亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

機器學習近期的實質性進展主要源于序列模型的突破,這些模型構成了在科學應用中取得廣泛成功的深度學習模型的骨干。然而,現有的方法需要對不同任務、模態和能力進行廣泛的專門化;存在計算效率瓶頸;并且在對更復雜的序列數據建模時,例如涉及長期依賴性時,會遇到困難。因此,繼續開發用于建模一般序列的原則性和實用的方法仍然至關重要。這篇論文開發了一種使用狀態空間模型進行深度序列建模的新方法,這種方法理論上有根據,計算效率高,并在各種數據模態和應用中取得了強大的結果。首先,我們介紹了一類具有眾多表示和屬性的模型,這些模型概括了標準深度序列模型(如循環神經網絡和卷積神經網絡)的優點。然而,我們發現這些模型的計算可能具有挑戰性,并開發了新的結構化狀態空間類別,這些狀態空間在現代硬件上非常快,無論是在擴展到長序列還是在諸如自回歸推斷等其他設置中。最后,我們提出了一個新的數學框架,用于增量建模連續信號,可以與狀態空間模型結合,賦予它們原則性的狀態表示,并提高它們對長距離依賴性的建模能力。總的來說,這新的方法類別為機器學習模型提供了有效和多功能的構建塊,特別是針對大規模的通用序列數據的處理。

深度學習方法在機器學習和人工智能領域取得了顯著進步,在科學和工業應用中獲得了廣泛的成功。序列模型是核心類別的模型,它們是作用于任意輸入序列的參數化映射。這些模型可以應用于各種復雜的序列數據處理任務,包括自然語言理解、語音和音頻、時間序列分析,甚至可以轉化為序列的間接模態,如圖像 [194, 148, 18, 94, 51]。

付費5元查看完整內容

相關內容

 (StanfordUniversity)位于加利福尼亞州,臨近舊金山,占地35平方公里,是美國面積第二大的大學。它被公認為世界上最杰出的大學之一,相比美國東部的常春藤盟校,特別是哈佛大學、耶魯大學,斯坦福大學雖然歷史較短,但無論是學術水準還是其他方面都能與常春藤名校相抗衡。斯坦福大學企業管理研究所和法學院在美國是數一數二的,美國最高法院的9個大法官,有6個是從斯坦福大學的法學院畢業的。

最近機器學習領域取得了重大的進展,其中序列模型是深度學習模型的核心,這些模型在科學應用中取得了廣泛的成功。然而,現有的方法需要針對不同任務、模態和能力進行大量的專門化,存在計算效率瓶頸,并且在建模更復雜的序列數據(例如涉及長依賴性的情況)時存在困難。因此,繼續開發有原則和實用性的建模通用序列的方法仍然具有基本重要性。本論文提出了一種使用狀態空間模型進行深度序列建模的新方法,該方法具有理論基礎、計算效率高,并在各種數據模態和應用中取得了強大的結果。首先,我們引入了一類具有多種表示和屬性的模型,它們綜合了標準深度序列模型(如循環神經網絡和卷積神經網絡)的優勢。然而,我們表明計算這些模型可能具有挑戰性,并且開發了一類在現代硬件上非常快速的結構化狀態空間,無論是在長序列的擴展上還是在其他設置(如自回歸推斷)上。最后,我們提出了一種新穎的數學框架,用于逐步建模連續信號,它可以與狀態空間模型相結合,賦予它們具有原則性的狀態表示,并提高其對長程依賴關系的建模能力。總的來說,這種新的方法類為機器學習模型提供了有效且多功能的構建模塊,特別是在大規模處理通用序列數據方面具有重要意義。

付費5元查看完整內容

新興的深度學習應用需要前所未有的計算和內存容量。為了加速這些應用,數據流加速器等新型處理系統努力利用深度學習模型中的多個并行維度,例如張量和管道并行。盡管這些系統在充分利用時提供了超高的性能,但編譯深度學習應用程序來利用它們的計算能力仍然是一個具有挑戰性的問題。隨著領域特定編程語言、加速器設計和機器學習方面的最新進展,我們現在有潛力通過算法、軟件和硬件協同設計,更好地滿足在數據流加速器上訓練和評估大型深度學習應用程序的需求。

