亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

隨著社會技術化程度的不斷提升,我們使用機器執行越來越復雜的任務,這些任務范圍從駕駛輔助、視頻會議到探索行星。場景表示,即如何將感官數據轉換為環境的緊湊描述,是使這些系統成功并確保安全的基本屬性。一個有前景的方法是開發基于學習的系統,這些系統能夠根據觀察自我調整。

事實上,近年來深度學習已經徹底改變了計算機視覺領域。特別是更好的模型架構、大量的訓練數據以及更強大的計算設備使得深度學習系統具有前所未有的性能,并且它們現在在許多基準測試中設定了最新技術水平,這些測試范圍從圖像分類、物體檢測到語義分割。盡管這些成功,這些系統的運作方式仍然與人類認知有本質上的不同。特別是,大多數方法在2D領域操作,而人類理解圖像是三維世界的投影。此外,它們通常不遵循場景的組合理解,這對人類推理來說是基本的。在這篇論文中,我們的目標是開發場景表示,使自主代理能夠在復雜環境中穩定、安全地導航和行動,同時在3D中進行組合推理。為此,我們首先提出了一種用于基于深度學習的三維重建和生成建模的新型輸出表示。

我們發現,與以前的表示方法相比,我們基于神經場的方法不需要對3D空間進行離散化,就可以以恒定的內存占用實現任意分辨率的重建。接下來,我們開發了一種可微渲染技術,用于從2D觀察中推斷出這些基于神經場的3D形狀和紋理表示,并發現這使我們能夠擴展到更復雜、現實世界的場景。隨后,我們將我們的新型3D形狀表示與空間和時間上連續的矢量場相結合,以模擬運動中的非剛性形狀。我們觀察到,我們的新型4D表示可用于各種判別和生成任務,范圍從4D重建到4D插值,再到運動轉移。最后,我們開發了一種以對象為中心的生成模型,該模型可以以組合方式生成3D場景,并且允許對生成的場景進行逼真的渲染。我們發現,我們的模型不僅提高了圖像保真度,而且相比之前的工作,在僅從原始、未擺放的圖像集合中訓練的情況下,實現了更可控的場景生成和圖像合成。

付費5元查看完整內容

相關內容

博士論文是由攻讀博士學位的研究生所撰寫的學術論文。它要求作者在博士生導師的指導下,選擇自己能夠把握和駕馭的潛在的研究方向,開辟新的研究領域。由此可見,這就對作者提出了較高要求,它要求作者必須在本學科的專業領域具備大量的理論知識,并對所學專業的理論知識有相當深入的理解和思考,同時還要具有相當水平的獨立科學研究能力,能夠為在學科領域提出獨創性的見解和有價值的科研成果。因而,較之學士論文、碩士論文,博士論文具有更高的學術價值,對學科的發展具有重要的推動作用。

機器學習(ML)通過其近期前所未有的進步正在改變社會。自回歸模型的普及正在重塑社會的各個層面,從專業領域到學術追求,甚至休閑活動。智能AI系統的一個核心方面是它們處理和理解長時間的時間信息流,如文本、音頻或視頻數據的能力。在這篇論文中,我們深入探討了學習數據中長期依賴性的問題,從兩個主要角度來解決它:模型架構和學習算法。與其致力于在當代基準分數上獲得邊際改進,這些分數通常更依賴于工程優化,本論文的重點是深入理解潛在的時間機制,探索替代學習算法,并為未來在計算效率方面的改進提供基礎。

在第一章中,我們提出了一種新方法,將眾所周知的ML模型之一,循環神經網絡(RNN)的多個實例互聯。我們提出的實證證據表明,模型架構的修改在系統組件內引發不同的時間行為。這一發現可以被利用來區分長期依賴性和短期依賴性,為使用專門為每個設計的架構鋪平了道路。

第二章聚焦于在線學習算法,這種方法顯著偏離了用于訓練時間ML模型的傳統方法。這些算法在觀察到每個輸入后立即更新其參數,與更常用的方法形成對比,后者必須觀察整個輸入序列才能更新模型參數。我們研究了實時循環學習(RTRL)在眾所周知的RNN模型中的表現,并提出了一種數學上合理的近似方法。這種新方法提供了更好的近似,盡管它只與某些架構兼容。

