在航運交通中對無人潛航器(UUV)進行探測、分類、定位和跟蹤(DCLT)是被動聲學港口安全系統的一項關鍵任務。一般來說,船舶可以通過機械振動和空化噪聲產生的獨特聲學特征進行跟蹤。然而,UUV 的空化噪聲比船舶和船只要小得多,這就大大增加了探測的難度。本論文在淺水實驗中使用固定陣列與過往船只一起演示了利用 UUV 的高頻電機噪聲被動跟蹤 UUV 的可能性。首先,通過對兩艘 UUV 在不同速度下的直接測量,確定了高頻音的成因。通過分析,確定了噪聲的共同主要特征:電機脈寬調制頻率及其諧波的強音。根據馬達的獨特聲學特征,推導出了一種高精度遙感方法,用于估算螺旋槳的轉速。在淺水無人潛航器現場實驗中,證明了與來自飛行器的寬帶噪聲相比,通過電機噪聲探測無人潛航器可將誤報率從 45% 降低到 8.4%,真實探測率為 90%。與寬帶噪聲相比,對電機噪聲進行波束成形可將方位精度提高 3.2 倍。由于信號也是高頻的,因此可以觀察到電機噪聲的多普勒效應,證明測距率是可以測量的。此外,與 "噪聲包絡調制檢測 "算法相比,測量電機噪聲是一種估算螺旋槳轉速的更優方法。從電機特征推斷多個測量值意義重大,因為軸承-多普勒轉速測量值優于傳統的軸承-多普勒目標運動分析。在無特征卡爾曼濾波器的實施中,軸承、軸承率、測距和測距率的跟蹤解精度分別提高了 2.2 倍、15.8 倍、3.1 倍和 6.2 倍。這些發現對于改進無人潛航器定位和跟蹤以及為下一代靜音無人潛航器推進系統提供參考意義重大。
圖 2-3:柴油發動機內部如何產生機械噪音的示意圖。
圖 1-1: 演示潛艇對水流的影響。由于 UUV 靠近潛艇運行,這種尾流和流場會影響 UUV 的運行。
無人潛航器(UUV)操縱模擬器在模擬靠近移動潛艇的 UUV 運動時受到嚴重限制,因為它們無法實時確定復雜的湍流流體動力相互作用。潛在流求解器的速度通常足夠快,但它們忽略了粘度,從而帶來了很大的誤差,而粘度在控制中起著至關重要的作用。另一方面,計算流體動力學(CFD)可以精確模擬這些流體動力學相互作用,但模擬一個特定配置的單個 UUV 通常需要數小時或數天才能完成。因此,對于實時應用來說并不實用。為了彌補這一差距,我們開發了一個基于主動采樣高斯過程(GP)回歸的機器學習框架,以創建一個降階模型(ROM),利用最少的昂貴模擬次數實時預測水動力相互作用。
引入的主動學習框架(稱為 GP 回歸的非近視多保真(NMMF)主動學習)通過結合低成本的低保真潛在流動模擬來探索領域,以及優化選擇高保真 CFD 模擬作為訓練數據來提高模型的準確性,顯著而簡潔地加快了代理模型的收斂速度。結果表明,GP 回歸模型能夠準確有效地捕捉 UUV 與移動潛艇之間的流體動力學相互作用。基于所開發的算法,我們能夠定義運行包絡線,勾勒出 UUV 安全克服流體動力相互作用的區域,以及 UUV 受力過大并與潛艇發生碰撞的區域。這種方法還使能夠開發新的自主協議,通過調整所需的 UUV 航向和速度來補償水動力相互作用,從而使 UUV 安全地保持在所需的航道上。靈敏度分析證實了所提出的控制策略的穩健性。所提出的想法為復雜環境(如湍流邊界層)中的控制算法鋪平了道路,這些環境以前是無法實時導航的。
本文探討了自主無人機系統(UAS)的制導和控制。具體而言,研究了基于模型參考自適應控制(MRAC)的尾翼無人機系統,以及用于戰術機動和覆蓋的多旋翼無人機系統的制導和控制。調查了當前和潛在的應用,并找出了現有技術的差距。
