亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

深度生成模型已經徹底改變了人工智能領域,從根本上改變了我們如何生成模仿或從訓練數據推廣出的新穎對象,以及我們訪問和消費各類信息(如文本、圖像、語音和計算機程序)的方式。它們有潛力徹底改變其他科學領域,從數學問題解決到支持高能物理中快速而準確的模擬,或是使快速天氣預報成為可能。在計算生物學中,生成模型對于改進我們對復雜生物過程的理解、設計新藥物和治療方法、以及預測大流行期間病毒的進化等方面,都擁有巨大的潛力,而這只是眾多應用中的一部分。然而,由于生物對象的固有復雜性,它們帶來了獨特的挑戰,包括龐大的空間、多種補充數據模式,以及高度結構化和相對非結構化組件之間的獨特相互作用。

在這篇論文中,我們開發了幾種由計算生物學中關鍵問題所驅動的深度生成建模框架。鑒于這一努力的跨學科性質,我們首先提供了關于生成建模、不確定性量化、順序決策制定,以及生物學和化學中重要概念的全面背景,以便徹底理解我們的工作。接著,我們深入探討我們貢獻的核心,圍繞三個章節進行構建。第一章介紹了學習生物序列表示的方法,為后續分析打下了基礎。第二章展示了如何利用這些表示來預測生物分子的復雜屬性,重點關注三個具體應用:蛋白質適應性預測、遺傳變異對人類疾病風險的影響,以及病毒免疫逃逸。最后,第三章致力于設計新型生物分子的方法,包括藥物靶點識別、從頭分子優化和蛋白質工程。

這篇論文還對更廣泛的機器學習挑戰,如高維空間中的不確定性量化或高效的變換器架構,作出了幾個方法論貢獻,這些貢獻在其他應用領域也具有潛在價值。我們最后通過總結我們的主要發現,強調當前方法的不足,提出未來研究的可能途徑,并討論該領域內的新興趨勢來結束這篇論文。

付費5元查看完整內容

相關內容

博士論文是由攻讀博士學位的研究生所撰寫的學術論文。它要求作者在博士生導師的指導下,選擇自己能夠把握和駕馭的潛在的研究方向,開辟新的研究領域。由此可見,這就對作者提出了較高要求,它要求作者必須在本學科的專業領域具備大量的理論知識,并對所學專業的理論知識有相當深入的理解和思考,同時還要具有相當水平的獨立科學研究能力,能夠為在學科領域提出獨創性的見解和有價值的科研成果。因而,較之學士論文、碩士論文,博士論文具有更高的學術價值,對學科的發展具有重要的推動作用。

在過去的十年中,深度學習展現出了顯著的能力,表現出對大規模數據的強烈依賴。在這一時期,我們見證了大型語言模型、擴散模型和分割模型的規模化法則生效,通過利用大規模真實世界數據集實現了接近人類水平的性能。然而,當涉及到具身AI時,由于機器人的脆弱性和有限的速度,生成真實世界數據變得具有挑戰性和成本高昂。與此相反,合成數據和模擬環境提供了一種高效且經濟的方法來訓練機器人代理和生成精確的監督。因此,合成數據作為可擴展和高質量訓練具身AI代理的數據的有希望的解決方案而出現。鑒于使代理能夠泛化到真實世界場景的最終目標,圍繞合成數據的主要挑戰在于通過縮小模擬與現實差距(Sim2Real差距)來準確捕捉真實世界分布。解決這一挑戰涉及兩個關鍵方面:生成合成數據和有效地利用它。在這篇論文中,我展示了對這兩個方面的貢獻的兩項工作。

第一項工作著眼于合成數據的生成。我介紹了兩種旨在生成與真實世界分布一致的合成數據的方法。首先,我提出了iGibson,一個模擬環境,用于在大規模真實場景中開發機器人的交互式解決方案。iGibson構建了3D掃描真實世界家庭的交互式復制場景,使對象、布局和可交互性的分布與真實世界一致。為了進一步促進更健壯的具身代理的訓練,iGibson提供了針對材料(視覺外觀和動態特性)和對象形狀的領域隨機化程序,同時尊重對象放置的分布并保持可交互性。其次,我提出了GINA-3D,一個使用來自攝像機和LiDAR傳感器的真實世界駕駛數據的生成模型,創建多樣化車輛和行人的逼真的3D隱式神經資產。與iGibson不同,后者涉及在建立模擬環境時顯著的人力努力,GINA-3D利用了直接學習生成與真實世界觀察匹配的合成資產的生成模型。我展示了證據,表明GINA-3D在生成的視覺和幾何質量方面實現了最先進的性能和多樣性。