在本論文中,我提出了高效深度學習優化和編程框架的設計和開發。我提出了兩個框架:SpatialRNN用于在空間加速器上加速循環神經網絡語言模型,Sigma用于使用可重構數據流加速器表達和加速高數據重用深度學習內核。我們使用Sigma進行的端到端評估表明,在Nvidia V100 GPU加速器上,包括金融應用程序、傳統機器學習、語言建模和計算機視覺任務在內的內核加速了5.4倍。

深度學習模型[47]是現代人工智能應用的基本構建模塊。這些模型可以從大量數據中學習抽象表示,使它們在數據豐富的領域無處不在:在大量在線對話數據上訓練的ChatGPT[1]可以生成涵蓋所有研究領域的專家建議。同樣,穩定擴散[64]在58.5億圖像-文本對的互聯網規模數據集上訓練[68],已經證明了自動化藝術品創作的人類水平的質量。在深度學習巨大成功的表象之下,隱藏著真正的強大力量:龐大的處理系統。ChatGPT和Stable Diffusion規模的模型需要數十萬個GPU運行數周才能從訓練數據中學習抽象表示,這需要花費數百萬美元。總的來說,深度學習模型的成功在很大程度上取決于處理大量數據和大規模執行計算的能力。

許多人認為,處理系統需要更多的計算資源來更好地促進這些模型的發展。然而,在實踐中,大多數深度學習應用程序都受到內存帶寬的限制,而不是計算能力。深度學習模型使用數據流圖表示,其中一個節點表示一個張量或一個算子,一條邊表示節點之間的數據流。由于大張量操作,邊之間的數據流可能超過千兆字節。在現代處理系統中,這些數據的移動通常要比實際計算的時間長得多。因此,針對深度學習模型的優化技術必須專注于有效地管理數據流。然后,我總結了本論文每一章的重點。最后,討論了前人的研究項目與本文的關系。

付費5元查看完整內容

深度學習的發展導致了在各種應用領域的各種任務上的顯著性能提升,這些應用領域包括計算機視覺、自然語言處理、強化學習、生成模型,以及最近從圖結構數據中進行的關系學習。這一成功的主要原因是計算能力的提高,這允許深度和高度參數化的神經網絡架構,這些架構可以從原始數據中學習復雜的特征轉換。然而,深度神經網絡的高表示能力往往是以高模型復雜度為代價的,這指的是高參數化,以及與深度學習相關的內存和計算負擔。**在本文中,我依靠參數有效的神經算子,對數據的適當建模假設和網絡結構的歸納偏差,在幾個應用領域提出更簡單的神經網絡模型。**對于我工作的每個應用領域,我使用這些效率原則的組合來設計新穎的方法。首先,在醫學圖像處理的背景下,我觀察到空間對齊的神經圖像比自然圖像表現出更少的自由度,這證明使用低容量卷積算子是合理的。我通過應用參數高效的卷積變體來實現這一點。我展示了早期阿爾茨海默病預測的最先進結果,同時使用的參數減少了多達125倍,乘累加操作減少了17倍以上。對于設計用于識別受試者亞型的神經圖像的無監督方法也得出了類似的結論。其次,我著手緩解從零開始訓練參數高效的深度模型的挑戰。這可以減少在資源受限的"邊緣"設備上訓練深度模型的不可行性。所提方法基于一個簡化的網絡結構假設,即參數無關性,允許在組合多臂匪徒的背景下建模問題。該方法可以動態地,即在訓練期間,在遵循預定義的內存使用預算的同時,在超參數化模型中識別高性能緊湊的子網絡。這是通過將顯著性指標與每個神經元相關聯來實現的,然后用于驅動參數激活,類似于門控機制,同時學習參數。因此,深度神經網絡訓練和推理過程中的計算和內存負擔都顯著減少。最后,提出一種深度概率模型,用于學習動態圖中的無監督節點和社區嵌入。基于網絡固有的社團結構,引入了關于邊形成機制的結構歸納偏差。此外,我還假設節點和社區都是平滑的時間演化,其靈感來自于數據中缺乏破壞性事件。本文提出一種該方法的參數高效實現,在各種動態預測任務上優于最先進的圖卷積網絡。