為了解決四旋翼無人機這一特殊類別的尾翼無人機系統的控制問題,研究人員開發了兩種方法,以解決建模不確定性、未建模有效載荷、陣風以及執行器故障和失靈等問題。在第一種方法中,尾翼無人機系統的縱向動力學采用 MRAC 法進行調節,以在新穎的控制架構中實現規定性能和輸出跟蹤。用于規定性能和輸出跟蹤的 MRAC 法則結合了線性二次調節器 (LQR) 基線控制器,使用積分反饋互連。利用障礙 Lyapunov 函數對軌跡跟蹤誤差進行約束,并通過采用軌跡跟蹤誤差瞬態動態參考模型來保證用戶定義的軌跡跟蹤誤差收斂速率。在該控制系統中,平移和旋轉動力學分別分為外環和內環,以考慮到四旋翼雙翼飛行器的動力不足問題。在外環中,氣動力的估計值和 MRAC 法則用于穩定平移動力學。此外 此外,還推導出參考俯仰角,使飛行器的總推力永遠不會指向地球,以確保安全,并避免通常用于確定方向的帶符號反正切函數固有的不連續性。在內環中,氣動力矩的估計值和 MRAC 法則用于穩定旋轉動力學。此外,還提出了一種用于確定所需總推力的法則,該法則可確保如果飛行器的方位與所需方位足夠接近,則會施加適當的推力。還提出了一種控制分配方案,以確保始終實現所需的推力力矩,并滿足對執行器產生的推力的非負約束。仿真驗證了針對規定性能和輸出信號跟蹤采用 MRAC 的控制架構,并將規定性能 MRAC 法與經典 MRAC 法進行了比較。
在第二種方法中,提出了一種基于 MRAC 的統一控制架構,該架構沒有將縱向和橫向動力學分開。平移和旋轉動力學分別被分離為外環和內環,以解決尾翼無人機系統的動力不足問題。由于預計飛行器會發生較大的旋轉,因此使用無奇異性的四元數來捕捉尾翼的方向。此外,還通過使用障壁 Lyapunov 函數來解決卷揚現象,以確保跟蹤誤差四元數的第一個分量為正,從而按照最短的旋轉將飛行器的當前方位驅動到參考方位。在外環中,利用對空氣動力的估計和 MRAC 法則確定所需的推力。參考方位是根據正交普羅克斯特問題的解確定的,該問題可找到從當前推力方位到所需推力方位的最小旋轉。由于正交普羅克里斯特問題的不連續性質,角速度和加速度無法通過對正交普羅克里斯特問題解的時間導數來推導。奇異值分解的不連續性。因此,我們使用兩次連續可微分函數--球面線性插值,來尋找連接捕捉車輛當前方位的單元四元數和捕捉參考方位的單元四元數的大地線。一個有趣的結果是,角速度和加速度只取決于參數化球面線性插值函數的標量值函數的一階導數和二階導數;實際函數并不重要。然而,確定該函數的形狀并非易事,因此采用了受模型預測控制啟發的方法。在內環中,使用氣動力矩估計值和 MRAC 法來穩定旋轉動力學,并將推力分配給各個螺旋槳。建議的控制方案的有效性通過仿真得到了驗證。
提出了一種用于自主無人機系統的集成制導和控制系統,可在未知、動態和潛在的敵對環境中,按照用戶規定的不計后果或戰術方式進行機動。在該制導和控制系統中,戰術操縱是通過在飛行器接近目標時利用環境中的障礙物來實現的。不計后果的機動是通過在向目標前進時忽略附近障礙物的存在,同時保持不發生碰撞來實現的。魯莽行為和戰術行為的劃分受到生物啟發,因為動物或地面部隊都會使用這些戰術。制導系統融合了路徑規劃器、避免碰撞算法、基于視覺的導航系統和軌跡規劃器。路徑規劃器以 A? 搜索算法為基礎,并提出了可定制調整的 "到達成本"(cost-to-come)和啟發式函數,通過降低底層圖中捕獲靠近障礙物集的節點的邊的權重,利用障礙物集進行躲避。啟發式的一致性已經確定,因此,搜索算法將返回最優解,而不會多次擴展節點。在現實場景中,需要快速重新規劃,以確保系統實現所需的行為,并且不會與障礙物發生碰撞。軌跡規劃器基于快速模型預測控制(fMPC),因此可以實時執行。