F-22 經過實戰驗證,在沖突地區作戰了十多年。盡管它是地球上最主要的空對空戰斗機,但飛機的不斷改進繼??續使 F-22 更具殺傷力。最大化任務能力 (MC) 率的最佳實踐沒有成功地編纂和保護數據。本文使用數據包絡分析 (DEA) 來識別 MC 率優化且高效的基準環境。 DEA 成功地比較了兩個單位的投入和產出的相對效率,并確定了效率更高的組織。此外,DEA 還為美國空軍現任高級領導人和戰術經理提供了對績效環境的洞察力,在這些環境中,可以最大限度地提高相對效率,以在財政受限的環境中支持國防戰略。最后,DEA 模型可用于分析額外的 F-22 單位、其他飛機機隊以及基地級維護操作中更細微的輸入/輸出關系。
本報告著重于2025年混合部隊的任務工程過程。來自OPNAV N9I的最新任務強調了關注使用成本保守的無人系統的必要性。具體來說,重點放在近鄰的競爭對手大國以及在南海的反介入/區域拒止(A2/AD)情況下可能出現的問題。海軍水面作戰中心的任務工程方法被用來確定擬議的替代艦隊架構的具體事件,然后使用作戰模擬和優化模型進行分析。對目前的無人系統,特別是那些正在開發的高技術準備水平無人系統的性能特征和成本的研究進行了匯編。提議的無人系統架構是作為A2/AD問題的解決方案而開發的。然后,無人系統架構通過優化模型運行,以最大限度地提高系統性能,同時最小化成本。然后,架構優化的結果被輸入到建模和仿真中。然后比較每個架構的整體有效性,以找到最有效的解決方案。對結果進行了分析,以顯示預期的任務有效性和利用擬議解決方案的無人架構的擬議成本。最有效的架構包括搜索、反蜂群、運送和攻擊系統。
系統工程分析31組由美海軍作戰司令部戰爭整合處(OPNAV N9I)負責確定一個解決方案,以彌補與大國在2025年的預期能力差距(Boensel 2021)。該解決方案系統必須具有成本效益并能在2025年之前交付。SEA團隊利用任務工程過程來確定候選的未來艦隊架構來解決問題(工程副主任辦公室2020)。
到2025年,如何才能有效地對抗近鄰對手的反介入和區域拒止能力?
以具有成本效益的方式調整目前的能力,并創建一個未來的架構,以加強美國海軍的作戰能力,包括存在、欺騙、ISR以及在反介入和區域拒止環境中的防御和進攻能力。
利用任務工程流程,總體情景被設定在2025年的南海。大國已執行了其九段線的領土要求,并建立了一個反介入/區域拒止(A2/AD)區。大國不斷擴大的艦隊、對人造島嶼的使用、遠距離ASCMs以及對無人系統的擴大使用使美國的水面作戰艦艇處于高風險之中。總體任務是美國海軍DDG通過提高其殺傷力和生存能力,在A2/AD區域內進行FONOPS。在整個方案中,有三個小場景被開發出來。OTH ISR、目標選擇和交戰,威脅無人機蜂群,以及提供目標選擇的威脅無人機ISR資產。
衡量任務成功與否的總體標準是美國海軍部隊在近乎同行的反介入區域拒止環境中的作戰能力。有助于衡量成功的有效性的措施是DDG的生存能力和殺傷力的提高程度與解決方案系統的成本相結合。
為了分析擬議的系統解決方案(SoS)是否能達到既定的成功標準,設計了一個價值體系。利用通用的海軍任務列表,項目組確定了擬議的系統解決方案需要完成的三個二級任務,以完成任務(海軍部,2008)。
對三個選定任務下的后續任務進行了評估,以確定擬議系統需要完成的具體功能。通過這次審查,確定了候選無人系統需要完成的四項高級功能。這些功能是交付、搜索、通信中繼和打擊。為每項功能選擇了性能措施,以用于多屬性價值分析。
多屬性價值分析被用來比較完成四個功能中一個或多個功能的候選系統。一個系統的價值是根據每個性能指標對完成一個特定功能的重要性,給每個性能指標分配一個權重而得出的。權重從1到5不等,其中5表示最重要的MOP。計算MOP和權重的乘積,并將每個乘積相加,以獲得系統的價值。
為了確定可行的候選系統,項目組成員各自研究了一個不同的無人系統,并收集了每個候選系統的性能衡量標準。如果一個特定的無人系統的MOP值不知道,則推斷其值與一個類似的系統相同。如果不存在這樣的類似系統,則使用啟發式方法估計該值。對于每項功能,至少有一個系統符合技術成熟度,可考慮用于2025年的混合部隊。
為了實現所有四個功能,候選系統的組合被排列組合成16個系統簇。每個備選方案的系統價值和成本都被計算出來。系統價值的計算方法是將每個備選方案中的每個系統的價值相加。
為了產生用于比較的替代方案,該團隊使用整數線性規劃生成了架構。這是用Pyomo的優化功能完成的。線性規劃被創建、約束以更好地表示現實,并被解決以生成分別針對性能、預算和替代合約選項進行優化的替代架構。
現代導彈戰可以使用炮擊作戰模型進行評估。這個模型被用來計算每個小場景中的每個SoS備選方案的有效性。結果顯示了超視距ISR平臺的重要性,一個獨立的武器系統來對付敵人的無人機,目前IAMD作戰系統的有限防御能力,以及超視距搜索和瞄準能力。
“大國”和美國都擁有深入的綜合空中和導彈防御。為了證明這種互動,在微軟Excel中使用反二項式函數對不同的交戰進行了建模。每一個擬議的艦隊架構都被輸入到三個小插曲的戰斗模擬中。為了獲得隨機的結果,試驗的數量被設定為300次,每個概率都有一個可能的值范圍。該模型中的自變量可分為防御性或進攻性變量。防御性變量是每個單位的綜合防空和導彈防御武器的殺傷數量和殺傷概率。PLAN的進攻性變量是YJ-18 ASCM和Harpy無人機的命中數。美國海軍的進攻性變量是海上攻擊戰斧、ASCM和特定攻擊無人機的進攻性命中數量。
模擬的結果顯示了擊中敵方水面平臺或美國海軍水面部隊的數量。通過比較建議的系統與基線的命中率,可以得出變化的百分比。在我們的分析中,進攻和防御的有效性被平均加權,允許將進攻和防御百分比變化的高值相加,以計算出高低變化的總百分比。
基于智能體的建模和仿真(ABMS)被用來驗證每個設想的系統架構與所需的MOE。ABMS旨在通過對智能體之間的相互作用進行建模,來捕捉戰爭交戰的隨機性,但又很復雜。進行了蒙特卡洛分析,以收集每個系統性能的個體層面的數據。隨后的統計分析提供了一個途徑,以確定和量化每個擬議的系統架構所實現的改進。為此目的,指揮部:現代行動(CMO),是一個跨領域的現代兵棋推演計算機軟件,旨在模擬戰術到作戰水平的行動,被用作仿真引擎。CMO模擬的是基于規則的智能體,它們相互之間以及與環境之間的互動,包括感興趣的場景中的武器系統(Coyote, YJ-18, Chaff)和平臺(例如PLAN DDG, Luyang)。與多屬性價值分析方法相比,CMO允許對定量的系統MOP進行建模,并在模擬結果中觀察其相對差異。
電子表格戰斗模型模擬的第一個結果是解放軍DDG在三個不同的迭代中對美國海軍DDG的命中率,即只用YJ-18攻擊,只用哈比攻擊,以及YJ-18和哈比同時攻擊。同時使用YJ-18和Harpy的命中率被作為防御性MOE的基線值。接下來,兩種不同的防御性無人機系統被分別加入到作戰模型中。對只有哈比的攻擊和YJ-18與哈比的同時攻擊進行了重復模擬。每個系統的防御性百分比變化是用前面描述的公式計算的。