付費5元查看完整內容

機器學習在過去十年取得了重大進展。其最成功的范式是深度神經網絡,由連續表示層組成,其參數通過梯度下降在大規模數據集上進行優化。

深度神經網絡在許多任務上取得了卓越的性能,如物體識別、語言理解和自動駕駛。然而,他們仍然在推理任務中掙扎,這些任務通常需要操作符號并將多個步驟組合起來,例如,求解數學方程或編寫計算機程序。在這篇論文中,我們的目標是彌合這一差距,并教機器以精確、系統、可解釋和魯棒的方式進行推理,以應對現實環境中的模糊性。**本文采用神經符號方法,結合機器學習和符號推理的互補優勢。符號推理具有精確性和系統性。**但它已被限制在可嚴格形式化的領域。相比之下,主要的機器學習方法很靈活,但眾所周知難以解釋,需要大量數據,并且無法在訓練分布之外進行泛化。集成兩種方法的優勢對于構建具有精確和系統泛化能力的靈活推理機至關重要。具體而言,本文從兩個角度研究了神經符號推理。首先,將機器學習應用于與符號推理相關的任務,如自動定理證明(第2章)。其次,將符號推理啟發的歸納偏差引入機器學習模型,以提高其可解釋性、泛化性和數據效率(第3章和第4章)。結果強調了(1)神經符號模型架構,(2)在適當的抽象水平上進行推理,以及(3)明確的、推理的組合表示,如符號證明。 //dataspace.princeton.edu/handle/88435/dsp015q47rr958

付費5元查看完整內容

在過去的幾十年里,機器學習在眾多人工智能應用中取得了長足的進步。然而,它的成功主要依賴于在一個封閉的環境中使用大量的離線數據訓練模型,然后在類似的測試環境中對它們進行評估。這意味著大多數機器學習模型無法在很少的觀察下快速適應新環境并在線學習新知識。相比之下,我們的人類大腦可以從在線感官輸入流中學習新的表示、概念和技能。**本文旨在使具有幾個核心能力的機器能夠在開放世界中學習新概念,而無需訪問大量精心策劃的標記數據。**具體來說,它解決了幾個關鍵問題,如使用有限的標記數據、增量數據、無標記數據以及不平衡和噪聲數據進行學習。本文提出的算法可以自然地與任何深度神經網絡相結合,并且與網絡架構無關。它們可以為各種開放世界條件提供更大的靈活性和魯棒性,使基于學習的方法適合部署在一般的基于智能體的智能系統中。

1.引言

**機器學習是人工智能領域的核心課題之一。由于許多智能行為不能簡單地由標準程序定義,而不是依靠人工設計的規則,本文使用機器學習來獲得函數逼近,給定許多輸入和輸出觀測。**今天,在機器學習的幫助下,我們的計算機可以識別我們的聲音和筆跡,記住我們的臉,標記我們的照片,翻譯不同的語言,在下棋和圍棋中擊敗我們,并在道路上安全駕駛汽車。就像阿蘭·圖靈在20世紀50年代設想的那樣,今天的計算機使用機器學習來“模擬”兒童的思維,這是一張逐漸充滿各種各樣的知識和表示的白紙。然而,機器的學習過程與兒童的學習過程仍有很大的差距。也許機器學習和人類學習之間最顯著的區別之一是能夠學習自然世界中稀缺數據的任務。如今的機器學習往往依賴于在一個封閉的世界環境中訓練模型,并在大量經過整理的數據中進行評估,然后在類似或相同的測試環境中進行評估。這意味著,與人類不同,標準的機器學習算法無法在很少的觀察下快速適應新環境并在線學習新知識。在本文中,我們將這種期望的能力稱為開放世界學習。 我們如何彌合人類和機器之間的這種明顯差距?我的論文旨在尋求解決方案,使機器能夠在一個開放的世界中學習新概念,而不需要獲取大量的策劃標簽。具體來說,它解決了開放世界學習框架下的幾個關鍵問題,如使用有限的標記數據、增量數據、無標記數據、不平衡和噪聲數據、在線和流數據進行學習,所有這些都是今天典型的機器學習管道中沒有考慮的。這些問題的最終解決方案將對我們所有人產生深遠的影響。首先,它將允許未來的智能體在飛行中學習:你未來的家庭機器人將適應你的房子,識別新家具,并學習使用新設備;你的增強現實眼鏡將通過你對世界的視角來學習,這些視角是你過去從未經歷過的;您的個人AI助理將適應您的偏好,并在與您的對話中學習新技能。此外,它將在許多工業應用中節省數百萬小時的工程、標簽和數據管理工作。最后,通過將我們的學習過程投射到計算框架中,這也將是探索理解人類智能的一個里程碑。