此外,還采用了一個自定義的可調成本函數,該函數權衡了與障礙物集的接近程度和與目標的接近程度的重要性,為實現戰術行為提供了另一種機制。新穎的避免碰撞算法是基于解決一類特殊的半有限編程問題,即二次辨別問題。避撞算法通過尋找將無人機系統與障礙物集分隔開來的橢球體,生成無人機系統附近自由空間的凸集。凸集在 fMPC 框架中用作不等式約束。避撞算法的計算負擔是根據經驗確定的,并證明比文獻中的兩種類似算法更快。上述模塊被集成到一個單一的制導系統中,該系統為任意控制系統提供參考軌跡,并在多次模擬和飛行測試中展示了所提方法的有效性。此外,還提出了飛行行為分類法,以了解可調參數如何影響最終軌跡的魯莽性或隱蔽性。
最后,介紹了用于自主無人機系統的綜合制導和控制系統,該系統可在未知、動態和潛在敵對環境中,按照用戶的要求,以不計后果或戰術的方式執行戰術覆蓋。覆蓋的制導問題涉及收集環境信息的策略和路線規劃。收集未知環境信息的目的是幫助服務組織和第一反應人員了解態勢和制定計劃。為解決這一問題,需要綜合考慮目標選擇、路徑規劃、避免碰撞和軌跡規劃。我們提出了一種基于八叉樹數據結構的新型目標選擇算法,用于為路徑規劃器自主確定目標點。在該算法中,由導航系統推導出的體素地圖捕捉了環境中各區域的占用和探索狀態,并被分割成捕捉大面積未探索區域和大面積已探索區域的分區。大面積未探索區域被用作候選目標點。目標點的可行性通過采用貪婪 A? 技術來確定。該算法擁有可調參數,允許用戶在確定目標點序列時指定貪婪或系統行為。這種技術的計算負擔是根據經驗確定的,并證明可在現實場景中實時使用。路徑規劃器基于終身規劃 A?(LP A?)搜索算法,與 A?技術相比,該算法更具優勢。此外,還提出了一種可自定義調整的成本-歸宿和啟發式函數,以實現戰術或魯莽的路徑規劃。提出了一種新的避免碰撞算法,作為上述避免碰撞算法的改進版本,改進了所產生的約束集的體積,從而使更多的自由空間被凸集捕獲,因此,軌跡規劃者可以利用更多的環境進行戰術機動。該算法基于半定量編程和快速近似凸殼算法。軌跡規劃器以 fMPC 為基礎,采用自定義成本函數,通過滑行障礙物表面實現戰術機動,并將所需加速度作為與掩體距離的函數進行調節;采用障礙函數約束飛行器的姿態并確保推力正向性;采用四旋翼無人機系統的輸出反饋線性化運動方程作為微分約束,以實現積極的機動。利用定制的 C++ 模擬器驗證了所提系統的功效。
本論文將探討在海洋環境中運行的自主無人機系統在制導和控制算法方面存在的一些不足。
軍用飛機推進系統是噴氣發動機設計中最具挑戰性的領域之一: 在受飛機空氣動力學影響極大的多變環境中工作時,這些發動機應在不影響可靠性和運行成本的前提下,以盡可能小的體積提供大的推力輸出。此外,軍用飛機運行的多學科性質經常會引入相互矛盾的性能目標,很難將其納入發動機設計中。所有這些因素再加上發動機開發成本非常高,因此有必要在設計階段的早期進行適當的選擇,以確保開發過程的成功和新發動機概念的可行性。
盡管該領域的研究數量巨大,但也許是由于所涉及數據的敏感性,迄今為止發表的研究都集中在相當具體的主題上,而沒有涉及完整的多學科飛機推進系統集成問題。為此,需要結合不同研究領域的內容和貢獻,建立新的綜合方法。
本項目研究開發一種新方法,將發動機初步設計與飛機運行要求相互聯系起來。在此范圍內,構建了通用軍用機身的表示方法,并將其與發動機性能模型和仿真工具相結合,以研究推進系統對飛機任務性能和生存能力的影響。更具體地說,該項目在軍用飛機推進系統集成領域的貢獻主要集中在三個方面:
新的軍用飛機表示法,模擬飛機與推進系統之間相互作用的關鍵方面: 飛機空氣動力學、機身/推進系統空氣動力學干擾、紅外和噪聲特征。該模型計算要求低,適合用于大規模參數研究和軌跡優化案例。
基于模擬的新技術,用于估計爬升性能和評估飛機/發動機配置在現實任務場景中的任務能力。所開發方法的創新點包括爬升軌跡問題的多目標表述、高度-機械跟蹤技術、能量-機動性(E-M)技術的擴展,允許同時優化飛機軌跡和發動機計劃,以及為軍用飛機引入最小噪音和紅外軌跡。
考慮到飛機的紅外特征和飛機/導彈的運動性能,量化推進系統對飛機生存能力的影響。這是通過將飛機紅外模型與導彈對飛機和飛機對飛機的運動模擬相結合來實現的,這些模擬用于測量飛機易受攻擊的程度,以及飛機自身攻擊機動目標的能力。
上述方法是利用已公布的數據開發和驗證的,并在一系列測試案例中用于研究飛機的性能趨勢,在這些案例中,不同的推進系統設計在各種模擬任務中的有效性得到了評估。結果成功證明了所開發的方法能夠量化飛機性能與發動機設計之間的關系,為理解采用不同推進系統配置所產生的性能權衡提供了基礎,從而最大限度地提高動力裝置設計過程的效率。
本論文將雷達信號處理與數據驅動的人工神經網絡(ANN)方法相結合。信號處理算法通常基于對數據形成過程的建模假設。在某些情況下,這些模型足以設計出良好甚至最優的解決方案。
但在很多情況下,這些模型可能過于復雜,無法形成分析解決方案;可能過于簡化,導致實際結果與理論上的結果大相徑庭;可能是未知的,即多個已知模型或參數值中的一個可能適合數據,但我們不知道是哪個;或者過于復雜,導致解決方案的計算量過大。
數據驅動的方差網絡方法提供了彌合這些差距的簡單方法。我們在四項不同的研究中證明了這一點,在這些研究中,我們利用雷達數據模型來制定數據驅動型解決方案,這些解決方案既準確又具有計算效率。
我們將基于 ANN 的結果與計算要求極高的最小二乘法和窮舉匹配過濾法進行了比較。結果表明,ANN 的性能可與這些方法相媲美,但計算量卻很小。我們在使用各種參數值的模型采樣數據上訓練人工智能網絡。這自然可以處理漂移和未知參數值,它們可能會改變數據,但不會改變所需的預測結果。我們的研究表明,根據簡單模型的數據訓練出的 ANN 分類器的實際表現可能比理論預期的要差得多。我們通過將有限的真實數據與合成模型數據相結合來改善這種情況。在所有情況下,我們都使用了易于評估的模型。然而,這些模型的分析方法并不簡單,無法創建分析解決方案。
特別是,我們提出了一種實現非相干脈沖壓縮的方法,可在單脈沖寬度內分辨目標。我們提出了一種檢測微弱目標軌跡的方法,該方法無需事先假設目標加速度、信噪比等。我們介紹了在訓練無人機和非無人機目標分類器時納入不完美模型數據的不同方法。最后,我們介紹了一種估算海面多徑傳播路徑差的方法,用于目標跟蹤。
本論文開發了一個基于海底特征導航的模擬框架。使用自動潛航器(AUV)在海底定位感興趣的物品是一種對海軍大有裨益的能力。自動潛航器為消除勞動力需求提供了一個途徑,但其購置和維護成本仍然很高。解決這一問題的辦法是使用兩艘 AUV,其中一艘的能力更強,負責用信標尋找和標記海底物品。配備成本效益型傳感器的消耗性 AUV 將對威脅進行定位、識別和消除。利用海底成像技術將海底圖像與先驗圖像馬賽克關聯起來,再加上超短基線(USBL)信標,AUV 可以在沒有傳統導航系統的情況下完成具有挑戰性的任務目標。增量平滑與測繪 2(iSAM2)是一種同步定位與測繪(SLAM)技術,可用于 AUV 的位置定位,是一種適合實時導航操作的技術,具有圖像和 USBL 傳感功能。模擬框架能夠評估 AUV 的性能,同時將實際操作的風險降至最低。該框架由一個軟件架構組成,可使用與實際操作相同的軟件進行測試。本論文展示了這一框架,并對其在基于圖像的 SLAM 中的可用性進行了分析。