接下來的結果是美國海軍DDG在三次不同的迭代中擊中PLAN DDG的次數。模擬了僅用MST攻擊、僅用ASUW無人機攻擊以及MST和ASUW同時攻擊的結果。只用MST攻擊的命中率作為進攻性MOE的基線值。接下來,七個不同的運載系統被分別加入到作戰模型中。對僅有ASUW無人機攻擊和同時進行的MST和ASUW無人機攻擊進行了重復模擬。每個投送系統的進攻百分比變化被計算出來。
將同等權重的進攻和防守百分比變化相加,計算出高和低的總變化百分比。根據該模型,期望值是這樣的:在0.95的置信度下,增加SoS將使水面部隊的有效性增加一個介于高值和低值之間的百分比。
總的來說,從ABMS觀察到的性能與從電子表格模型觀察到的性能MOE相關。在所有提議的架構中,都觀察到了防御和進攻MOE的明顯改善。這是預料之中的,因為在DDG上增加任何防御性武器系統應該減少艦隊DDG的直接命中數量。同樣,增加一個具有增強OTH感知能力的進攻性武器系統會增加對目標直接作用的武器數量。
對防御性和進攻性MOE與每一方所消耗的平均武器數量的比率的進一步分析顯示,由于美國海軍DDG上增加了反群武器系統,防御性MOE得到了改善。這種增加被證明是對所有架構的一種有效的廣泛改進。三種提議的架構之間最明顯的差異來自于進攻性MOE(%),其中性能系統優于其他架構。與發射的武器總數相比,預計一個性能更好的系統會向目標發射更少的武器,同時造成更多的命中。
這項工作證明了低成本的無人駕駛威脅系統給傳統水面戰艦帶來的危險,這些系統可以在幾乎沒有警告的情況下進行協調和攻擊,并為船員提供很少的反應時間。為了避免強制增加對峙距離以提高生存能力,有必要使用增程傳感器系統和反無人機系統來彌補預期的能力差距并提供進入被拒絕區域的機會。為了使這些系統可行和安全,高帶寬的通信系統將是必需的。
為了滿足這些需求,建議的解決方案系統利用Dive-LD來運送Coyote無人機平臺。搜索和通信中繼將由兩個VBAT無人機平臺提供。這種平臺組合為每一美元的系統成本提供了最高的進攻和防御能力的提高。叢林狼 "無人機也將作為一個蜂群來防御威脅性無人機群和威脅性無人機ISR資產。增加解決方案系統的采購將提高艦隊的生存能力和殺傷力,并允許在其他艦隊優先領域進行額外投資。
建議通過為無人機平臺配備額外的無源傳感器來改進該系統,以利用電磁頻譜的所有部分,從而提高在所有天氣和戰斗條件下探測敵方威脅的能力。此外,擬議的解決方案系統可以擴展到許多其他領域和任務區,如港口防御和反對出口。
美國空軍應追求新一代的中程備用殺傷性武器,以開發一種在與中國或俄羅斯的重大沖突中能夠打擊10萬個或更多目標點的彈藥庫存。
下一代中程PGM的尺寸應該是可以由隱形戰斗機和轟炸機大量內部攜帶的,以減少攻擊高度分散和位于有爭議和高度爭議環境深處的目標集的時間和成本。
這些PGMs還應該被設計成具有低可觀察性和其他特征,以穿透先進的綜合防空系統,減少美國空軍在同行沖突中所需要的飛行架次和武器數量。
用下一代備用PGM穿透隱身飛機將具有射程、生存能力和獨立完成殺傷鏈的能力,以對付越來越具有移動性和可遷移性的目標集。
經過幾十年的推遲和取消的現代化計劃,空軍對美國同行競爭對手的領先優勢正在被削弱,其部隊規模不足以滿足其被要求的作戰需求。同時,對國防開支的擠壓威脅著空軍的年度預算,而空軍的年度預算長期以來一直低于陸軍和海軍的單獨預算份額。這些挑戰使空軍處于一個脆弱的地位,其現代化投資中的錯誤步驟可能是災難性的。空軍必須做出明智的選擇,如果它要用它將獲得的稀缺資源來最大限度地提高其戰斗力。一個關鍵的選擇將是它為發展精確制導武器(PGM)庫存而采取的戰略,該庫存的大小適合于同行沖突。如果空軍要保持對中國和俄羅斯的精確打擊優勢,就必須平衡其庫存彈藥的射程、尺寸、速度、生存性和能力。這將要求空軍開發一系列負擔得起的下一代中程(50至250海里)空對地PGM,可以由其第五代戰斗機和隱形轟炸機大量攜帶。這個武器系列將大大有助于最大限度地提高美國在有爭議環境中的打擊行動的能力和降低其成本。空軍未來的PGM庫存應
1.支持未來對高度分散和位于有爭議地區深處的目標進行遠程穿透性打擊。
2.由設計成能在有爭議的環境中生存并到達其指定目標的武器組成。
3.能夠有效地打擊具有挑戰性的目標,這些目標具有移動性,能夠迅速轉移,或者被加固或深埋。
4.在針對同行對手的長期行動中,有能力打擊100,000個或更多的目標瞄準點。
5.包括各種武器的組合,使大規模的穿透性打擊行動的成本效益最大化。
重新平衡空軍的PGM組合,使之包括下一代中程PGM系列,用于替補打擊,這將補充美國空軍第五代戰斗機和轟炸機的能力,提高其擊敗挑戰性目標的能力,并將以足夠的價格采購同行沖突所需的規模。
2019年,美國海軍陸戰隊(USMC)開始進行組織變革,目的是成為西太平洋地區卓越的偵察和反偵察部隊。為了實現這一目標,海軍陸戰隊公布了《2030年部隊設計》,目前正在采購新的作戰系統,并創建一個新的組織表,以便在地理位置偏遠、環境惡劣的地方獲得并保持殺傷力。
《2030年部隊設計》中的主要行動單位之一是海軍陸戰隊濱海團(MLR)。MLR包含步兵、火箭炮、防空、后勤、指揮和控制單位,用海軍陸戰隊司令的話說,是 "為在有爭議的空間進行海軍遠征戰而優化的,專門用于促進海上封鎖和保證進入以支持艦隊"(Berger 2019, p.5)。然而,第一個MLR最近才被激活,因此關于MLR的能力和限制的問題層出不窮。
特別令人感興趣的是在海軍陸戰隊濱海團安全區域內進行偵察和反偵察的海岸警衛隊的使用。這項研究的目的是研究海軍陸戰隊濱海團在各種實際環境中的能力,以及應對當代同行的海軍威脅,以幫助為海軍陸戰隊濱海團的警衛部隊最致命的組成和使用方法提供決策依據。為此,作者試圖回答以下問題:
利用海軍水面作戰中心開發的建模與仿真工具箱(MAST),我們使用最先進的實驗設計,有效地執行了27250次海軍陸戰隊濱海團和中國海軍(PLAN)水面行動組(SAG)之間的模擬戰斗。圖1描述了建模環境和模擬中的一些智能體。
圖 1. MLR 警衛部隊和解放軍水面戰斗人員之間的模擬交戰
在每次模擬交戰中,MLR 的任務是執行海上拒止任務,他們試圖在保持戰斗力的同時最大限度地摧毀敵艦數量。 MLR 使用了一支具有以下基線組成的警衛部隊:四艘輕型載人自主作戰能力(LMACC)艦艇、五艘中型無人水面艦艇(MUSV)和 15 艘遠程無人水面艦艇(LRUSV)。在整個實驗過程中,每次數量都不同,以評估不同組合的功效。警衛部隊的任務是“通過戰斗以贏得時間,同時觀察和報告信息,保護主力免受攻擊、直接火力和地面觀察”(MCDP 1-0,第 11-13 頁)。為了評估警衛部隊對友軍生存能力和殺傷力的影響,我們改變了船只類型的數量、每種船只類型的位置以及船只的傳感器能??力。我們使用有效的實驗設計來探索上述因素的各種組合的影響。
從 27,250 次模擬交戰中,觀察到一些趨勢,這些趨勢不僅回答了研究問題,而且提供了為 2030 年部隊設計決策和倡議提供信息的機會:
警衛部隊組成:LMACC 數量是預測生存能力和殺傷力的主要因素。LMACC 是一種小型導彈戰艦,載人較少,擁有高度自主的艦船系統。它可能被配置為許多角色,但在這種情況下,攻擊。對實驗輸出的分析表明,警衛部隊應該有不少于六個 LMACC。