在最后一章中,我們同時從這兩個方面應對學習長期依賴性的挑戰。我們提出了一種分層架構,能夠通過將其分解為更小的自包含子序列來處理擴展序列。與這種架構一起,我們提出了一種學習算法,使得在抽象空間中的學習成為可能,從而繞過了專注于短期序列細節的需求。這種架構和算法的結合導致了計算效率的顯著提高。重要的是,我們的方法不僅增強了當前模型的能力,而且還為未來模型架構和學習算法的共同設計開辟了令人興奮的途徑。

付費5元查看完整內容

深度生成模型已經徹底改變了人工智能領域,從根本上改變了我們如何生成模仿或從訓練數據推廣出的新穎對象,以及我們訪問和消費各類信息(如文本、圖像、語音和計算機程序)的方式。它們有潛力徹底改變其他科學領域,從數學問題解決到支持高能物理中快速而準確的模擬,或是使快速天氣預報成為可能。在計算生物學中,生成模型對于改進我們對復雜生物過程的理解、設計新藥物和治療方法、以及預測大流行期間病毒的進化等方面,都擁有巨大的潛力,而這只是眾多應用中的一部分。然而,由于生物對象的固有復雜性,它們帶來了獨特的挑戰,包括龐大的空間、多種補充數據模式,以及高度結構化和相對非結構化組件之間的獨特相互作用。

在這篇論文中,我們開發了幾種由計算生物學中關鍵問題所驅動的深度生成建模框架。鑒于這一努力的跨學科性質,我們首先提供了關于生成建模、不確定性量化、順序決策制定,以及生物學和化學中重要概念的全面背景,以便徹底理解我們的工作。接著,我們深入探討我們貢獻的核心,圍繞三個章節進行構建。第一章介紹了學習生物序列表示的方法,為后續分析打下了基礎。第二章展示了如何利用這些表示來預測生物分子的復雜屬性,重點關注三個具體應用:蛋白質適應性預測、遺傳變異對人類疾病風險的影響,以及病毒免疫逃逸。最后,第三章致力于設計新型生物分子的方法,包括藥物靶點識別、從頭分子優化和蛋白質工程。

這篇論文還對更廣泛的機器學習挑戰,如高維空間中的不確定性量化或高效的變換器架構,作出了幾個方法論貢獻,這些貢獻在其他應用領域也具有潛在價值。我們最后通過總結我們的主要發現,強調當前方法的不足,提出未來研究的可能途徑,并討論該領域內的新興趨勢來結束這篇論文。

付費5元查看完整內容

人工智能,尤其是機器學習的子領域,已經看到了向數據驅動的模型的范式轉變,這些模型從數據中學習并適應。這在自然語言處理和計算機視覺等多個領域都帶來了前所未有的進步,很大程度上歸因于深度學習,一種特殊的機器學習模型。深度學習通過一系列的計算層從原始數據中學習相關特征,從而在某種程度上超越了傳統方法。

本論文通過研究這些模型的結構與它們處理的數據中的固有結構之間的關系,探討了深度學習的理論基礎。我們特別提問:是什么驅動了深度學習算法的效能,并使它們擊敗了所謂的維度詛咒——即由于數據點與增加的維數呈指數級增加的需要而在高維中通常學習函數的困難?是它們利用數據結構來學習數據的相關表示的能力嗎?不同的結構是如何利用不同的數據結構的?為了解答這些問題,我們提出數據的結構可以通過其不變性——即與手頭的任務無關的方面來有效地表征。

我們的方法對深度學習采取了一種實證方法,將實驗研究與物理啟發的玩具模型相結合。這些簡化的模型使我們能夠研究和解釋我們在深度學習系統中觀察到的復雜行為,提供對它們內部工作的洞察,目標是彌合理論與實踐之間的差距。具體地說,我們計算淺層全連接網絡的嚴格泛化誤差率,表明它們通過學習線性不變性(即對輸入空間中無關的線性方向變得不敏感)能夠表現良好。但是,我們表明這些網絡結構在學習非線性不變性(如旋轉不變性或輸入的平滑變形的不變性)時可能表現不佳。這一結果說明,如果所選擇的架構不適合某個任務,它可能會過度擬合,使得表示不被學習的核方法可能成為更好的選擇。