在未知和不確定的環境中開辟安全路徑是領導者-追隨者編隊控制的一項挑戰。在這種結構中,領導者通過采取最佳行動向目標前進,追隨者也應在保持理想隊形的同時避開障礙物。該領域的大多數研究都將編隊控制和障礙物規避分開考察。本研究提出了一種基于深度強化學習(DRL)的新方法,用于欠驅動自主水下航行器(AUV)的端到端運動規劃和控制。其目的是為 AUV 的編隊運動規劃設計基于行動者批判結構的最優自適應分布式控制器。這是通過控制 AUV 的速度和航向來實現的。在避障方面,采用了兩種方法。第一種方法的目標是為領導者和跟隨者設計控制策略,使每個領導者和跟隨者都能學習自己的無碰撞路徑。此外,跟隨者遵守整體編隊維護策略。在第二種方法中,領跑者只學習控制策略,并安全地帶領整個團隊向目標前進。在這里,跟隨者的控制策略是保持預定的距離和角度。在存在洋流、通信延遲和傳感誤差的情況下,展示了所提出方法在現實擾動環境下的魯棒性。通過大量基于計算機的模擬,對算法的效率進行了評估和認可。
對手的聲學傳感器會給試圖在不被發現的情況下行動的美國海軍潛艇帶來問題。解決這一威脅的潛在方法之一是使用主動噪聲消除來掩蓋潛艇噪聲。本論文通過數值求解偏微分方程約束優化問題,計算信號在模擬的二維海洋環境中傳播時,給定源信號的掩蔽信號,從而研究這一想法的可行性。我們研究了信號源的位置和類型對消除強度的影響。特別是,我們表明,只要知道聲源的位置和聲譜,就有可能有效地消除特定區域內聲源發出的聲音,例如聲學傳感器附近的區域。
前沿作戰基地(FOB)防御是一項人力密集型任務,需要占用作戰任務的寶貴資源。雖然能力越來越強的無人駕駛飛行器(UAV)可能會執行許多任務,但目前的條令并沒有充分考慮將其納入。特別是,假設操作人員與飛行器的比例為一比一,并沒有考慮到無人機自主性的提高。本論文描述了使用先進機器人系統工程實驗室(ARSENL)的蜂群系統開發和測試自主FOB防御能力。開發利用了基于任務的蜂群可組合性結構(MASC),以任務為中心,自上而下的方式開發復雜的蜂群行為。這種方法使我們能夠開發出一種基于理論的基地防御戰術,在這種戰術中,固定翼和四旋翼無人機的任意組合能夠自主分配并執行所有必要的FOB防御角色:周邊監視、關鍵區域搜索、接觸調查和威脅響應。該戰術在軟件在環模擬環境中進行了廣泛的測試,并在實戰飛行演習中進行了演示。實驗結果將使用本研究過程中制定的有效性措施和性能措施進行討論。
2019年,海軍陸戰隊司令大衛-H-伯杰將軍發布了他的規劃指南,作為塑造未來四年的部隊的一種方式。他在其中指出:"正如我們今天所做的那樣好,我們明天將需要做得更好,以保持我們的作戰能力"[1]。這句話摘自海軍陸戰隊司令大衛-H-伯杰將軍的《2019年司令員規劃指南》(CPG),呼吁采取集中行動,以應對海軍陸戰隊在未來戰爭中預計將面臨的不斷變化的挑戰。在為海軍陸戰隊確定未來四年的優先事項和方向的CPG中的其他指導,呼吁建立一個 "適合偵察、監視和提供致命和非致命效果的強大的無人駕駛系統系列"[1]。伯杰將軍進一步呼吁利用新技術來支持遠征先進基地作戰(EABO)。EABO將需要靈活的系統,既能進行有效的進攻行動,又能進行獨立和可持續的防御行動。簡而言之,實現EABO將需要最大限度地利用每個系統和海軍陸戰隊。