殺傷力:在更靠近海岸(10-15 海里)的地方使用 LMACC,將 LRUSV 部署在更深的位置(100 海里),導致摧毀的 GBASM 發射器更少,摧毀更多的海軍艦艇。
將 LMACC 與可以充當 LMACC 偵察員的較小平臺配對會產生更有利的友好結果。為此,為 LRUSV 配備探測敵艦的能力——使用被動或視覺傳感器——在更遠的范圍內使 LRUSV 能夠更早、更準確地傳達有關對手的組成和部署的信息。
現代沖突中的雙方都可能出現高損耗。由于戰斗的固有不確定性,確切百分比的可變性很高,但在實驗中摧毀的 GBASM 發射器的平均數量是 36 個中的 15.62 個。
本研究的目的是進一步討論 MLR 的組成、能力和使用,同時激發新的研究,為未來的部隊設計決策、實彈試驗和戰術提供信息。
航空仿真環境(葡萄牙語為Ambiente de Simula??o Aeroespacial - ASA)是一個定制的面向對象的仿真框架,主要用C++開發,能夠對軍事作戰場景進行建模和仿真,以支持巴西空軍在航空航天方面的戰術和程序開發。這項工作描述了ASA框架,帶來了其管理多個仿真機的分布式架構、用于后處理仿真數據的數據分析平臺、在仿真運行時加載模型的能力,以及同時進行多個獨立執行的批處理模式執行平臺。此外,我們還介紹了最近在空戰背景下使用ASA框架作為仿真工具的工作清單。
關鍵詞:仿真環境,分布式仿真,數據分析,軍事,作戰場景
高級研究所(IEAv)是巴西空軍(For?a Aérea Brasileira - FAB,葡萄牙語)的一個研究組織,自2018年以來,開發了航空航天仿真環境(Ambiente de Simula??o Aeroespacial - ASA,葡萄牙語),以提供一個計算解決方案,實現作戰場景的建模和仿真,允許用戶建立戰略、參數和指揮決策,支持在航空航天背景下為國防目的制定戰術、技術和程序。
現代戰場場景的特點給建立實際的戰斗仿真帶來了新的挑戰,需要更多的綜合和靈活的解決方案,不僅要解決技術問題,還要解決組織問題[10]。仿真、集成和建模高級框架(AFSIM)是一個正在開發的框架的例子,以解決其中的一些挑戰[1];然而,它只限于少數美國合作伙伴。在這種情況下,ASA環境被設想為同時足以支持FAB的戰略規劃,滿足作戰分析的需要,并允許開發和評估新技術以加強軍事研究,將自己定位為一個靈活的解決方案,可以根據用戶需求進行調整。這種靈活性是針對客戶的不同特點,這導致了廣泛的要求,而這些要求僅靠商業現成的(COTS)仿真軟件是無法滿足的。由于開發一個全新的解決方案并不高效,ASA團隊決定研究公開可用的工具,旨在將它們整合到一個靈活、可訪問和可擴展的環境中。
擬議的解決方案使用混合現實仿真平臺(MIXR)[11]作為其仿真引擎,這是一個開源的軟件項目,旨在支持開發強大的、可擴展的、虛擬的、建設性的、獨立的和分布式的仿真應用。ASA擴展了MIXR的可能性,增加了額外的元素,創造了一個環境來優化開發者和分析者的任務。我們創建了一個管理器應用程序,作為多種資源之間的接口,作為一個樞紐來運行、存儲和分析眾多計算機上的各種仿真。此外,這個應用程序允許同時創建大量的仿真,只需根據分析員的需要改變初始條件。同時,模型和工具可以在運行時動態加載,以增加靈活性。所有仿真數據都存儲在一個專門的數據庫中,這加快了數據收集過程,促進了更強大的統計分析。此外,考慮到結果的復雜性和ASA用戶的不同技術知識,我們在系統中整合了一個專門的數據分析平臺,不僅用于規劃或可視化目的,還用于對情景產生的數據進行后期處理。
因此,這項工作的主要貢獻是為軍事目的的航空航天背景下的建模和仿真引入了一個新的環境,包含:一個管理多個仿真機的分布式架構;一個用于后處理仿真數據的增強型軍事作戰場景數據分析平臺;一個在仿真運行時加載模型的能力;一個使用不同初始參數進行多次執行的批處理模式執行。此外,我們介紹了最近使用ASA平臺作為空戰領域解決問題的仿真工具的工作清單。
本文的其余部分組織如下。第2節介紹了ASA的架構。在第3節中,我們帶來了一些使用ASA作為仿真工具的研究,這些研究與空戰分析有關,作為這個仿真框架的應用實例。最后,第4節陳述了關于ASA當前狀態的結論,并為未來的工作帶來一些想法。
一系列因素(射程空間減少、空域限制、武器系統可用性、缺乏目標模擬能力、敵對能力監測)正在推動北約向分布式合成訓練過渡。為了幫助實現這一轉變,北約科技組織(STO)成立了MSG-165任務組,負責為聯合和聯盟空中行動通過分布式仿真(MTDS)執行任務訓練。
MTDS能力的發展并不局限于MSG-165的工作;事實上,它是北約的智能防御計劃之一,由美國贊助,因此在各個層面都有很好的知名度,但仍然未能取得必要的進展。雖然仍有一些挑戰,但該小組迄今為止所開展的工作已經為北約現有的其他合成訓練問題提供了解決方案。這些都體現在文件中,包括:
建立共同的空中訓練目標,幫助確定聯盟的訓練要求,幫助調整適當的訓練媒體。
制定參考架構原則,為聯合MTDS能力的使用提供基礎。
建立MTDS能力驗證演習,稱為 "斯巴達勇士20-9"(SW 20-9)。SW20-9是對以前“斯巴達勇士”方案的修改,是一個由美國空軍-非洲作戰中心(UAWC)協調的多邊參與機會,通過北約機密級別的聯合戰斗實驗室(CFBL)網絡為聯盟伙伴提供持續的連接,進行日常的、以聯盟為中心的、由單位領導的訓練。
制定MSG-165關于如何利用MTDS來支持北約空中作戰訓練的設想。在開發這個愿景時采用的方法顯示了更廣泛的效用,并有可能用于幫助其他部門確定他們自己的未來培訓愿景。
本文將強調在建立一個共同的北約聯合MTDS環境方面所取得的成就。
Arjan Lemmers是英國皇家海軍陸戰隊的高級項目經理。他是北約MSG-165任務組MTDS的聯合主席,在國際分布式任務訓練計劃方面有長期經驗。Arjan也是機載嵌入式訓練系統和LVC互操作性方面的專家。Arjan領導著這個領域的幾個研發項目,并且是幾個國際社區中這些主題的主要參與者。
Clark Swindell是美國空軍作戰中心(UAWC)的建模和仿真主管。他在通過聯合模擬提供分布式訓練方面有豐富的經驗,是NMSG-165的美國國家負責人。克拉克的經驗主要集中在大規模演習,使用聯合模擬,如JLVC,JLCCTC和BLCSE,這些都是使用分布式仿真和玩家的位置,以及整合LVC互操作性和合成環境。
Richard Hemmings是亨廷頓-英格爾斯工業公司(HII)的承包商,是美國空軍作戰中心(UAWC)的LVC集成和開發負責人。最初,他在UAWC作為操作主題專家(SME)和多國LVC演習的項目官員工作,后來他被調到 "未來計劃 "工作,負責整合和開發。作為專家加入北約MSG-165任務組,理查德幫助領導UAWC的工作,主持驗證演習。
北約和各國都需要進行聯合的集體訓練,以確保任務準備就緒。一系列的因素(射程空間的減少、空域的限制、武器系統的可用性、目標模擬能力的缺乏、敵對能力的監測)促使北約向分布式合成訓練過渡。為了幫助實現這一轉變,北約科技組織(STO)成立了MSG-165任務組,負責為聯合和聯盟空中行動通過分布式仿真(MTDS)執行任務訓練的增量實施。