第二項工作專注于有效地利用合成數據。通過設計健壯的學習算法和模型,我們可以創建更好地泛化到真實世界場景的模型。首先,我介紹了Taskonomy,它利用合成數據構建了任務空間的計算分類法和地圖。通過利用任務關系,我展示了證據,表明我們可以使用比完全監督方法少至少一個數量級的數據,且模型可以很好地泛化到真實世界數據集。然后,我介紹了情境融合,它訓練代理融合一大組對應于多樣化視覺感知能力的視覺表征。這種方法在新環境中的性能顯著提高,超過了真實世界預訓練的基線和其他融合方法。最后,我介紹了ACID,用于變形物體操縱的動作條件隱式視覺動態。通過利用大規模合成數據和獨特的幾何和動力學監督,我可以將模擬訓練的ACID模型直接應用于真實世界物體,并在將它們操縱成目標配置方面取得成功。

總結來說,這篇論文研究了合成數據和模擬環境如何為具身AI提供有希望的解決方案。所展示工作的核心在于合成數據的精心生成和有效利用。通過模擬環境、生成模型、任務遷移學習、視覺運動策略訓練和視覺動力學建模等策略,我們可以縮小模擬訓練與真實世界應用之間的差距,為更有能力和多功能的具身AI代理鋪平道路。

付費5元查看完整內容

機器學習(ML)通過其近期前所未有的進步正在改變社會。自回歸模型的普及正在重塑社會的各個層面,從專業領域到學術追求,甚至休閑活動。智能AI系統的一個核心方面是它們處理和理解長時間的時間信息流,如文本、音頻或視頻數據的能力。在這篇論文中,我們深入探討了學習數據中長期依賴性的問題,從兩個主要角度來解決它:模型架構和學習算法。與其致力于在當代基準分數上獲得邊際改進,這些分數通常更依賴于工程優化,本論文的重點是深入理解潛在的時間機制,探索替代學習算法,并為未來在計算效率方面的改進提供基礎。

在第一章中,我們提出了一種新方法,將眾所周知的ML模型之一,循環神經網絡(RNN)的多個實例互聯。我們提出的實證證據表明,模型架構的修改在系統組件內引發不同的時間行為。這一發現可以被利用來區分長期依賴性和短期依賴性,為使用專門為每個設計的架構鋪平了道路。

第二章聚焦于在線學習算法,這種方法顯著偏離了用于訓練時間ML模型的傳統方法。這些算法在觀察到每個輸入后立即更新其參數,與更常用的方法形成對比,后者必須觀察整個輸入序列才能更新模型參數。我們研究了實時循環學習(RTRL)在眾所周知的RNN模型中的表現,并提出了一種數學上合理的近似方法。這種新方法提供了更好的近似,盡管它只與某些架構兼容。

在最后一章中,我們同時從這兩個方面應對學習長期依賴性的挑戰。我們提出了一種分層架構,能夠通過將其分解為更小的自包含子序列來處理擴展序列。與這種架構一起,我們提出了一種學習算法,使得在抽象空間中的學習成為可能,從而繞過了專注于短期序列細節的需求。這種架構和算法的結合導致了計算效率的顯著提高。重要的是,我們的方法不僅增強了當前模型的能力,而且還為未來模型架構和學習算法的共同設計開辟了令人興奮的途徑。

付費5元查看完整內容

隨著社會技術化程度的不斷提升,我們使用機器執行越來越復雜的任務,這些任務范圍從駕駛輔助、視頻會議到探索行星。場景表示,即如何將感官數據轉換為環境的緊湊描述,是使這些系統成功并確保安全的基本屬性。一個有前景的方法是開發基于學習的系統,這些系統能夠根據觀察自我調整。

事實上,近年來深度學習已經徹底改變了計算機視覺領域。特別是更好的模型架構、大量的訓練數據以及更強大的計算設備使得深度學習系統具有前所未有的性能,并且它們現在在許多基準測試中設定了最新技術水平,這些測試范圍從圖像分類、物體檢測到語義分割。盡管這些成功,這些系統的運作方式仍然與人類認知有本質上的不同。特別是,大多數方法在2D領域操作,而人類理解圖像是三維世界的投影。此外,它們通常不遵循場景的組合理解,這對人類推理來說是基本的。在這篇論文中,我們的目標是開發場景表示,使自主代理能夠在復雜環境中穩定、安全地導航和行動,同時在3D中進行組合推理。為此,我們首先提出了一種用于基于深度學習的三維重建和生成建模的新型輸出表示。