然而,現代的架構,如卷積神經網絡,特別適合學習真實數據中存在的非線性不變性。例如,在圖像分類中,物體或特征的確切位置可能對于識別它并不重要。這一屬性導致了對小的變形的不變性。我們的研究結果表明,對變形更為不變的神經網絡往往性能更高,突顯了利用這種不變性的重要性。

付費5元查看完整內容

人類自然地整合各種感覺來理解我們的周圍環境,使我們能夠補償部分缺失的感官輸入。相反,機器學習模型擅長利用大量數據集,但在有效處理缺失數據方面面臨挑戰。雖然利用多種數據類型提供了更全面的視角,但也增加了遇到缺失值的可能性,從而強調了在機器學習技術中適當管理缺失數據的重要性。 在這篇論文中,我們主張開發模擬人類合并多種感覺輸入到統一表示法的機器學習模型,展示在面對缺失輸入源時的韌性。為多種數據類型生成標簽是費時且通常成本高昂的,導致完全注釋的多模態數據集稀缺。另一方面,多模態數據自然地具有一種弱監督形式。我們知道這些樣本描述了同一事件,并假設某些基本生成因子在群組成員之間是共享的,提供了一種弱引導。 我們的論文重點研究由弱監督特征的數據學習,深入探討群組成員之間的相互關系。 我們首先探索能夠處理多模態輸入并有效處理缺失數據的機器學習模型的新技術。

我們的重點是使用變分自編碼器(VAE)從弱監督數據中學習。我們引入了一種概率聚合函數的泛化公式,旨在克服以前方法的局限性,我們展示了這種泛化公式與性能提升的關聯。 在更高的層次上,我們研究了關于群體結構的隱含假設對模型學習行為和效果的影響。 我們發現,對于生成連貫和高質量的樣本,假設一個共享的潛在空間過于嚴格。為了克服這一局限性,我們在多模態VAEs中引入了模態特定的潛在子空間,反映了更為靈活的建模方法。 雖然我們觀察到,在建模假設上的更大靈活性,或與實際數據生成過程一致的假設,都會導致性能的提高,但我們仍然依賴于關于一組多模態或弱監督樣本的關系的先驗知識。隨著群體成員的增長,他們之間的基本關系可能變得更為復雜,增加了過于嚴格假設的風險。 因此,在最后一節中,我們將重點轉向在學習弱監督數據時最小化所需的假設,并同時在學習過程中推導出群體結構。在這種情境下,我們引入了一個可微分的隨機分區模型的新公式,該模型遵循兩階段過程。在第一步,我們使用新提出的超幾何分布的可微分公式估計元素的數量。在第二步,我們將適當數量的元素分配給每個子集。我們可以證明,我們的可微分隨機分區模型可以在弱監督設置中學習共享和獨立的生成因子。 我們希望這篇論文及其貢獻能夠增強多模態機器學習的未來應用,并減少一般情況下從弱監督數據中學習所需的假設。

//www.research-collection.ethz.ch/handle/20.500.11850/634822

付費5元查看完整內容

視覺語言模型(VLMs)最近已經展示出了強大的效能,作為可以解析關于視覺內容的自然查詢并生成類似人類輸出的視覺助手。在這項工作中,我們探討了這些模型基于感知信息展示人類式推理的能力。為了解決一個關鍵問題,即這些推理能力在多大程度上是完全一致和基于實際的,我們還測量了這些模型的推理一致性。我們通過提出基于思維鏈(CoT)的一致性度量來實現這一點。然而,這樣的評估需要一個包括高級推理和詳細推理鏈的基準,這是昂貴的。我們通過提出一個LLM-人在回路中的管道來解決這一挑戰,這顯著降低了成本,同時確保了高質量數據集的生成。基于這個管道和現有的粗粒度注釋數據集,我們構建了CURE基準,以測量VLMs的零樣本推理性能和一致性。我們評估了現有的最先進的VLMs,并發現即使在表現最佳的模型(BLIP-2)的情況下,也無法展示出強大的視覺推理能力和一致性,這表明需要大力努力,使VLMs能夠像人類一樣系統地和一致地進行視覺推理。作為早期步驟,我們提出了一個旨在提高VLMs的推理性能和一致性的兩階段培訓框架。第一階段涉及使用由LLMs自動生成的逐步推理樣本對VLMs進行監督微調。在第二階段中,我們進一步通過LLMs提供的反饋來增強訓練過程,以生成高度一致和基于實際的推理鏈。我們經驗性地突出了我們框架的有效性,并顯示了在推理性能和一致性方面的相對改進為4%。

