使用Python進行文本分析:一個面向研究的指南是一個使用Python代碼進行文本挖掘的快速和全面的參考。本書的主要目標是為讀者提供將各種機器學習和深度學習技術應用于文本數據的知識。這本書被組織成八章,以一種有組織的和漸進的方式呈現主題。
//benthambooks.com/book/9789815049602/
主要特點:
向讀者介紹Python編程和數據處理 -向讀者介紹自然語言處理(NLP)的初步知識 -包括使用預定義的python庫和數據集進行數據分析和可視化 -教授如何用Python編寫文本挖掘程序 -包括文本分類和聚類技術 -向讀者介紹用于文本分析的不同類型的神經網絡 -包括高級分析技術,如模糊邏輯和深度學習技術 -以簡化和結構化的方式解釋概念,這對學習者來說是理想的 -包括進一步閱讀的參考資料 對于學習數據科學和計算機科學課程的學生,以及希望從事需要應用文本挖掘和NLP技術的人工智能項目的研究人員和分析師來說,《使用Python進行文本分析:面向研究的指南》是一本理想的指南。
《自然語言處理深度學習》教你如何使用Python和Keras深度學習庫創建高級NLP應用。您將學習使用最先進的工具和技術,包括BERT和XLNET、多任務學習和基于深度記憶的NLP。精彩的示例為您提供了各種真實的NLP應用程序的實際操作經驗。另外,詳細的代碼討論向您展示了如何使每個示例適合您自己的使用!
//www.manning.com/books/deep-learning-for-natural-language-processing
近幾十年來,計算機一直在努力理解語言。在語言學、計算機科學、統計學和機器學習等學科的支持下,計算語言學或自然語言處理(NLP)領域在眾多科學期刊、會議和行業積極參與的支持下,已經全面發展起來。像谷歌、Facebook、IBM和微軟這樣的大型科技公司似乎已經把他們在自然語言分析和理解方面的努力放在了優先位置,并逐步為自然語言處理社區提供數據集和有用的開源軟件。目前,深度學習正日益主導著自然語言處理領域。
對于渴望加入這一激動人心的領域的人來說,面向深度學習的NLP社區的新發展速度之快可能會讓人望而生畏。一方面,描述、統計和更傳統的機器學習方法與深度學習神經網絡的高度技術性、程序性方法之間似乎存在很大的差距。本書旨在通過對NLP深度學習的簡單介紹,來彌合這一差距。它的目標是學生、語言學家、計算機科學家、從業者以及所有對人工智能感興趣的人。讓我們把這些人稱為NLP工程師。當我還是一名學生的時候,當時缺乏系統的計算語言學課程,我幾乎拼湊了一個個人的——而且必然是不完整的——NLP課程。這是一項艱難的工作。我寫這本書的動機是為了讓有抱負的NLP工程師的旅程更容易一些,并通過向您介紹基于深度學習的NLP的基礎知識,給您一個領先的開始。
本書將為您全面介紹深度學習應用于各種語言分析任務,并輔以實際操作代碼。明確地將計算語言學的常青樹(如詞性標記、文本相似性、主題標記和問題回答)與深度學習聯系起來,將幫助您成為熟練的深度學習、自然語言處理(NLP)專家。除此之外,這本書還涵蓋了最先進的方法來挑戰新問題。
第1部分由第1、2和3章組成,介紹了深度學習的歷史、面向NLP的深度學習的基本架構及其在Keras中的實現,以及如何使用嵌入和流行的嵌入策略表示用于深度學習的文本。第2部分由第4、5和6章組成,重點是用深度學習評估文本的相似性,用帶有記憶的問答模型處理長序列,然后將這種記憶模型應用于其他NLP。第3部分由第7、8、9和10章組成,首先介紹神經注意,然后使用transformer轉到多任務學習的概念,最后實際使用BERT并檢查它產生的嵌入。