我們發現,與以前的表示方法相比,我們基于神經場的方法不需要對3D空間進行離散化,就可以以恒定的內存占用實現任意分辨率的重建。接下來,我們開發了一種可微渲染技術,用于從2D觀察中推斷出這些基于神經場的3D形狀和紋理表示,并發現這使我們能夠擴展到更復雜、現實世界的場景。隨后,我們將我們的新型3D形狀表示與空間和時間上連續的矢量場相結合,以模擬運動中的非剛性形狀。我們觀察到,我們的新型4D表示可用于各種判別和生成任務,范圍從4D重建到4D插值,再到運動轉移。最后,我們開發了一種以對象為中心的生成模型,該模型可以以組合方式生成3D場景,并且允許對生成的場景進行逼真的渲染。我們發現,我們的模型不僅提高了圖像保真度,而且相比之前的工作,在僅從原始、未擺放的圖像集合中訓練的情況下,實現了更可控的場景生成和圖像合成。

付費5元查看完整內容

計算機視覺系統自從分類手寫數字的時代以來取得了巨大的進步。特別是,監督學習已經成為解決科研之外任務的普遍方法。這些系統被部署在從自動駕駛汽車到自動醫療診斷和天氣預報等多個行業的眾多產品中。這些進步可以歸因于深度學習算法、專業庫和專用硬件的進步,以及用于模型訓練的大型標注數據集的增加。然而,仍然存在一些任務,其中僅僅捕獲和標注更多數據的標準范式并不是一個可行的解決方案。 在這篇論文中,我們調查如何最好地利用多模態數據來解決獲取足夠質量或完整性數據困難的計算機視覺任務。我們專注于兩個特定任務:引導式超分辨率和細粒度分類。引導式超分辨率涉及通過將低分辨率數據與輔助模態結合來進行放大,而細粒度分類需要利用邊際信息,使分類算法能夠捕捉到細粒度類別之間細微的外觀差異。最初,我們在缺乏地面真實數據的情況下為引導式超分辨率提供解決方案。首先,我們提出了一種將引導式超分辨率視為學習從引導到源域的像素到像素映射的新穎無監督公式。我們使用多層感知器參數化來保留高頻細節。其次,我們提出了一種新穎的混合模型,以在保持解決測試時優化問題的嚴謹性的同時,最好地利用深度學習方法。關鍵是一個可微分優化層,它作用于一個學習的親和圖,確保目標對源的高保真度,因此對未見域具有高泛化性。隨后,我們提出了一種自動識別社區科學家照片中細粒度植物標本的統一方法。該方法旨在利用社區科學家觀察中通常可用的各種先驗知識,包括地理和時間背景以及植物分類學,以學習跨類似物種的可轉移表示。最后,我們提出了2021年半地球植物標本館數據集,這是我們作為機器學習競賽的一部分創建的一個大型策劃和開放獲取的植物標本數據集,以鼓勵進一步研究從照片中自動識別細粒度植物物種。 近年來,計算機視覺領域取得了顯著進步。當然,這些進步可以歸因于深度學習研究、專業庫和專用硬件的進展,但最重要的是,這些進步得益于大量數據的可用性,例如像ChatGPT(OpenAI,2022年)和Stable Diffusion(Rombach等,2021年)這樣的生成模型分別在互聯網上爬取了數十億的文本和圖像進行訓練。 然而,并非所有任務都能使用現成的互聯網規模數據集來解決。許多重要問題,如自動檢測惡性腫瘤、評估自然災害造成的損害或繪制瀕危物種的地理分布,仍然是放大數據收集不是解決方案的挑戰。這些挑戰可以大致分為兩類。首先,由于傳感器捕獲它們的固有技術限制,感知特定模態存在困難,例如遙感器如航空或衛星成像或主動傳感器如激光掃描儀、ToF相機或MRI掃描儀。其次,觀察罕見事件或特定數據類型的多樣性困難,因為在現實世界的數據收集工作中不經常遇到某些場景或類別。例如,捕捉所有容易發生事故的駕駛場景,或收集所有生物物種的足夠數據就是這種情況。