本文將強調在建立一個共同的北約聯合MTDS環境方面取得的成就。它首先解釋了北約MTDS能力的背景,以及之前為實現這一能力所做的努力。然后,它提出了訓練目標,并描述了實現這一即將到來的重要訓練能力的步驟。隨后是MTDS原則的定義,為多個利益相關者的觀點提供要求和標準。這促成了MTDS參考架構,它提供了一個符合上述架構原則的通用和可重復使用的描述。在下一部分中,考慮了為聯盟集體訓練部署MTDS跨域安全解決方案時應考慮的安全問題。本文最后對斯巴達勇士20-9演習進行了展望,該演習被用作北約MTDS能力的驗證演習。
合成能力已經成為滿足北約軍事力量作戰訓練需求的一個重要工具。新的系統和平臺正變得越來越復雜,需要更多的準備時間來使用。技術能力的提高和成本的降低,再加上環境限制的增加和對實戰活動的敵對(電子)監控能力的提高,使得合成訓練的使用更具吸引力。因此,通過分布式仿真任務訓練(MTDS)實現的集體訓練(CT)對北約和成員國的準備工作變得越來越重要。許多成員國正朝著更多地使用先進的模擬進行任務訓練和采用國家MTDS能力的方向發展,但北約目前還沒有一個集體的MTDS能力來利用這些發展進行聯盟CT。
過去,北約在這一領域采取了一些舉措,從2000年開始進行了關于MTDS的SAS-013研究(NATO RTO SAS-013, 2004)。這項研究確定了參與國的空勤人員任務訓練的做法和局限性,并確定了先進的分布式仿真是否能加強北約飛行員和空勤人員的訓練。它提出了未來的方向,將促進北約空勤人員培訓和任務演練的分布式仿真能力的發展。這在2004年的培訓示范演習First WAVE中得到了推進,即 "虛擬環境中的第一個作戰人員聯盟"(NATO RTO SAS-034,(2007)。第一次波浪演習沒有遇到不可克服的技術障礙,并證實MTDS可以提供一個重要的新能力來滿足北約的任務培訓需求。MTDS工作組建議,北約和聯合國應認可MTDS的潛力,并共同努力將MTDS推進到作戰能力。第一波倡議的后續是北約SMART(2007年)、北約現場、虛擬、建設性(LVC)(2010年)項目,以及2011-2012年北約工業咨詢小組(NIAG)關于空中聯合任務訓練的分布式仿真研究小組(NIAG SG 162,2012)。這些研究為北約MTDS行動概念(CONOPS)的發展提供了越來越清晰的思路。然而,沒有一項研究提供了持久的MTDS能力,目的是支持作戰人員為未來行動實現任務準備。鑒于演習預算的減少,可用于實戰演習的資產的減少,以及現實模擬復雜威脅環境的難度的增加,北約缺少一種具有成本效益的手段來提高未來聯合作戰的集體行動準備能力。
北約建模與仿真小組(NMSG)的任務是 "開發和利用建模與仿真(M&S),使聯盟及其合作伙伴受益"。上述考慮是NMSG在2013年啟動MSG-128任務組 "通過分布式作戰逐步實施北約任務訓練"(NATO STO MSG-128, 2018)的動機。MSG-128研究已經驗證了連接異構作戰訓練模擬器的技術可行性,以便為多國空中任務演習提供真正的訓練價值。它已經起草了MTDS參考架構,為多國訓練演習提供了一個初步的基線,即使在促進MTDS演習就業方面仍有許多差距。多國MTDS演習的成熟將是一個漫長的過程。MSG-128小組建議,為達到這一成熟度,有以下幾個努力的軸心(Lemmers和Faye等人,2017):
在小型/中型演習的操作成熟度方面取得進展,為上述確定的差距提供技術解決方案。
繼續在作戰演習環境中驗證這些解決方案,并將這些解決方案整合到MTDS最佳實踐文件中。
將MTDS演習的可擴展性擴展到大型和聯合演習,包括空軍、海軍和陸軍之間的空域互操作性,以及包括聯合情報、監視和偵察(JISR)。這一行動將是LVC發展和MTDS在多國聯盟演習中使用的一個助推器。
MSG-128在2018年被后續任務組MSG-165 "通過分布式仿真為聯合和聯盟空中行動逐步實施任務訓練 "所接替,該任務組將持續到2021年初。其目標是為北約持久的MTDS環境建立基本要素,并通過初步的操作測試和評估來驗證這些要素。MTDS能力的發展并不局限于MSG-165的工作;事實上,它是北約的智能防御計劃之一,由美國贊助,因此在各個層面都有很好的可見度,但可悲的是仍然未能取得必要的進展。雖然仍有一些挑戰,但該小組迄今為止所開展的工作已經為北約現有的其他合成訓練問題提供了解決方案。這些都體現在文件中,包括
建立共同的空中訓練目標,幫助確定聯盟的訓練要求,幫助調整適當的訓練媒體。
制定參考架構原則,為聯合MTDS能力的使用提供基礎。
建立空中MTDS能力驗證演習,稱為 "斯巴達勇士20-9"(SW 20-9)。SW20-9是由美國空軍非洲作戰中心(UAWC)協調的一個多邊參與機會,為聯盟伙伴提供北約機密級別的聯合戰斗實驗室(CFBL)網絡的持續連接,以進行日常的、以聯盟為重點的、單位領導的訓練。
制定MSG-165關于如何利用MTDS來支持北約空中作戰訓練的設想。在開發這個愿景時采用的方法顯示了更廣泛的效用,并有可能用于幫助其他部門確定他們自己的未來培訓愿景。
為了提供最大的價值和效率,北約MTDS必須關注現有訓練安排中沒有涉及的領域。因此,它不尋求復制通過現有國家或北約活動提供的訓練,而是提供額外的聯盟合成訓練能力。北約有能力提供作戰航空部門指揮能力的合成集體訓練(CT)。然而,它還沒有能力對空中指揮部(ACC)以下的戰術能力進行綜合訓練。在合成提供 "從輪子到輪子 "的空中活動方面的這一差距,是北約MTDS提供訓練的主要重點。然而,為了實現端到端的合成訓練,任何未來的系統都應該能夠連接到現有的北約合成訓練能力,特別是支持(NATO STO MSG-165, 2019):
合成傳播和執行空軍司令部(ACC)訓練衍生的空中任務指令(ATO)、空域控制指令(ACO)和特別指令(SPINS)。
ACC執行階段的訓練,將合成訓練的任務與ACC戰術人員聯系起來,支持其動態訓練。
空中訓練的要求可以分成三個日益復雜和具有挑戰性的層次,如圖1所示,并在下文中描述:
第1級:個人能力,涵蓋人員的個人訓練和貨幣,安全地發揮作用。
第2級:戰術團隊訓練,訓練分隊的 "基石",為個人和隊員的作戰戰術和程序做準備。
第3級:戰術集體訓練,為復雜的空中行動提供訓練,需要多種空中能力和單位來完成一個行動任務。
在這三個級別中,1級和2級培訓將仍然是國家的責任。然而,3級戰術集體訓練是北約MTDS的關鍵多國要求;這源于許多國家難以實現這一級別的現實訓練所需的密度和能力范圍。盡管如此,在北約MTDS剩余能力允許的情況下,作為次要的優先事項,MTDS將用于2級訓練,作為提高這種訓練的真實性和復雜性的一種手段。
圖1:空中訓練的級別
為確保任何未來的MTDS能力能夠滿足必要的作戰訓練和演練要求,必須確定MTDS將提供的作戰訓練類型。因此,通過與MSG-165行動小組代表協商,制定了北約聯盟反恐目標(CCTO)(NATO STO MSG-165,2019)。這項工作提供了50個CCTVO。這些CCTVO被分組,以提供MTDS解決方案必須能夠支持的廣泛任務集,并幫助未來的培訓設計。以下任務集被確定。攻擊、進攻性反空、防御性反空、空中C2、空中機動性、空中情報監視和偵察、戰斗支援、空地一體化和空海一體化。