如果你想在任何計算或技術領域工作,你需要理解線性代數。作為對矩陣及其運算的研究,線性代數幾乎是所有在計算機中實現的算法和分析的數學基礎。但是它在幾十年前的教科書中呈現的方式與今天專業人士使用線性代數解決現實世界的現代應用的方式有很大的不同。 Mike X Cohen的這本實用指南教授了用Python實現的線性代數的核心概念,包括如何在數據科學、機器學習、深度學習、計算模擬和生物醫學數據處理應用中使用它們。有了這本書的知識,您將能夠理解、實現和適應無數的現代分析方法和算法。 適合使用計算機技術和算法的從業者和學生,本書向你介紹:
向量和矩陣的解釋和應用 矩陣算術(各種乘法和變換) 獨立,等級,和反義詞 應用線性代數中的重要分解(包括LU和QR) 特征分解和奇異值分解 應用包括最小二乘模型擬合和主成分分析*
Python Book為任何與數據打交道但沒有編程經驗的人提供了學習Python的基本入門指南。作者是一位經驗豐富的數據科學家和Python程序員,他向讀者展示了如何使用Python進行數據分析、探索、清理和討論。讀者將了解Python語言中哪些內容對數據分析很重要,以及為什么重要。
Python Book為讀者提供了全面全面的Python介紹,它既簡單到對初學者來說是理想的,又深刻到對那些更有經驗的人來說是有用的。這本書幫助初出乍到的程序員在閱讀過程中逐漸提高他們的技能,并始終理解他們所涉及的內容以及為什么它是有用的。Python被谷歌、Facebook、Instagram、Spotify等大公司使用,在未來的幾年里,它將繼續成為編程領域的中心。
包含了Python編程主題的深入討論,如變量,等式和比較,元組和字典數據類型,while和for循環,以及if語句,讀者還將學習:
完美的統計學家,計算機科學家,軟件程序員,和從業人員在私營行業和醫學,Python書也將對任何上述領域的學生感興趣。因為它假設沒有編程經驗或知識,所以這本書非常適合那些使用數據工作并希望學習使用Python來增強他們工作的人。
自然語言處理(Natural Language Processing,NLP)是計算機科學領域與人工智能領域中的一個重要方向。它研究能夠實現人與電腦之間用自然語言進行有效通信的各種理論和方法,涉及所有用計算機對自然語言進行的操作。
//www.datascienceassn.org/sites/default/files/Natural%20Language%20Processing%20with%20Python.pdf
伯德、克萊恩、洛佩爾編著的這本《Python自然語言處理》是自然語言處理領域的一本實用入門指南,旨在幫助讀者學習如何編寫程序來分析書面語言。《Python自然語言處理》基于Python編程語言以及一個名為NLTK的自然語言工具包的開源庫,但并不要求讀者有Python編程的經驗。全書共11章,按照難易程度順序編排。第1章到第3章介紹了語言處理的基礎,講述如何使用小的Python程序分析感興趣的文本信息。第4章討論結構化程序設計,以鞏固前面幾章中介紹的編程要點。第5章到第7章介紹語言處理的基本原理,包括標注、分類和信息提取等。第8章到第10章介紹了句子解析、句法結構識別和句意表達方法。第11章介紹了如何有效管理語言數據。后記部分簡要討論了NLP領域的過去和未來。
《Python自然語言處理》的實踐性很強,包括上百個實際可用的例子和分級練習。《Python自然語言處理》可供讀者用于自學,也可以作為自然語言處理或計算語言學課程的教科書,還可以作為人工智能、文本挖掘、語料庫語言學等課程的補充讀物。