為了解決數據收集質量挑戰性應用中傳感器可用性的限制,一個可行的解決方案是利用更常見的傳感器捕獲的數據來增強傳感器的輸出。這種設置在許多計算機視覺任務中都很常見,特別是在低分辨率傳感器與捕獲不同模態圖像的高分辨率傳感器配對時。這項任務,被稱為引導式超分辨率,涉及在高分辨率引導圖像的幫助下增加低分辨率源圖像的分辨率。一個常見的實際應用是在RGB圖像的指導下對深度圖進行超分辨率。這種配置在配備有深度傳感器和常規攝像機的各種設備上都能找到,如增強/虛擬現實頭戴式顯示器(AR,VR),現代手持設備,機器人和自動駕駛汽車。事實上,消費級深度攝像頭捕獲的深度圖分辨率較低;類似地,激光掃描儀獲得的稀疏深度測量可以在相對較大的印記上進行平均。相反,即使是入門級相機現在也能以非常高的分辨率捕獲圖像。這種設置也經常用于環境監測,例如樹高、生物量或物種分布概率等關鍵指標的地圖通常可用的分辨率遠低于現代遙感器的地面采樣距離(Keil和Jetz,2014年,Metzger等,2022年)。因此,一個自然的問題是如何利用這些系統捕獲的成對圖像來提高低分辨率傳感器的質量,從高分辨率傳感器傳輸細節。 獲取大量高質量注釋的挑戰甚至可能比數據收集過程本身更加困難。這是至關重要的,因為監督學習在計算機視覺的成功中發揮了核心作用,可以追溯到深度學習早期的開創性工作,如AlexNet(Krizhevsky等,2012年)贏得ImageNet ILSVRC-2012挑戰賽(Deng等,2009a)。事實上,全球數據標注市場預計到2028年將達到82.2億美元(Grand View Research),凸顯了其重要性。例如ImageNet這樣的基準通常為每個類提供大量的訓練圖像,在這種設置下,分類算法取得了令人印象深刻的結果。然而,一旦我們減少每個訓練類的圖像數量,它們的性能就會迅速下降。然而,由于各種原因,簡單地收集更多數據和注釋并不總是可行的。例如,自然界展示了物種的長尾分布,導致大量類別不平衡,某些物種罕見或難以觀察。此外,某些地區數據的可用性變化和觀察者偏見可能會進一步加劇獲取全面注釋的難度,如圖1.1所示。此外,標注這些數據集需要專業的分類學專業知識,因此許多這些觀察結果仍未標注。這是大多數描述生物多樣性的大型圖像集合的現實,例如那些從相機陷阱、社區科學家觀察、無人機調查或植物標本館(Tuia等,2022年,Bebber等,2010年)中獲得的。因此,我們認為自動物種識別工具的需求迫切。這項任務,通常被稱為細粒度分類,涉及將圖像分類為更廣泛類別內的子類別,例如物種,并且以區分基于微妙視覺線索的標本為特征。我們認為,僅憑外觀信息不足以區分細粒度類別,因為學習這種微妙模式的數據有限。幸運的是,物種觀察通常伴隨著側面信息,例如捕獲圖像的時空背景,這些信息可以與環境先驗結合使用。這個問題再次強調了開發利用多模態數據來增強自動識別標本的方法的需要。

付費5元查看完整內容

視覺語言模型(VLMs)最近已經展示出了強大的效能,作為可以解析關于視覺內容的自然查詢并生成類似人類輸出的視覺助手。在這項工作中,我們探討了這些模型基于感知信息展示人類式推理的能力。為了解決一個關鍵問題,即這些推理能力在多大程度上是完全一致和基于實際的,我們還測量了這些模型的推理一致性。我們通過提出基于思維鏈(CoT)的一致性度量來實現這一點。然而,這樣的評估需要一個包括高級推理和詳細推理鏈的基準,這是昂貴的。我們通過提出一個LLM-人在回路中的管道來解決這一挑戰,這顯著降低了成本,同時確保了高質量數據集的生成。基于這個管道和現有的粗粒度注釋數據集,我們構建了CURE基準,以測量VLMs的零樣本推理性能和一致性。我們評估了現有的最先進的VLMs,并發現即使在表現最佳的模型(BLIP-2)的情況下,也無法展示出強大的視覺推理能力和一致性,這表明需要大力努力,使VLMs能夠像人類一樣系統地和一致地進行視覺推理。作為早期步驟,我們提出了一個旨在提高VLMs的推理性能和一致性的兩階段培訓框架。第一階段涉及使用由LLMs自動生成的逐步推理樣本對VLMs進行監督微調。在第二階段中,我們進一步通過LLMs提供的反饋來增強訓練過程,以生成高度一致和基于實際的推理鏈。我們經驗性地突出了我們框架的有效性,并顯示了在推理性能和一致性方面的相對改進為4%。