本文概述

**本文提出的貢獻,使機器能夠用很少的標記示例獲得新概念,并使它們對許多自然主義和開放世界條件更魯棒。**在過去,有幾種機器學習范式,如小樣本學習、持續學習、自監督學習等,它們都是由使機器學習在開放世界中更加靈活和自適應的大愿景所驅動的。第二章概述了這些課題的背景文獻。具體來說,本文首先討論了各種學習范式,這些范式鼓勵在與訓練不同的環境中進行測試時的學習,例如小樣本學習和持續學習,然后討論了另一個相關研究的思路,旨在從無標簽的示例中學習,例如自監督學習。 然而,這些學習范式通常只專注于一個特定的屬性,如域偏移量或標記數據點的數量。有時,這些性質是正交的,它們的解可以組合在一起,但通常提出的解決方案依賴于一些額外的不現實的假設。例如,標準的半監督學習利用未標記的數據來提高學習模型的質量;然而,它假設未標記的數據與標記的數據來自相同的分布,并且也屬于預定義的類別之一。在另一個例子中,標準的少樣本學習旨在用很少的數據點來學習新類別,但它假設數據點平均分布于在訓練期間從未見過的幾個新類別。或者,類不平衡問題通常假設類標簽是正確的,因此高訓練成本意味著數據點來自少數類。在這些示例中,假設學習環境的其他屬性的解決方案在同時存在多個問題的開放世界中部署時可能會崩潰。因此,本文的核心主題是尋求新的解決方案,以同時解決開放世界的多種特性,如有限的標記數據學習、輸出空間的增量增長、無標記、不平衡和有噪聲的數據。為了實現這一目標,我們不僅需要開發新的學習算法,還需要重新思考定義問題的學習范式。因此,論文的一部分,如第4章和第6章的部分,也旨在定義具有額外自然屬性的新的學習范式或基準。

**用有限的標記數據進行學習的文獻被廣泛稱為少樣本學習。然而,標準的少樣本學習在測試時只處理少量的新類。**在第3章中,我們關注的是增量少樣本學習的問題,模型需要識別訓練時多次出現的舊類別和測試時剛剛引入的新類別。令人驚訝的是,許多只專注于解決新類別的經典少樣本學習方法,實際上在處理結合新舊類別的更現實問題時受到了影響,可能是因為新舊類別的表示彼此不兼容。與直接使用新類樣本的某些特征向量作為分類器權重的傳統方法不同,本文提出的方法是基于連續優化的,通過平衡新舊類帶來的目標來求解權重,并在測試時達到更好的優化解。在整個增量學習新類別的過程中,現實世界的智能體通常會遇到更多的未標記樣本。在第4章中,我們又向前邁進了一步,將未標記數據引入到小樣本學習問題中。本文提出一種半監督少樣本學習的新學習范式,除了在每個學習片段中標記的數據點很少的約束外,還考慮未標記的樣本。本文工作是第一個同時解決半監督學習和少樣本學習的工作。它不僅減少了訓練和測試任務中對標記數據量的依賴,而且解決了干擾因素的問題,即不屬于任何已知類別的類別,因為在經典的半監督學習中不考慮這一問題。本文提出新的少樣本學習模型,可以規避分干擾類的影響,同時仍然設法利用來自未標記數據的有用信息。