在第1級和第2級活動中的個人和構件訓練中,重點是確保機組人員能夠在駕駛艙內采取必要的行動來有效地打擊他們的平臺。然而,在第三級培訓中,雖然正確的機組人員行動仍然很重要,但概念上的重點卻發生了微妙的變化。第三級培訓必須提供培訓機會,以確保在通常大型和復雜的編隊中,控制人員和機組人員之間發生正確、及時的C2互動,如圖2所示。
圖2:將在CT環境中復制的操作互動
與1級和2級培訓相比,3級培訓的重點發生了微妙的變化,允許更加關注合成培訓的交付。因此,雖然大型實戰演習仍然是實現訓練真實性、建立信心和戰略信息的重要手段,但北約空中訓練的更大比例可以在合成環境中常規實施。這一假設已經在MSG-165行動小組中進行了討論和測試,主要的結論是,對于3級多國訓練,對于任務集,超過50%的訓練可以以合成方式進行。
北約MTDS能力旨在將國家或北約的模擬資產整合到一個分布式的合成集體訓練環境中,這些資產通過一個共同的模擬基礎設施連接。仿真資產一般通過網關或門戶連接到該基礎設施。合成訓練環境的一致性也是參與集體合成訓練和演習的模擬資產的互操作性的關鍵。含有合成環境數據的數據庫的制作可能是整個M&S成本的重要組成部分,這意味著應該促進重復使用。仿真資產提供者通常使用相同的高級流程來生成他們的環境數據產品,但詳細的數據生成流程因生產商或集成商的不同而略有不同。這些差異使數據重用變得復雜,并危及目標應用的最終互操作性。
為了實現MTDS的合成集體訓練環境,能夠快速響應新的訓練需求,需要為訓練環境的開發和工程制定共同的流程和技術協議。由于技術協議通常是在每次演習中制定的,因此仍然缺少一個具有相關工程流程和技術協議的共同認可的模擬基礎設施。這就是MTDS參考架構(RA)發揮作用的地方(van den Berg, Huiskamp, et al., 2019)。該參考架構以構件、互操作性標準和模式的形式概述了MTDS的要求,用于實現和執行由分布式仿真支持的合成集體訓練和演習,與應用領域(陸地、空中、海上)無關。MTDS RA的重點是合成集體訓練和演習,因此將包括具有MTDS特定功能和接口的構件和模式。由于RA是在北約范圍內開發的,它也將利用北約的模擬互操作性標準。
用于特定訓練或演習活動(如 "斯巴達勇士 "演習系列)的模擬環境架構被稱為解決方案架構。由于MTDS的RA為合成集體訓練環境提供了一個 "模板解決方案",因此解決方案架構中使用的許多元素的要求原則上應來自RA。但是,可能還需要進行一些改進,以滿足特定事件的要求。這可能包括選擇仿真協議和特定的中間件解決方案(DIS、HLA)、網關組件、跨域解決方案、數據記錄工具,以及代表合成物理環境(SPE)的協議和格式。參考數據交換模型是通過RA提供的,但解決方案架構仍然需要就這些參考數據交換模型中的哪些具體部分將在具體事件中使用達成協議。
通常情況下,各套原則形成一個層次結構,即架構原則將被企業原則所告知、闡述和約束。架構原則定義了使用和部署資源和資產的基本一般規則和準則。它們反映了企業各要素之間的某種程度的共識,并形成了做出未來決策的基礎。在MSG-165中,為MTDS定義了10個主要的架構原則。下面將討論這些原則。
1.支持北約行動的合成集體訓練和任務演練 MTDS工作的主要預期應用是在北約范圍內的合成集體訓練。應為單一服務和聯合行動開發一個共同的技術和程序解決方案。就技術要求而言,任務演練被認為與任務訓練密切相關。
2.啟用(混合的)現場、虛擬和建設性資產 MTDS應(在未來)支持(混合的)現場、虛擬和建設性的模擬玩家。聯合行動和聯合行動的集體訓練需要有許多模擬實體的復雜訓練場景。訓練對象通常會在實戰、虛擬和混合的LVC環境下進行訓練。解決方案應支持LVC的混合集成。
3.提供靈活性和發展能力 許多國家已經使用模擬系統進行訓練。然而,這些現有的系統在技術上往往是非常不同的。MTDS RA應定義一個框架,該框架在技術上是先進的,沒有限制性(例如,可擴展新的模擬資產),并且不會不必要地阻礙訓練(例如,帶寬,穩健性)。應定義門戶或網關,以允許在MTDS中整合遺留系統,并允許MTDS所需的靈活性。
4.使用開放標準 北約提倡使用開放標準,因為它促進了成本效益的互操作性。開放標準可以被所有各方自由使用。對私人方(如供應商)的使用沒有任何限制。
5.遵守北約政策和標準 MTDS應遵守北約關于M&S互操作性和標準的政策和協議。偏離這一原則需要說明理由,包括對合適的北約標準的評估和與替代解決方案的比較。
6.支持在北約保密級別或最高級別使用 MTDS應支持北約行動的合成訓練和任務演練。系統、理論和任務執行的保密方面需要得到保護。應就系統、網絡、場地和能夠接觸上述內容的人員的實施和認證達成協議。
7.在一次演習中支持多個安全域或飛地 應就屬于不同飛地的系統、網絡、場地和人員之間的信息交流的實施和認證達成協議,可能通過使用CDS解決方案。每個國家和北約之間的CDS解決方案的認證將由每個國家承擔。
8.提供有代表性的訓練環境 MTDS應提供一個有代表性的集體訓練環境,以支持演習中所有參與者的公平競爭(或公平戰斗)。仿真系統性能的差異不應導致某些參與者獲得不現實的(不)優勢。
9.解決多個利益相關者的觀點 MTDS使用RA來提供對特定MTDS解決方案設計的通用和可重復使用的描述。RA是以架構構件的形式來描述的,對這些構件的解決方案有要求和適用標準。為了實施MTDS,將涉及不同的利益相關者。這些構件應該為不同利益相關者的觀點提供指導。
10.通過聯網模擬器為北約和國家的集體培訓提供具有成本效益的培訓解決方案,不得對用戶以及各中心及其工作人員施加不可接受的限制,因為這些限制不值得花費時間,也不能被行動上的好處所抵消。
MTDS原則為多個利益相關者的觀點提供了要求和標準。MTDS RA提供了一個符合上述架構原則的通用和可重復使用的描述。它使用了架構積木(ABB)和架構模式(AP)的概念來定義應用和服務的框架,使國家訓練系統能夠被整合到一個分布式的合成集體訓練環境中。圖3提供了該框架中主要ABB的概述。
圖3:MTDS框架的應用和服務
圖3中的應用是面向用戶的能力,與稱為服務的后端能力互動。例如,圖中顯示--在解決方案層面--將有一個或幾個用于場景準備的應用程序;這些軟件組件與后端服務實現(如威脅生成服務)互動,向這些服務提供模擬場景數據。框架應用和服務的一個子集(門戶服務、面向消息的中間件服務、威脅和跟蹤生成服務以及合成自然環境(SNE)服務)在(van den Berg, Huiskamp, et al., 2019)中有更詳細的討論。
北約國家有必要在北約MTDS演習中整合和操作其國家或主權機密模擬資產,以實現其共同的空中集體訓練目標。同時,北約國家希望保護這些最敏感或最機密的資產、其基礎數據和信息,防止因加入這種北約MTDS演習而受到(網絡)安全威脅。在不同國家敏感度、信任度或安全分類級別的模擬資產之間實現安全連接和互操作性,對于成功實施北約MTDS能力和演習至關重要。