//www.zhuanzhi.ai/paper/7973da2bc3cb888154e7d2c0ed548c64

付費5元查看完整內容

數十年來,機器人在我們的日常生活中扮演了重要而隱秘的角色。我們每天依賴的許多產品,如汽車和藥品,都是通過機器人自動化生產的。這些系統將以更直接的方式進入我們的日常生活,他們的影響力不可避免地會減小。特別是腿部機器人,近期的進步終于使這些系統商業上可行,并將很快看到它們在物流、景觀工作和在建筑工地上協助工人的角色。然而,隨著它們的持續改進,操作它們的軟件和算法將需要能夠執行目前無法實現的更抽象的任務。毫無疑問,實現這一目標的方式之一將涉及利用機器學習技術的并發進步。

//www.research-collection.ethz.ch/handle/20.500.11850/614549

這篇博士論文正朝著這個目標努力,旨在幫助彌合現代機器人技術和機器學習技術之間的鴻溝。這項研究解決了實現更強大機器人系統所必需的兩個方面,即軟件和算法,并專注于深度強化學習(DRL)技術在解決腿部機器人,特別是四足機器人系統的運動控制問題的應用。為了統一上述領域,我們需要軟件系統能夠利用在Python中實現的DRL算法,并讓需要C++接口的研究人員和開發人員可以使用。因此,這項工作通過引入一個多功能的軟件工具箱,為機器人應用使用DRL算法做出了貢獻。它利用了最先進的機器學習平臺TensorFlow的Python API,用于構建包含神經網絡模型、梯度計算和隨機梯度下降優化器等組件的計算圖。這些圖可以在C++運行時環境中使用,以執行如訓練和部署等圖操作。此外,該工具箱在上述核心元素的基礎上,提供了對DRL的有用抽象,實現了幾種最先進的算法以及其他有用的實用工具。有了這個工具箱,我們提供了一個端到端的解決方案,用于設計、建模、訓練和部署神經網絡策略,這種策略專門為四足機器人ANYmal設計和測試。此外,復雜地形的行動對于有腿的機器人來說構成了重大挑戰。為了讓像ANYmal這樣的系統能夠在這樣的環境中自主運行,它們必須擁有謹慎規劃適合地形的立足點的方法,同時執行保證穩定性的運動。為了解決這個問題,本博士論文通過提出一種解決四足系統穿越非結構化地形的立足點選擇和步態生成問題的新方法,對算法的第二個方面做出了貢獻。這項工作主要圍繞一個框架進行,該框架用于制定馬爾科夫決策過程(MDPs),采用最新的基于模型的軌跡優化技術來評估動態可行性,取代了物理模擬。當與最先進的DRL算法一起使用時,這些MDPs會生成能夠在具有挑戰性的3D環境中規劃基礎姿勢、立足點位置和步態參數序列的地形感知神經網絡策略。這些所謂的步態規劃(GP)網絡,在與其他針對運動規劃和控制問題的最先進方法結合時,會產生有效的行動。這種方法已經在模擬中以及在ANYmal的物理平臺上得到了實驗驗證。

付費5元查看完整內容

氣候變化是我們這個時代最緊迫的問題之一,需要社會各個領域迅速動員許多工具和方法。機器學習被提議為其中一種工具,有可能補充和加強現有的氣候變化工作。在這篇論文中,我們提供了幾個方向,用于原則性地設計和使用基于機器學習的方法(特別側重于深度學習)來解決電力領域的與氣候相關的問題。在論文的第一部分,我們提出了統計和優化的方法來估計電網上的關鍵量。具體來說,我們使用基于回歸的工具來評估用于評估電力系統干預的與氣候和健康相關的排放因素。我們還提出了一種基于矩陣補全的方法來估計電力分配系統上的電壓,以實現分布式太陽能的集成。