從本質上講,伯杰將軍正在呼吁改變無人駕駛車輛的使用方式。通過使用大型合作自主無人駕駛車輛系統,或稱群,將有助于實現這一目標。無人車群提供了在人力需求和后勤負擔增加最少的情況下成倍提高戰場能力的能力。正如伯杰將軍所提到的 "下一個戰場",海軍陸戰隊將必須利用各種技術,最大限度地利用自主性和每個作戰人員在戰場上的影響。
目前的無人系統使用理論是以很少或沒有自主權的系統為中心。而且,目前的系統依賴于單個車輛的遠程駕駛;也就是說,每輛車有一個操作員。部隊中缺乏自主系統,這在監視和直接行動的作戰能力方面造成了差距。此外,側重于一對一操作員-車輛管理的無人系統理論要求操作員的數量與車輛的數量成線性比例。這對于 "下一個戰場 "來說是不夠的。相反,海軍陸戰隊將要求系統使操作人員喪失能力,或提高他們同時控制多個車輛的能力[2]。
考慮到這些目標,海軍研究生院(NPS)的先進機器人系統工程實驗室(ARSENL)已經開發并演示了一個用于控制大型、自主、多車輛系統的系統,該系統利用了分布式計算的優勢,并將駕駛的認知要求降到最低。ARSENL在現場實驗中證明了其系統的功效,在該實驗中,50個自主無人駕駛飛行器(UAV)被成功發射,同時由一個操作員控制,并被安全回收[3]。
這項研究的主要目的是證明使用無人機群來支持前沿作戰基地(FOB)的防御行動的概念。特別是,這需要自主生成、分配和執行有效的、符合理論的基地防御所需的子任務。這一部分的研究重點是開發基于狀態的監視、調查和威脅響應任務的描述;實施支持車輛級任務分配的決策機制;以及任務執行期間的車輛控制。
輔助研究目標包括展示基于任務的蜂群可組合性結構(MASC)過程,以自上而下、以任務為中心的方式開發復雜的蜂群行為,探索自主蜂群控制和決策的分布式方法,以及實施一般蜂群算法和游戲,這將證明對廣泛的潛在蜂群戰術有用。總的來說,這些目標是主要目標的一部分,是實現主要目標的手段。
基地防御戰術的制定始于對現有基地防御理論的審查。這次審查是確定該行為所要完成的基本任務和子任務的基礎。然后,我們審查了目前海軍陸戰隊使用無人機的理論,以確定它是否考慮到了在基地防御任務中使用這些系統的問題。
在確定了任務要求的特征后,我們為基地防御的整體任務制定了一個高層次的狀態圖。然后,我們為高層圖的所有狀態制定了狀態圖。子任務級別的狀態圖等同于MASC層次結構中的角色。
ARSENL代碼庫中現有的算法和游戲以及在研究過程中開發的新算法和游戲被用來在ARSENL系統中實現子任務級的狀態圖。最后,根據高層次的狀態圖將這些游戲組合起來,完成基地防御戰術的實施。
在游戲和戰術開發之后,設計了基于理論的有效性措施(MOEs)和性能措施(MOPs)。通過在循環軟件(SITL)模擬環境中的廣泛實驗,這些措施被用來評估基地防御戰術。在加利福尼亞州羅伯茨營進行的實戰飛行實驗中,也展示了該戰術和所有包括的劇目。
最終,這項研究在其主要目標上取得了成功,并展示了一種融合了周邊監視、關鍵區域搜索、接觸調查和威脅響應等功能的基地防御戰術。此外,開發工作在很大程度上依賴于MASC層次結構,作為制定任務要求的方法,并將這些要求分解為可在ARSENL蜂群系統上實施的可管理任務。這一戰術在實戰飛行和模擬環境中進行了測試,并使用以任務為中心的MOP和MOE進行了評估。最終結果令人鼓舞,在本研究過程中開發的戰術被評估為令人滿意的概念證明。