//www.zhuanzhi.ai/paper/7973da2bc3cb888154e7d2c0ed548c64

付費5元查看完整內容

在過去的十年中,機器學習在許多具有挑戰性的基準上取得了驚人的成功。然而,我們的機器學習模型是否準備好離開這個實驗室環境,并安全地部署在高風險的現實世界應用程序中?本文通過開發和應用新的框架,使現代機器學習系統更魯棒,從而采取措施使這一愿景成為現實。特別是,我們在這類系統的兩種主要脆弱性模式:對抗性示例和后門數據中毒攻擊方面取得了進展。具體來說,在本文的第一部分中,構建了一種對抗樣本的防御方法,這是第一個在自適應對手面前提供非平凡的對抗魯棒性的方法。在第二部分中,開發了一個后門數據投毒攻擊框架,并展示了在自然假設下,我們的理論結果如何激勵算法標記和刪除經驗上成功的潛在投毒示例。最后,簡要探索了初步證據,表明該框架也可以應用于其他數據模態,如表格數據,以及其他機器學習模型,如決策樹的集成。近年來,機器學習,特別是深度學習,在具有挑戰性的人工智能基準上取得了巨大的進步,從計算機視覺[KSH12]到玩游戲[SHS+18],從自然語言處理[BMR+20]到機器人[ABC+20],再到自動駕駛汽車,都取得了令人印象深刻的結果。這些成功給我們帶來了希望,在未來,普適的ML系統將乏味的體力和腦力任務自動化,甚至增強和改善我們的健康、智能和社會。然而,這些令人印象深刻的研究成果和演示是否準備在一個混亂、異構、有時是對抗的世界中轉化為同樣令人印象深刻和有影響力的應用?雖然我們最先進的機器學習模型普遍在各個領域和模態中取得了偉大的結果,但它們在訓練數據中同樣普遍地易受變化的影響——無論是良性的還是對抗的。這篇論文是關于開發原則性的方法來防御特定類型的這種脆弱性。在以下部分中,我們給出了論文的路線圖和我們的主要貢獻。

付費5元查看完整內容

深度學習算法,比如那些用于圖像識別的算法,在自動化醫療診斷和指導臨床決策方面大有前途。與此同時,醫學深度學習系統的開發和臨床轉化還面臨著一些重要的挑戰。首先,開發大型且注釋良好的數據集成本很高。其次,醫學圖像判讀有必要識別病灶的微妙關鍵特征,盡管在人群中生理外觀有很大差異。第三,由于域轉移問題,將深度學習算法的性能從一種設置轉移到另一種設置具有挑戰性。第四,深度學習系統的輸出需要是可解釋的,以便臨床醫生能夠理解系統。本文研究了如何應對這些挑戰,從小型數據集構建可泛化和可解釋的深度學習模型。本文研究了將從非醫療源ImageNet學習到的先驗知識遷移到醫療應用對模型性能的影響,特別是當數據集大小不夠時。與直接從ImageNet轉移學習不同,GrayNet被提議作為一個橋梁數據集,在從ImageNet學習到的通用圖像特征上創建一個預先訓練的豐富醫學圖像表示的模型。分析了GrayNet的優點,包括總體性能和跨不同成像掃描儀的泛化,并與使用小數據從頭開始訓練和從ImageNet轉移學習進行了比較。受放射科醫生如何解釋診斷圖像的啟發,還介紹了特定領域的技術,包括窗口設置優化和切片插值,并展示了進一步增強模型性能的方法。引入了一個新的可視化模塊,能夠在訓練過程中生成一個圖像圖譜,并將其顯示為測試過程中所做的模型預測的基礎,以證明模型預測的合理性,并使臨床醫生更容易理解它們。本論文通過三種不同的應用展示了深度學習在醫學圖像判讀方面的潛力,包括人工智能輔助骨齡評估,以提高人類的準確性和可變性,發現以前未識別的模式,在手部x光片中進行骨性別分類,以及處理原始計算機斷層掃描數據,而不需要圖像重建。本論文的貢獻有望促進各種醫療應用中可推廣和可解釋的深度學習算法的發展,從而加速人工智能系統進入臨床實踐。