M&S跨域安全(CDS)服務旨在滿足這一要求,使北約國家能夠通過共同共享的北約MTDS模擬主干,對位于其國家安全領域的模擬資產進行安全互操作。在這種情況下,安全域被定義為在一致的安全政策下運行的模擬資產,并由一個組織、國家和/或安全認證機構(SAA)擁有。安全政策定義了關鍵要素,如安全分類、可釋放性、利益共同體和任何其他對模擬資產中包含和處理的實際軍事系統和理論的數據和信息的特殊處理注意事項。
在這里,M&S CDS被定義為一個由安全強化服務組成的系統,該服務是為減輕在不同安全領域運行的模擬資產之間傳輸模擬數據的特定安全風險而定制的。這樣的M&S CDS可以被看作是一種網關環境的形式。與普遍應用的M&S(網絡)網關不同,M&S CDS提供了廣泛的安全控制,以提供全面的模擬數據過濾和深度防御,具有更高的保障水平。M&S CDS服務是保護整個北約MTDS基礎設施及其組成的模擬資產免受所有形式的安全威脅所需的整個安全措施的一個專門部分。除其他外,這包括:模擬資產和設施的物理和網絡邊界保護裝置,模擬資產或設施與網絡連接的物理安全,模擬資產和監測之間的加密通信保護,人員安全許可和意識培訓。這些常見的安全措施對于MTDS演習的安全執行也應到位。
理論上,可以設想許多通用的應用拓撲結構,其中部署M&S CDS解決方案,以確保在多個安全域之間進行受控和安全的模擬數據交換。然而,在實踐中,這種拓撲結構的實施必須符合具體的使用案例和威脅環境所施加的跨域安全要求和限制。這意味著分布式仿真環境的跨域安全不僅僅是孤立地關注M&S CDS設備(如數據節點、防護裝置或信息交換網關)。只有當每個連接的安全域內的模擬資產和網段滿足某些可信的安全政策、實踐和要求,并且其相關的安全風險被充分理解和接受時,才能保證整個分布式仿真環境的適當安全水平(反之亦然)。因此,在北約MTDS用戶背景和威脅環境下,在為聯盟集體訓練部署M&S CDS解決方案時,應考慮以下安全因素。
1.最重要的是,每個北約國家需要保持對其國家擁有的模擬數據和信息的完全控制,以及在MTDS訓練演習之前、期間和之后如何共享這些數據和信息。這意味著每個國家將始終通過本國擁有的CDS設備將其機密模擬資產與北約MTDS模擬主干連接起來,這些設備受本國的SAA和安全政策的約束。
2.所有將參加北約MTDS演習的北約國家都使用私營軍事網絡北約聯盟戰斗實驗室網絡(CFBLNet)作為共同的網絡基礎設施,以連接他們的機密模擬資產和其他相關的培訓應用,直至北約機密級別。這意味著參與的北約國家有一個共同的協議,在每個國家對這些資產或應用的安全等級執行方面相互信任,在此基礎上,他們可以通過這個網絡連接、共享數據和信息。因此,目前,從這個北約CFBL網絡到較低信任安全域的級聯連接對任何北約國家來說都是非常不可取的,甚至是不可接受的。
3.北約MTDS將部署符合北約STANAG和標準的仿真互操作性中間件服務(如HLA、DIS和TENA),以便在一個統一的分布式仿真環境中對國家仿真資產進行互操作,用于集體任務訓練和演習。目前,這些中間件標準通過一個共同的共享數據空間和模擬信息交換數據模型來交換模擬數據,而這并不提供任何安全措施。這意味著,任何國家只要能進入北約CFBL網絡,并被允許用正確的加密密鑰加入特定的MTDS演習,也可以直接訪問參與模擬資產之間交換的所有模擬數據。因此,這個集體模擬數據集是MTDS演習中所有參與國(即安全領域)的 "共享秘密"。
4.M&S CDS部署拓撲結構過于復雜,將使每個國家安全領域內的機密模擬資產的安全保障和操作復雜化,并可能增加攻擊面、轉換數據流渠道的風險以及與較低信任環境的級聯連接。這意味著過于復雜的部署拓撲結構可能會在整個MTDS演習準備、執行和匯報階段給北約國家帶來額外的成本和準備時間。因此,CDS的部署拓撲結構應該在滿足國家安全和培訓要求的前提下,設計得盡可能的簡單。
圖4描述了在北約MTDS演習中部署M&S CDS的參考拓撲,該拓撲是根據前面提到的安全考慮因素確定的(Roza,等人,2020)。
圖4:北約MTDS CDS部署的參考拓撲結構
該參考拓撲結構反映了這樣一種典型情況:參與北約聯盟級分布式仿真環境的仿真資產由不同的國家擁有,因此屬于受不同SAA管轄的安全領域。為了確保每個國家完全控制其國家擁有的機密模擬數據,以及如何與其他國家共享這些數據,每個國家通常應使用自己的CDS設備。在這里,每個國家的CDS首先將自己的主權機密模擬數據集轉換并映射成可釋放的數據集,然后根據商定的集體模擬信息交換模式將其發布到集體共享的模擬數據集中。這種共享數據受到共同商定的安全措施的集體保護,如數據加密,以確保通過第三方網絡基礎設施進行保密信息交流,并對每個國家的參與模擬設施采取安全措施,以獲得加入北約MTDS聯盟級演習的權限。反之,國家擁有的CDS設備可以保護單個或聯合的國家機密模擬資產免受來自北約CFBL網絡的網絡攻擊,包括因訂閱共享數據空間的數據而導致的未經授權的模擬數據入侵。
從UAWC的演習選項中選擇,"斯巴達勇士 "活動是通過分布式仿真進行的多國、以空中為重點的訓練。這次演習將在北約的CFBL網絡上進行,在四天的時間里使用每個國家的模擬或仿真器通過DIS和HLA進行連接。UAWC模擬/環境生成器將提供整體的合成環境、安全語音、聊天功能和紅色部隊來填充該領域。
為了建立支持大規模演習所需的行動區域,UAWC雇用了其他模擬中心的專家,包括空戰訓練中心(英國皇家空軍瓦丁頓空軍基地)、北約預警系統ASCOT控制員(北約蓋倫基興航空站)和萊昂納多公司(意大利)。此外,計劃中的參與包括法國空軍(FAF)、意大利空軍(ItAF)、北約預警系統、英國皇家空軍(UK)、加拿大皇家空軍(RCAF)、荷蘭皇家空軍(RNLAF)、西班牙空軍(SpAF)、美國空軍(USAF)和美國陸軍(USA)。因此,它還將通過采用嵌入盟軍控制和報告中心(CRC)和北約預警機的美國陸軍防空炮火控制官(ADAFCO)來實現聯合和北約的互操作性訓練。為了繼續提供互操作性的機會,演習還將通過北約預警機E-3、建設性的E-8 JSTARS和皇家空軍RC-135 "鉚釘 "聯合模擬器支持情報監視偵察(ISR)的 "鐵三角"。這種ISR融合能力模擬了關鍵的現實世界ISR整合,以提高跨平臺和機構的決策技能。這項培訓還將在盟軍CRC和聯合戰術空中管制員(JTAC)之間執行美國空軍支援行動中心(ASOC)的連接。最后,為了支持這項工作,將有多架反空和攻擊飛機,包括建設性的和有人駕駛的模擬器,通過故意瞄準(DT)、打擊協調和偵察(SCAR)以及近距離空中支援(CAS)來支持協調打擊。
由于有機會進行驗證演習,目前建立的基礎設施和系統得到了利用。由此產生的系統和網絡提供了探索規定的RA和CDS配置的混合機會。因此,支持演習的數據被記錄下來,用于進一步的參考架構測試和比較,這使得演習規劃者能夠專注于實現MTDS CONEMP(NATO STO MSG-165, 2019)中概述的聯盟集體訓練目標(CCTO)。通過在整個演習責任區(AOR)創造3級訓練機會,集中精力實現盡可能多的CCTVO,演習策劃者能夠將50個CCTVO中的37個作為計劃目標(NATO STO MSG- 165,2019)。