本論文共分六章。第1章提供了這項研究的動機,描述了這個概念驗證所要彌補的能力差距,并提供了ARSENL的簡短背景和所追求的研究目標。第2章討論了海軍陸戰隊和聯合出版物中描述的當前海軍陸戰隊后方作戰的理論。它還概述了目前海軍陸戰隊內無人機的使用情況,并描述了目前各種系統所能達到的自主性水平。第3章概述了以前在自主系統的基于行為的架構領域的工作,ARSENL多車無人駕駛航空系統(UAS)和MASC層次結構。第4章對基地防御戰術的整體設計以及高層戰術所依賴的游戲進行了基于狀態的描述。本章還詳細介紹了用于創建、測試和評估這一概念驗證的方法。在此過程中,重點是對每一戰術和戰術所針對的MOP和MOE進行評估。第5章詳細介紹了所進行的實戰飛行和模擬實驗,并討論了與相關MOPs和MOEs有關的測試結果。最后,第6章介紹了這個概念驗證的結論。本章還提供了與基地防御戰術本身以及更廣泛的自主蜂群能力和控制有關的未來工作建議。
本研究調查了使用雷達跟蹤數據將無人機(UAs)分類為旋翼或固定翼類,作為減少誤報和操作員負擔的一種手段。該研究使用來自實驗飛行的UA遙測數據以及模擬雷達軌跡數據來訓練機器學習(ML)分類器。探討了遷移學習的應用。使用有限的數據集獲得的結果顯示,根據所使用的配置,真陽性和真陰性率超過80%。初步研究強調了改善這一性能的一些重要途徑。
探測和識別無人機對加拿大武裝部隊保護部隊和資產至關重要。作為一種全天候和遠程能力,雷達提供關鍵的軌跡數據,可以提示光電/紅外(EO/IR)系統或操作員。本研究開發了一種基于雷達航跡數據的分類器,用于區分旋翼和固定翼兩類無人機,以減少誤報和操作人員負擔。
在本節中,我們將概述當前研究的數據流。基本概念是利用飛行中保存在無人機上的遙測數據。這些數據集代表了典型的UA軌跡,無論是在飛行員控制下還是使用預先編程的航路點,以及在真實的風環境條件下飛行等。這些遙測數據集可以告知軌跡本身,并可以作為訓練分類器區分uav和雜波(特別是鳥類)或不同UA類型之間的基礎。在本研究中,我們研究訓練分類器來區分I類的旋轉翼和固定翼無人機。
圖1中的原理圖解釋了數據流。首先,對遙測數據集進行預處理,并將其標記為屬于旋翼類(ID = 0)或固定翼類(ID = 1)。預處理的軌跡可以并將直接與涉及ML模型的其余數據流一起使用。經過預處理的軌跡數據還可以作為Stone Soup跟蹤庫的輸入,與建模的雷達參數和位置一起,生成模擬雷達軌跡數據。這個過程將在第4節中介紹。
軌跡(來自預處理器和模擬軌跡數據)用于創建更多數量的子軌跡。這里的想法是獲得一個分類器,它可以在只處理子軌跡后區分UA類。可以研究創建子軌跡的不同方法,這將在第5節中討論。對于本研究,我們選擇將子軌跡視為獨立的實體,但其他選項都是有效的研究思路,如第7節所述。
其余的數據流涉及典型的監督機器學習技術,將數據集分為訓練、驗證和測試數據集、計算特征以及訓練和測試ML模型。在我們的例子中,我們有預處理的遙測數據和模擬雷達軌跡數據的混合。
圖1:當前研究中涉及的不同步驟的示意圖。
F-22 經過實戰驗證,在沖突地區作戰了十多年。盡管它是地球上最主要的空對空戰斗機,但飛機的不斷改進繼??續使 F-22 更具殺傷力。最大化任務能力 (MC) 率的最佳實踐沒有成功地編纂和保護數據。本文使用數據包絡分析 (DEA) 來識別 MC 率優化且高效的基準環境。 DEA 成功地比較了兩個單位的投入和產出的相對效率,并確定了效率更高的組織。此外,DEA 還為美國空軍現任高級領導人和戰術經理提供了對績效環境的洞察力,在這些環境中,可以最大限度地提高相對效率,以在財政受限的環境中支持國防戰略。最后,DEA 模型可用于分析額外的 F-22 單位、其他飛機機隊以及基地級維護操作中更細微的輸入/輸出關系。