付費5元查看完整內容

強化學習(RL)為數據驅動決策提供了一個通用框架。然而,正是這種通用性使得這種方法適用于廣泛的問題,也導致了眾所周知的效率低下。在這篇論文中,我們考慮了有趣的決策類所共有的不同屬性,這些屬性可以用來設計計算效率和數據效率都很高的學習算法。具體來說,這項工作研究了決策問題的各個方面的低秩結構和經典確定性規劃的效果稀疏性,以及基于端到端模型的方法所依賴的性能。我們首先展示了后繼表示中的低秩結構如何使高效在線學習算法的設計成為可能。類似地,我們展示了如何在Bellman算子中找到相同的結構,我們使用Bellman算子來制定最小二乘時間差分學習算法的有效變體。我們進一步探索狀態特征中的低秩結構,以學習完全允許在低維空間中進行高效規劃的有效轉換模型。然后,我們進一步了解基于模型的端到端方法,以便更好地理解它們的屬性。我們通過約束優化和隱式微分的視角來研究這類方法。通過隱式視角,我們得到了這些方法的屬性,這些屬性使我們能夠確定它們執行良好的條件。在本文的最后,探索了如何利用經典規劃問題的效果的稀疏性來定義一般的領域無關啟發式方法,通過使用基于潛在的獎勵塑造和提升函數近似,可以用來大大加快領域相關啟發式方法的學習。

//dspace.mit.edu/handle/1721.1/144562

付費5元查看完整內容

深度神經網絡在學習給定數據集上的表示方面取得了巨大的成功。然而,在許多情況下,學習到的表示是依賴于數據集的,不能轉移到具有不同分布的數據集,即使是對于相同的任務。如何處理域漂移是提高模型泛化能力的關鍵。域適應提供了一個潛在的解決方案,允許我們將具有豐富標簽的源域轉移到只有有限標簽或沒有標簽的目標域。

在本論文中,我將介紹在不同場景下學習可遷移表示的許多方法,包括1) 當源域只有有限的標簽,甚至每個類只有一個標簽時,2) 當有多個標記源域時,3) 當有多個未標記的目標域時。這些方法在不同的數據模態(如視覺和語言)中是通用的,并且可以很容易地組合起來解決其他類似的領域轉移設置(如從具有有限標簽的多個源適應),使模型能夠泛化到源域之外。許多工作將知識從模擬數據轉移到真實數據,以減少對昂貴的手動注釋的需求。最后,介紹了我們在構建LiDAR 點云模擬器方面的開創性工作,進一步實現了LiDAR 點云分割的大量領域適配工作。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-213.html

付費5元查看完整內容

人類一生都在學習。他們從一系列的學習經驗中積累知識,記住基本概念,但不會忘記之前所學的知識。同樣,人工神經網絡也在努力學習。他們通常依賴于經過嚴格預處理的數據來學習特定問題的解決方案,如分類或回歸。特別是,如果接受新的訓練,他們會忘記過去的學習經驗。因此,人工神經網絡通常不能處理現實生活中的情況,比如自主機器人必須在線學習以適應新情況并克服新問題,而不忘記過去的學習經驗。持續學習(CL)是機器學習的一個分支,解決了這類問題。持續算法的設計目的是在不遺忘的學習經驗課程中積累和提高知識。在本論文中,我們提出探索具有重放過程的持續算法。重播過程集中了預演方法和生成重播方法。生成式再現是通過生成式模型來記憶過去的學習經驗。排練包括從過去的學習經驗中保存一組核心樣本,以便以后進行排練。回放過程使優化當前學習目標和過去學習目標之間的折衷成為可能,從而在任務設置序列中實現不遺忘的學習。我們表明它們是非常有前途的持續學習方法。值得注意的是,它們能夠用新的知識重新評價過去的數據,并從不同的學習經驗中對抗數據。我們展示了他們通過無監督學習、監督學習和強化學習任務持續學習的能力。

付費5元查看完整內容
北京阿比特科技有限公司