。有了觀測數據(圖模型中的一些變量/節點的值是已知的),第二步是推斷潛在變量的后驗分布,并估計模型參數。對于一些稀疏圖,有一個精確的算法來學習PGM: 結點樹算法(Paskin & Lawrence, 2003; Wainwright et al., 2008)。但該算法不適用于任務復雜的復雜圖模型。因此,一些近似算法被發展來解決這個問題:期望最大化(Dempster, Laird, & Rubin, 1977),拉普拉斯近似,期望傳播(Minka, 2001),蒙特卡洛馬爾可夫鏈(Neal, 1993),變分推理(Blei, Kucukelbir, & McAuliffe, 2017)。此外,設計的變量之間的概率相關性也可能不是固定的,而是從數據中學習的(所謂結構學習)。一個例子是貝葉斯網絡,其中的網絡結構(即變量之間的依賴關系)可以從數據中學習。由于其強大的建模能力和堅實的理論基礎,概率圖模型受到了分子生物學(Friedman, 2004)、文本挖掘(Blei et al., 2003)、自然語言處理(Sultan, Boyd-Graber, & Sumner, 2016) 和 計算機視覺(Gupta, Phung, & Venkatesh, 2012) 等多個領域研究者的關注。
與機器學習中的其他模型(如支持向量機)相比,概率圖模型具有以下優點,這些優點可能有利于遷移學習: 1) 處理不確定性。不確定性幾乎出現在任何現實世界的問題中,當然也出現在他們的觀察(數據)中。例如,人們在編寫關于特定主題的文檔時可能會使用不同的詞匯,所以我們在構建模型以揭示隱藏的主題時需要考慮這種不確定性。PGMs能夠借助概率分布或隨機過程很好地處理(模型)這種不確定性; 2) 處理缺失數據。丟失數據的一個典型例子是來自推薦系統,用戶只對有限數量的項目進行評級,因此對其他項目的評級也會丟失。PGM可以通過潛在變量設計很好地處理這一問題(Mohan, Pearl, & Tian, 2013); 3) 可解釋性。PGM由定義的概率分布(或隨機過程)組成,因此人類專家可以評估其語義和屬性,甚至將他們的知識納入模型。通過PGM的結構,人們可以很容易地理解問題和領域; 4) 泛化能力。定向PGMs(也稱為生成模型)具有很好的泛化能力,可以比較鑒別模型,特別是在數據數量有限的情況下(Ng & Jordan, 2002)。盡管在文獻中已經發表了一些關于遷移學習的優秀研究,如: 綜合研究(Pan & Yang, 2010;Weiss et al., 2016),應用,如強化學習(Taylor & Stone, 2009),協同過濾(Li, 2011),視覺分類(Shao, Zhu, & Li, 2015),人臉和物體識別(Patel, Gopalan, Li, & Chellappa, 2015),語音和語言處理(Wang & Zheng, 2015),活動識別(Cook, Feuz, & Krishnan, 2013),和方法論,如計算智能(Lu, Behbood, Hao, Zuo, Xue, & Zhang, 2015),在使用PGMs進行遷移學習方面沒有一個具體的工作。本文綜述了該領域的主要研究成果,總結了已有的遷移研究的基本方法,為今后在該領域的進一步研究奠定了基礎。本文對遷移學習領域的研究人員進行了綜述,并對遷移學習方法的應用進行了推廣。本文還綜述了已有的遷移學習理論在遷移學習中的成功應用,并促進了遷移學習理論的發展。本文假設讀者已經具備遷移學習的基本知識。
本文的其余部分結構如下。第2節討論了現有的最先進的方法使用的概率圖模型遷移學習。第3節介紹了現實世界中使用概率圖模型解決的遷移學習問題。最后,第四部分對本文進行了總結,并提出了進一步研究可能面臨的挑戰。