參照上圖2,不同的任務和飛機類型之間的相互作用有助于建立3級訓練的復雜性。為了開始建立所需的部隊互動過程,規劃者希望建立一個能夠支持現有參與者所需復雜性的戰斗空間。隨著四(4)個指揮和控制(C2)元素的使用,結構化的通道被分配給每個C2元素。有了這些通道,就需要控制戰斗機的進攻/防御行動,以及確保空中加油保持所需的CAPs的支持要求。這種最初的集體行動將戰斗機及其加油機與控制它們的C2機構聯系起來,以滿足聯合空中作戰司令部(CAOC)在規劃文件中制定的規定的區域防空計劃(AADP)。這種看似簡單的互動現在發生在四(4)個不同的元素之間,可以想象是在四(4)個不同的地點。對于 "斯巴達勇士 "20-9,意大利空軍(ItAF)的歐洲戰斗機在作為C2機構的北約預警機控制的航道上與作為建設性實體的UAWC控制的加油機之間的互動現在將3個不同的單位聯系在一起,以實現一個相對良性的集體訓練目標,AAR.02--在同一地點進行空對空加油。同樣地,一個集體可以通過綜合空中行動(COMAO)完成一個更復雜的舉措,以實現進攻性反空(OCA)目標OCA.01(護航),OCA.02(戰斗空中掃蕩)和SEAD.01(壓制敵人防空)。為了建立這個集體目標,規劃人員利用C2機構在機會窗口期間將屬于COMAO包的飛機組織到他們的集結點,然后提供空中掩護(護送),假設達到CAOC的規劃文件規定的可接受的風險水平(ALR)。這個目標給C2機構帶來了決策,他們有能力從以前的打擊中辨別出ALR(防空設施是否被充分壓制?)、COMAO包的狀態、護航OCA組的狀態以建立空中控制,然后是打擊發生后的戰斗損傷評估(BDA)信息。這些集體行動現在占了多個地點的多個小組,處理融合的情報(敵方防空狀態),以及打擊前和打擊后的有效信息交流。
對于MTDS事件的規劃者來說,場景的復雜性不應掩蓋手頭任務的復雜性。在這種情況下,規劃文件根據ALR定義了限制,并建立了已知的時間事件來創建這些打擊窗口。這就創造了機會,或缺乏機會,基于提供給決策者的輸入--在這種情況下,接受培訓的C2機構。對于演習策劃者來說,所需的CCTVO成為驅動特定場景的焦點。通過創建這些決策點,在多個平臺上收集相關信息,所有這些平臺都在為已知的事件進行協調,從而實現了集體訓練點。在更大的事件中,實現這些功能的機會可能會在細節和機會的海洋中消失,以引起更大的力量反應。然而,正是通過保持任務的簡單性來控制信息的流程和流動,才可以在不影響訓練對象或創造支持環境的白軍元素的情況下常規地實現CCTO。
最后,為了改變行動區的任務,特定的任務集在整個行動區被輪換使用。這種輪換使不同的C2機構能夠在四個演習日的每一天改變他們的重點。當一些機構負責支持CAS時,其他機構則負責協調COMAO包、SCAR資產或動態目標事件。此外,戰斗的性質在四天的演習中也有所改變。通過不保持時間線(演習第1天=第100天,演習第2天=第101天,等等),計劃者可以用較小的每日投入進一步構建演習事件。在這個例子中,演習日以10天為單位向前移動。這樣,雙方的補給都可以完成,但更重要的是,戰爭的基調可以得到調整。對于SW20-9來說,10天的增量提供了創造紅方部隊推進日、藍方部隊推進日、停火(以及隨后重新陷入戰爭)日和僵局日的機會。這些都會在對事件的整體解釋中產生色調和變化,從可能的叛逃者到自相殘殺的擔憂,都需要加以考慮。這些變化為所有玩家提供了一系列的事件和任務集,以解釋和建立他們的行動方案,從而增加集體的訓練機會。
北約內部MTDS能力的發展并不限于MSG-165的工作。MSG-180工作組努力在海洋領域建立MTDS能力(名為LVC-T)(NATO STO MSG-169. 2019)。此外,這兩個小組的工作與MSG-164建模與仿真服務(MSaaS)有關(NATO STO MSG-164. 2018)。MTDS也是北約的智能防御倡議之一,由美國贊助,因此在各個層面都有很好的知名度,但遺憾的是仍然未能取得必要的進展。為了幫助這個問題,我們打算通過將海洋領域納入MTDS倡議,將智能防御的努力結合起來。雖然仍有一些挑戰,但迄今為止所開展的工作已經為其他現有的北約合成訓練問題提供了解決方案。這些問題包括:
分析未來的空中訓練需求,從而重新確認多國MTDS活動的好處。
建立共同的空中訓練目標,幫助確定聯盟的訓練要求,幫助調整適當的訓練媒體。
制定參考架構原則,為聯合MTDS能力的使用提供基礎。
制定MSG 165的愿景,即如何利用MTDS來支持北約空中業務培訓。在開發這個愿景時采用的方法顯示了更廣泛的效用,并有可能用于幫助其他部門確定他們自己的未來培訓愿景。
為了支持北約聯合MTDS的發展,我們提出了以下建議:
發展北約綜合演習要求,從北約贊助的年度MTDS演習開始。這將有助于提高整個北約對MTDS能力和好處的認識,并有助于為MTDS的培訓制定必要的優先次序。
正式確定聯盟對未來多國合成訓練的期望。我們相信,這將帶來巨大的好處,并提供必要的自上而下的方向和指導,以幫助推動MTDS能力的發展,這是一個初步要素。
本文介紹的工作是由以下北約國家和組織在MSG-165任務組中合作完成的。比利時、加拿大、法國、德國、意大利、荷蘭、挪威、西班牙、土耳其、英國、美國、歐洲航空集團(EAG)、北約工業咨詢集團(NIAG)和北約空中作戰卓越中心。所以這項工作的功勞應該歸功于這個MSG-165任務小組的所有參與者。本文的作者是MSG-165的聯合主席,并代表整個小組的作用。
兵棋模擬是一種決策工具,可以為利益相關者分析的場景提供定量數據。它們被廣泛用于制定軍事方面的戰術和理論。最近,無人駕駛飛行器(UAVs)已經成為這些模擬中的一個相關元素,因為它們在當代沖突、監視任務以及搜索和救援任務中發揮了突出的作用。例如,容許戰術編隊中的飛機損失,有利于一個中隊在特定戰斗場景中勝利。考慮到無人機的分布可能是這種情況下的決定性因素,無人機在超視距(BVR)作戰中的位置優化在文獻中引起了關注。這項工作旨在考慮敵人的不確定性,如射擊距離和位置,使用六種元啟發法和高保真模擬器來優化無人機的戰術編隊。為紅軍蜂群選擇了一種空軍經常采用的戰術編隊,稱為line abreast,作為案例研究。優化的目的是獲得一個藍軍蜂群戰術編隊,以贏得對紅軍蜂群的BVR戰斗。采用了一個確認優化的穩健性程序,將紅軍蜂群的每個無人機的位置從其初始配置上改變到8公里,并使用兵棋方法。進行了戰術分析以確認優化中發現的編隊是否適用。
索引詞:優化方法,計算機模擬,無人駕駛飛行器(UAV),自主智能體,決策支持系統,計算智能。
兵棋是在戰術、作戰或戰略層面上模擬戰爭的分析性游戲,用于分析作戰概念,訓練和準備指揮官和下屬,探索情景,并評估規劃如何影響結果。這些模擬對于制定戰術、戰略和理論解決方案非常有用,為參與者提供了對決策過程和壓力管理的洞察力[1]。
最近,無人駕駛飛行器(UAVs)作為一種新的高科技力量出現了。利用它們來實現空中優勢可能會導致深刻的軍事變革[2]。因此,它們的有效性經常在兵棋中被測試和評估。