受到這項工作的啟發,論文的第二部分,我們關注的是設計深度學習方法,這些方法明確捕捉了與應用場景相關的物理學、硬性約束和領域知識。特別是,我們利用深度學習中的隱含層工具來設計預測方法,這些方法對模型輸出將用于的下游(隨機)決策過程有認知。我們還設計了快速、保持可行性的神經近似器,用于具有硬性約束的優化問題,以及證明了能強制執行與部署系統相關的穩定性標準或操作約束的基于深度學習的控制器。這些方法直接適用于電力系統的問題,同時也更廣泛地適用于其他物理和安全關鍵領域。雖然第二部分展示了電力系統如何為深度學習研究提供有成效的方向,但在這篇論文的最后一部分,我們反過來展示了深度學習的洞察如何為電力系統的研究提供有成效的方向。具體來說,我們展示了受隱含層文獻啟發的方法如何被用于評估電網上的與政策相關的逆向問題。我們進一步展示了如何結合隱含層和對抗魯棒深度學習的洞察,使我們能夠為電力系統的兩個核心問題——N-k安全約束最優功率流和隨機最優功率流——提供可擴展的啟發式解決方案,這兩個問題由于其計算難度,很少在實際規模上進行研究。

總的來說,這篇論文展示了如何通過深度學習和電力系統的洞察進行橋接,可以顯著推進這兩個領域的方法,除此之外,還能解決與氣候行動相關的高影響力問題。

付費5元查看完整內容

深度學習算法,比如那些用于圖像識別的算法,在自動化醫療診斷和指導臨床決策方面大有前途。與此同時,醫學深度學習系統的開發和臨床轉化還面臨著一些重要的挑戰。首先,開發大型且注釋良好的數據集成本很高。其次,醫學圖像判讀有必要識別病灶的微妙關鍵特征,盡管在人群中生理外觀有很大差異。第三,由于域轉移問題,將深度學習算法的性能從一種設置轉移到另一種設置具有挑戰性。第四,深度學習系統的輸出需要是可解釋的,以便臨床醫生能夠理解系統。本文研究了如何應對這些挑戰,從小型數據集構建可泛化和可解釋的深度學習模型。本文研究了將從非醫療源ImageNet學習到的先驗知識遷移到醫療應用對模型性能的影響,特別是當數據集大小不夠時。與直接從ImageNet轉移學習不同,GrayNet被提議作為一個橋梁數據集,在從ImageNet學習到的通用圖像特征上創建一個預先訓練的豐富醫學圖像表示的模型。分析了GrayNet的優點,包括總體性能和跨不同成像掃描儀的泛化,并與使用小數據從頭開始訓練和從ImageNet轉移學習進行了比較。受放射科醫生如何解釋診斷圖像的啟發,還介紹了特定領域的技術,包括窗口設置優化和切片插值,并展示了進一步增強模型性能的方法。引入了一個新的可視化模塊,能夠在訓練過程中生成一個圖像圖譜,并將其顯示為測試過程中所做的模型預測的基礎,以證明模型預測的合理性,并使臨床醫生更容易理解它們。本論文通過三種不同的應用展示了深度學習在醫學圖像判讀方面的潛力,包括人工智能輔助骨齡評估,以提高人類的準確性和可變性,發現以前未識別的模式,在手部x光片中進行骨性別分類,以及處理原始計算機斷層掃描數據,而不需要圖像重建。本論文的貢獻有望促進各種醫療應用中可推廣和可解釋的深度學習算法的發展,從而加速人工智能系統進入臨床實踐。

付費5元查看完整內容

推薦系統在網絡上無處不在,通過提供用戶可能喜歡的物品的個性化建議來提高用戶的滿意度和體驗。在過去的幾年中,知識感知推薦系統已經顯示出能夠產生高質量的推薦,結合了基于內容和協作過濾的優點。利用知識圖譜來生成物品推薦的關鍵點是能夠為推薦問題定義有效的特征。知識圖譜嵌入學習了從知識圖譜到特征空間的映射,解決了一個優化問題,最大限度地減少了特征工程的耗時工作,導致了更高質量的特征。因此,本論文的主要目的是研究知識圖譜嵌入在推薦系統中的應用。在這篇論文中,我們介紹了entity2rec,它通過特定屬性的知識圖嵌入來學習用戶物品的關聯性以進行物品推薦。entity2rec已經與我們應用于推薦問題的一套現有知識圖嵌入算法(翻譯模型、node2vec)以及三個標準數據集上流行的協同過濾算法進行了基準測試。entity2rec已被證明能夠生成準確的、非顯而易見的推薦,實現了較高的準確性、偶然性和新穎性,并且在數據集稀疏且流行度低的情況下尤為有效。此外,entity2rec基于對知識圖譜語義進行編碼的推薦模型,因此可以針對特定的推薦問題進行解釋和配置。entity2rec還通過一個名為TinderBook的網絡應用程序在冷啟動場景下對真實的新用戶進行了測試。TinderBook是一個網絡應用,它利用基于entity2rec的項目-項目關聯度測量,向用戶推薦他們喜歡的單一書籍。