當看到這些材料時,一個明顯的問題可能會出現:“為什么還要寫一本深度學習和自然語言處理的書呢?”一些優秀的論文已經出版,涵蓋了深度學習的理論和實踐方面,以及它在語言處理中的應用。然而,從我教授自然語言處理課程的經驗來看,我認為,盡管這些書的質量非常好,但大多數都不是針對最有可能的讀者。本書的目標讀者是那些在機器學習和自然語言處理之外的領域有經驗的人,并且他們的工作至少部分地依賴于對大量數據,特別是文本數據的自動化分析。這些專家可能包括社會科學家、政治科學家、生物醫學科學家,甚至是對機器學習接觸有限的計算機科學家和計算語言學家。
現有的深度學習和自然語言處理書籍通常分為兩大陣營。第一個陣營專注于深度學習的理論基礎。這對前面提到的讀者肯定是有用的,因為在使用工具之前應該了解它的理論方面。然而,這些書傾向于假設一個典型的機器學習研究者的背景,因此,我經常看到沒有這種背景的學生很快就迷失在這樣的材料中。為了緩解這個問題,目前存在的第二種類型的書集中在機器學習從業者;也就是說,如何使用深度學習軟件,而很少關注理論方面。我認為,關注實際方面同樣是必要的,但還不夠。考慮到深度學習框架和庫已經變得相當復雜,由于理論上的誤解而濫用它們的可能性很高。這個問題在我的課程中也很常見。
因此,本書旨在為自然語言處理的深度學習搭建理論和實踐的橋梁。我涵蓋了必要的理論背景,并假設讀者有最少的機器學習背景。我的目標是讓任何上過線性代數和微積分課程的人都能跟上理論材料。為了解決實際問題,本書包含了用于討論的較簡單算法的偽代碼,以及用于較復雜體系結構的實際Python代碼。任何上過Python編程課程的人都應該能夠理解這些代碼。讀完這本書后,我希望讀者能有必要的基礎,立即開始構建真實世界的、實用的自然語言處理系統,并通過閱讀有關這些主題的研究出版物來擴展他們的知識。
//clulab.cs.arizona.edu/gentlenlp/gentlenlp-book-05172020.pdf
從一開始就創建良好的數據,而不是在收集數據之后修復它。通過遵循這本書中的指導方針,你將能夠進行更有效的分析,并產生研究數據的及時演示。
數據分析師通常與數據集提出了勘探和研究設計不良,導致解釋的困難和延誤產生有意義的結果。數據分析培訓的重點是如何在開始認真分析之前清理和轉換數據集。通過使用良好的數據集設計和理解數據類型如何決定可以執行的分析類型,可以避免不恰當或令人困惑的表示、度量單位選擇、編碼錯誤、缺失值、離群值等。
這本書討論了數據集創建的原則和最佳實踐,并涵蓋了基本數據類型及其相關的適當統計和可視化。這本書的一個重點是為什么選擇某些數據類型來表示概念和度量,而不是典型的討論如何分析選定的特定數據類型。
你會: 注意創建和收集數據的原則 了解基本數據類型和表示 選擇數據類型,預測分析目標 理解數據集的結構和用于分析和共享的實踐 由例子引導和用例(好的和壞的) 使用清潔工具和方法創建良好的數據
有興趣的數據科學專業人士可以通過本書學習Scikit-Learn圖書館以及機器學習的基本知識。本書結合了Anaconda Python發行版和流行的Scikit-Learn庫,演示了廣泛的有監督和無監督機器學習算法。通過用Python編寫的清晰示例,您可以在家里自己的機器上試用和試驗機器學習的原理。
所有的應用數學和編程技能需要掌握的內容,在這本書中涵蓋。不需要深入的面向對象編程知識,因為工作和完整的例子被提供和解釋。必要時,編碼示例是深入和復雜的。它們也簡潔、準確、完整,補充了介紹的機器學習概念。使用示例有助于建立必要的技能,以理解和應用復雜的機器學習算法。
對于那些在機器學習方面追求職業生涯的人來說,Scikit-Learn機器學習應用手冊是一個很好的起點。學習這本書的學生將學習基本知識,這是勝任工作的先決條件。讀者將接觸到專門為數據科學專業人員設計的蟒蛇分布,并將在流行的Scikit-Learn庫中構建技能,該庫是Python世界中許多機器學習應用程序的基礎。
你將學習
這本書是給誰的