由于具有一些性能上的優勢,如增加敏捷性、增加過載耐久性和增加隱身能力,無人機已經逐漸發展起來,并在許多空中任務中取代了有人系統[3]。然而,由于戰斗的動態性質,在視覺范圍之外的空戰中用無人系統取代有人平臺是具有挑戰性的。在空戰中,無人機可以被遠程控制,但由于無人機飛行員對形勢的認識有限,它將在與有人平臺的對抗中處于劣勢。然而,這種限制可以通過自動戰斗機動[4]和戰術編隊的優化來克服。此外,使用無人機可以允許一些戰術編隊和戰略,而這些戰術編隊和戰略在有人駕駛的飛機上是不會被考慮的,例如允許中隊的飛機被擊落,如果它有助于團隊贏得戰斗。文獻中最早的一篇旨在優化超視距(BVR)作戰中的飛機戰術編隊的文章[5]表明,空戰戰術是用遺傳算法(GA)進行優化的候選方案。該實施方案采用分層概念,從小型常規作戰單位建立大型編隊戰術,并從兩架飛機的編隊開始,然后是四架飛機,最后是這些飛機的倍數。在模擬中沒有對導彈發射進行建模。當一架飛機將其對手置于武器交戰區(WEZ)的高殺傷概率(Pkill)區域內一段特定時間,簡化的交戰模擬器就宣布傷亡。事實證明,所提出的方法的應用是有效的,它消除了團隊中所有沒有優化編隊的飛機,并為整個優化編隊的飛機團隊提供了生存空間。
Keshi等人[6]使用了與[5]相同的分層概念,從由兩架飛機組成的元素中構建大型戰術編隊。模擬退火遺傳算法(SAGA)被用來優化編隊,使其能夠克服對局部最優解的收斂。對16架飛機的編隊進行了優化,提出的最優解表明SAGA比基本的GA更有效。最后,為了探索一個穩健的SAGA,對不同的馬爾科夫鏈進行了比較,事實證明自調整馬爾科夫電流更適合所提出的問題。
Junior等人[7]提出使用計算機模擬作為一種解決方案,以確定BVR空戰的最佳戰術,使擊落敵機的概率最大化。在低分辨率下使用通用參數對飛機和導彈進行建模,并改編了名為COMPASS的模擬優化算法,模擬了兩架飛機對一架飛機的BVR戰斗。低分辨率模型假定在水平面的二維空間內有一個均勻的直線運動。使用優化的戰術表明,擊落敵機的平均成功率從16.69%提高到76.85%。 Yang等人[8]提出了一種方法來優化飛機對一組目標的最佳攻擊位置和最佳路徑。該工作考慮到飛機能夠同時為每個目標發射導彈,并將飛機與目標有關的攻擊性和脆弱性因素作為評價攻擊位置的指標。一個高保真模擬被用來模擬每個導彈的飛機、雷達、導彈和WEZ的動態特性。這項工作并沒有解決在BVR戰斗場景中優化一組飛機對另一組飛機的編隊問題。
Li等人[9]提出了一種基于指揮員主觀認識的編隊優化方法,即在空戰中目標設備信息不確定的情況下選擇飛機編隊的問題。首先,計算戰斗機的戰斗力,這是通過指揮員的主觀認識評估目標戰斗力的基礎。戰斗機的戰斗力以能力的形式表現出來,包括攻擊、探測、生存能力、通信、電子戰、預警系統等。因此,通過采用前景理論和綜合模糊評估來優化空戰訓練。最后,一個應用實例證明了該方法在小規模空戰中的可行性。作者聲稱,利用戰斗力評估戰斗情況的能力為優化空戰訓練提供了一種新的方法。
?zpala等人[10]提出了一種在兩個對立小組中使用多個無人駕駛戰斗飛行器(UCAVs)進行空戰的決策方法。首先,確定兩隊中每個智能體的優勢地位。優勢狀態包括角度、距離和速度優勢的加權和。在一個團隊中的每個智能體與對方團隊中的每個智能體進行比較后,每個航空飛行器被分配到一個目標,以獲得其團隊的優勢而不是自己的優勢。為一對對立的團隊實施了一個零和博弈。對許多智能體參與時的混合納什均衡策略提出了一種還原方法。該解決方案基于博弈論方法;因此,該方法在一個數字案例上進行了測試,并證明了其有效性。
Huang等人[11]開發了新的方法來處理UCAV編隊對抗多目標的合作目標分配和路徑規劃(CTAPPP)問題。UCAV的編隊是基于合作決策和控制的。在完成目標偵察后,訓練指揮中心根據戰場環境和作戰任務向每架UCAV快速傳輸任務分配指令。UCAV機動到由其火控系統計算出的最佳位置,發射武器裝備。合作目標分配(CTAP)問題通過增強型粒子群優化(IPSO)、蟻群算法(ACA)和遺傳算法(GA)來解決,并在歸因、精度和搜索速度等方面進行了比較分析。在進化算法的基礎上發展了UCAV多目標編隊的合作路徑規劃(CPPP)問題,其中提供并重新定義了獨特的染色體編碼方法、交叉算子和突變算子,并考慮燃料成本、威脅成本、風險成本和剩余時間成本來規劃合作路徑。
Ma等人[12]開展的工作解決了在BVR作戰場景中優化兩組(R和B)無人機對手之間的優勢地位問題。一個無人機ri∈R對一個無人機bj∈B的優勢是通過ri和bj之間的距離、ri的導彈發射距離的下限和上限、ri的高度和bj的高度之差以及ri的最佳發射高度來估計的。決定性的變量是無人機在兩組中的空間分布和每架飛機在這些組中的目標分配。無人機在三維作戰空間BVR中的可能位置被簡化(離散化),通過立方體的中心位置來表示。每個無人機組都有一組立方體。優化問題被建模為一個零和博弈,并被解決以獲得納什均衡。
Ma等人[12]提出的工作沒有使用高保真模擬來分析無人機空間分布的選擇和分配給它們的目標對BVR作戰的影響。高保真模擬對飛機、雷達、導彈及其導彈的WEZ的動態特性進行建模。這些動態特性也影響到BVR作戰時每架飛機的行動觸發,因此也影響到最終的結果。例如,如果在兩組無人機之間第一次沖突后的時間窗口內考慮高保真BVR作戰模擬,新的沖突可能會發生,直到模擬結束。因此,每個在交戰中幸存的無人機將能夠選擇一個新的目標,這取決于可用目標的優勢值。在[12]中沒有考慮與無人機行為有關的不確定性。有關敵方無人機在戰術編隊中的確切位置及其導彈發射距離的信息是行為不確定性的例子。這兩個信息和上面描述的其他信息在BVR戰斗中是相關的:它們直接影響飛機之間的交戰結果。
在這項研究中,我們試圖解決文獻中發現的一些局限性,如低分辨率模擬、與敵人有關的不確定性的處理以及缺乏對優化解決方案的穩健性的確認,旨在提高兵棋結果的質量。我們的目標是驗證哪些藍色蜂群的戰術編隊可以在BVR戰斗中戰勝紅色蜂群。作為一個案例研究,RED蜂群使用了空軍經常采用的戰術編隊,稱為line abreast[13]。為了評估BLUE蜂群解決方案的穩健性,我們解決了新的問題,改變了RED蜂群每架飛機的位置,目的是估計新的RED蜂群編隊對BLUE蜂群的優化戰術編隊的效率的影響。
我們使用自主智能體和高保真計算機模擬來優化BVR戰斗中的無人機戰術編隊,考慮與敵人相關的不確定性,如戰術編隊中的位置誤差和導彈發射距離。統一行為框架(UBF)被采納為創建自主智能體的基礎。飛機和導彈在三維環境中用六個自由度(DoFs)建模。
該程序將在接下來的章節中進一步討論。
在當前復雜的多域作戰中,白圖是指揮官了解威脅及其對任務的影響的關鍵因素。建模和仿真(M&S)與數據科學(DS)可以支持 a)最新的白圖開發 b)SME的分析工作,估計任何指揮級別的軍事行動的相關風險。本文討論了北約實施的M&S和數據科學用例,以支持SACEUR的責任區(AOR)彈性風險表述。開源數據經過分析、結構化和操作,以自動方式和按需生成與彈性7基線要求(7BLR)相關的地理參考數據/信息,涵蓋政府的連續性、能源供應、人員流動、食品和水、大規模傷亡、通信系統和運輸系統在JFC的AOR。它作為預測 SACEUR運營風險的北約彈性模型的輸入。系統動力學范式被用來開發北約彈性模型,作為在戰略層面處理定性和定量輸入數據和抽象彈性語言的混合的理想方法。戰略沖擊會影響白圖狀態的當前和未來。實施機器學習技術來估計戰略沖擊參數。該原型已在最終用戶的實驗中使用,并且已確定驗證步驟。