**盡管小樣本學習取得了廣泛的成功,但情節通常是從精心策劃的數據集中采樣,而不是從自然世界的噪聲長尾分布中采樣。**我們在第4章中介紹的干擾物例子也可以被認為是一種噪聲訓練數據。在第5章中,我們將研究在標準機器學習環境下的不平衡和噪聲類標簽學習問題。雖然這兩個問題在自然學習環境中普遍發生,但傳統上,它們被分開研究,采用相互矛盾的補救方法。為了解決這一沖突,本文提出了一種數據驅動的示例權重機制,可以在統一的框架下直接應用于這兩個問題。該算法利用干凈和平衡的驗證集來校準訓練樣本權重。該模型還強調了一種同時聯合更新內層和外層循環參數的高效學習方法。少樣本學習通常伴隨著僵化的情景設置,這使得對新概念的持續增量獲取進行建模變得不自然。第6章提出了一種新的在線情境化小樣本學習范式。雖然我們在第3章中研究了新舊類別的組合,但之前的方法主要關注情節的概念,但知識從未隨著時間順序和增量增長。雖然已經有一些努力使這些情節更有順序,就像設置增量類學習一樣,但訓練和測試階段的分離仍然使評估變得繁重。現實世界的智能體不依賴偶發的停止,而是執行在線持續學習,在序列的每個時間步中產生一些輸出預測,通過自上而下的上下文信息流進行調制。新范式包含了許多自然主義屬性,如在線、增量、上下文化、少樣本和半監督,還開發了一個基于室內家庭圖像的新基準,模仿現實世界智能體的視覺輸入流。提出了一種新的模型——上下文原型記憶(context Prototypical Memory, CPM),成功地解決了在有限標記數據下的在線上下文類學習問題。

最后,在第7章中,我們研究了在不使用任何類別標簽的情況下,通過在線視覺輸入流動態學習表示和類別。在前幾章中,學習仍然主要由帶標簽的示例驅動:例如,在第6章中,只有當環境告訴智能體它是一個新類時,新的類別簇才會創建。在本章中,我們將介紹一種算法,該算法允許智能體同時從未標記的數據流中學習表示和類別。這可以被視為發展過程中的一個前階段,因為智能體可以首先通過在沒有標記數據的情況下學習表示和類別來探索環境,然后在一些示例的監督下進行。所提出的模型,在線無監督原型網絡,將用于概念學習的原型網絡與基于聚類的自監督表示學習相結合,并與僅使用在線數據流進行訓練的最先進的自監督視覺表示學習方法相比較。此外,該算法對不均衡分布也具有較強的魯棒性。

目錄內容:

付費5元查看完整內容

模型必須能夠自我調整,以適應新環境。深度網絡在過去十年取得了巨大成功,特別是當訓練和測試數據來自相同的分布時。不幸的是,當訓練(源)與測試(目標)數據不同時,性能會受到影響,這種情況稱為域移位。模型需要自我更新以應對這些意外的自然干擾和對抗性擾動,如天氣變化、傳感器退化、對抗性攻擊等。如果我們有一些標記的目標數據,可以使用一些遷移學習方法,如微調和少樣本學習,以有監督的方式優化模型。然而,對目標標簽的要求對于大多數現實場景是不實際的。**本文專注于無監督學習方法,以將模型泛化到目標域。

本文研究了完全測試時自適應的設置,在不獲取目標標簽和源數據的情況下,將模型更新到不可控的目標數據分布。換句話說,模型在這個設置中只有它的參數和未標記的目標數據。其核心思想是利用測試時間優化目標,熵最小化,作為可學習模型的反饋機制,在測試時間內關閉循環。我們通過在線或離線的方式優化模型,以測量輸出熵的置信度。這種簡單有效的方法可以降低自然破壞和對抗性擾動圖像分類的泛化誤差。此外,語義分割模型的自適應特性可用于處理場景理解的動態尺度推理。通過對比學習和擴散模型,我們可以學習目標域特征并生成源風格的圖像,進一步提高動態環境下的識別性能。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-229.html