除了定義有效的特征外,知識感知推薦系統質量的一個關鍵因素是知識圖譜本身的質量。通常情況下,當從一組異質數據源中構建知識圖譜時,重復的數據是數據中的一個主要噪音來源。因此,論文的第二部分涉及到知識圖譜生成過程中的實體匹配問題。在這篇論文中,我們介紹了 "STEM:基于疊加閾值的實體匹配"。STEM是一個機器學習層,可以 "堆疊 "在現有的基于閾值的分類器上,以提高實體匹配任務的精度和召回率。STEM已經在來自不同領域(金融、音樂)的三個數據集上使用兩個不同的基于閾值的分類器(線性和Naive Bayes)進行了測試,大大改善了實體匹配的質量。STEM還被應用于歐洲研究項目3cixty的背景下,創建了一個包含城市的地點和事件的旅游知識圖,加強了重復數據刪除過程,并因此提高了知識圖的質量。

最后,本論文涉及到推薦問題向時間序列的擴展,即序列感知推薦系統(SARS)。特別關注的是學習推薦旅游路徑的問題,即用戶可能感興趣的旅游活動序列。我們提出了 "路徑推薦器",這是一種基于從Foursquare收集的用戶簽到序列訓練的循環神經網絡(RNN)的方法。路徑推薦器在一系列相關指標上顯示出優于一系列競爭性的序列感知算法(大數據、條件隨機域)。路徑推薦器架構的擴展和臨時版本被設計用于自動播放列表的延續問題,并在RecSys2018挑戰賽的背景下進行了測試,在創意賽道的33個參與者中取得了第14名,在主賽道的113個參與者中取得了第36名。已經收集的Foursquare數據集和這項工作中定義的SARS評估框架已經成為研究界的公共資源。

論文結構

本論文共分六章,討論推薦系統和語義學領域的研究挑戰。

第一章提供了本論文的總體背景,描述了本論文的研究挑戰和貢獻,并提供了工作綱要。

第二章描述了最先進的技術,從關于RS和語義學的一般概念到該領域的最新和最先進的工作。

第三章包含了關于使用翻譯模型[25, 26]、node2vec[27]和entity2rec[3]來為推薦系統創建知識圖譜嵌入的理論和實驗工作。

第四章描述了STEM(基于疊加閾值的實體匹配)方法[28],其實驗驗證和3cixty研究項目的使用案例[29]。

第五章介紹了路徑推薦器[30]、評估框架Sequeval和簽到數據集的收集[31, 32],以及路徑推薦器在音樂領域的擴展[33]。

在第六章中,我們總結了研究結果和亮點,概述了未來的工作,并得出論文的主要結論。

付費5元查看完整內容

機器學習是一種從數據中提取預測模型,從而能夠將預測泛化到未觀察數據的技術。根據已知數據集選擇良好模型的過程需要進行優化。具體地說,優化過程在約束集中生成一個變量來最小化目標。這個過程包含了包括神經網絡訓練在內的許多機器學習管道,這將是我們在本文中進行理論分析的主要試驗場。在各種優化算法中,梯度方法因其高維可擴展性和反向傳播的自然局限性而成為深度學習中的主導算法。然而,盡管基于梯度的算法很受歡迎,但我們從理論的角度對機器學習環境中的這種算法的理解似乎還遠遠不夠。一方面,在現有的理論框架內,大多數上下界是封閉的,理論問題似乎得到了解決。另一方面,理論分析很難產生比實踐者發現的經驗更快的算法。本文回顧了梯度法的理論分析,指出了理論與實踐的差異。然后,我們解釋了為什么會發生不匹配,并通過發展由經驗觀察驅動的理論分析,提出了一些初始解決方案。

//dspace.mit.edu/handle/1721.1/143318

付費5元查看完整內容
北京阿比特科技有限公司