付費5元查看完整內容

近年來,深度學習已經將自己定位為機器學習最有前途的方向之一。然而,深度神經網絡在不確定性估計、模型選擇、先驗知識的整合等方面存在許多不足。幸運的是,所有這些問題都可以在貝葉斯深度學習框架內克服,使用貝葉斯神經網絡、變分自編碼器或深度神經網絡高斯過程等模型。不幸的是,這需要使用近似推理過程和先驗分布的規范。在這篇論文中,我們展示了這些模型中先驗規范不僅僅是一個麻煩,而是一個寶貴的機會,可以將領域知識和歸納偏見加入到學習算法中,從而提升全新應用的性能。為此,我們對相關文獻進行了全面的回顧,并進一步貢獻了不同的原創研究成果。

具體地說,我們證明了變分自編碼器中的高斯過程先驗可以改進時間序列的表示學習,并允許對缺失數據進行有效的插補,同時還可以提供校準的不確定性估計。我們還表明,通過使用變分高斯-馬爾可夫過程,這是可能的,在沒有顯著的額外計算成本。此外,我們表明,在變分自編碼器中使用自組織映射作為結構歸納偏差,可以提高學習表示的可解釋性,并使有效的潛在聚類。這些聚類表示可以作為潛在時間序列模型的輸入,從而準確地預測未來的狀態。在貝葉斯神經網絡中,我們證明了常用的各向同性高斯先驗不僅會導致次優性能,而且在某些情況下還會產生所謂的冷后驗效應,即經過緩和的后驗比真正的貝葉斯后驗表現更好。相反,我們提出了具有重尾性和空間相關性的備選先驗,可以提高性能,緩解冷后驗效應。最后,當沒有先驗知識可用時,我們表明先驗分布可以在元學習環境中從相關任務中學習。在深度神經網絡高斯過程的情況下,我們表明元學習的均值函數和核函數的先驗改進預測性能和不確定性估計。

我們希望本文將為貝葉斯深度學習框架奠定基礎,在該框架中,先驗分布的選擇將被視為建模任務的關鍵部分,手工設計和元學習的先驗將在任務之間自由共享,以實現貝葉斯深度學習。

//www.research-collection.ethz.ch/handle/20.500.11850/523269

付費5元查看完整內容

近年來,人工智能研究取得了驚人的發展和進步。這些進步主要是在三個方面取得的:計算機視覺、自然語言處理和機器人技術。例如,圖像識別被廣泛認為是計算機視覺的圣杯,而語言建模和翻譯一直是自然語言處理的基本任務。然而,許多實際應用程序和任務需要解決的不僅僅是這些特定于領域的問題,而是需要解決涉及所有三個領域的問題。一個自主系統不僅需要能夠識別圖像中的物體,而且還需要解釋自然語言的描述或命令,并理解它們如何與它所感知的視覺觀察相關聯。此外,機器人需要利用這些信息進行決策,并決定為了完成任務而采取哪些物理行動。在本文的第一部分,我提出了一種學習如何將自然語言與三維形狀聯系起來的方法,使系統能夠將文本描述中描述的“圓”等詞與三維物體中的圓的幾何屬性進行連接。為了將這兩種模式聯系起來,我們依賴一個跨模態嵌入空間來進行多模態推理,并在沒有細粒度、屬性級分類注釋的情況下學習這個空間。通過學習如何將這兩種模態聯系起來,我們可以執行諸如文本到形狀的檢索和形狀操作等任務,還可以實現新的任務,如文本到形狀的生成。在本論文的第二部分,我們允許主體被具體化,并探索一個依賴于所有三個領域(計算機視覺、自然語言和機器人)的任務:機器人導航通過遵循自然語言指令。不再依賴于固定的圖像或3D對象數據集,代理程序現在位于一個物理環境中,并使用機載相機捕捉自己對空間的視覺觀察。為了在視覺、語言和機器人物理狀態之間建立聯系,我們提出了一個使用拓撲圖執行規劃和控制的系統。這種基本的抽象允許主體將語言指令的部分與環境的相關空間區域聯系起來,并將一系列視覺觀察與物理動作和行動聯系起來。

//searchworks.stanford.edu/view/13876455

付費5元查看完整內容
北京阿比特科技有限公司