在當前復雜的多域作戰中,白圖是指揮官了解威脅及其對任務的影響的關鍵因素。建模和仿真(M&S)與數據科學(DS)可以支持 a)最新的白圖開發 b)SME的分析工作,估計任何指揮級別的軍事行動的相關風險。本文討論了北約實施的M&S和數據科學用例,以支持SACEUR的責任區(AOR)彈性風險表述。開源數據經過分析、結構化和操作,以自動方式和按需生成與彈性7基線要求(7BLR)相關的地理參考數據/信息,涵蓋政府的連續性、能源供應、人員流動、食品和水、大規模傷亡、通信系統和運輸系統在JFC的AOR。它作為預測 SACEUR運營風險的北約彈性模型的輸入。系統動力學范式被用來開發北約彈性模型,作為在戰略層面處理定性和定量輸入數據和抽象彈性語言的混合的理想方法。戰略沖擊會影響白圖狀態的當前和未來。實施機器學習技術來估計戰略沖擊參數。該原型已在最終用戶的實驗中使用,并且已確定驗證步驟。
本文旨在展示開源數據的潛力,結合大數據分析和數據可視化,以表明特定領域的彈性水平,其中包括北約彈性評估的基線要求(blr)。
本文中描述的概念驗證提取了特定領域的相關彈性指標,涵蓋了包括能源和交通在內的選定基線要求。概念驗證使用交互式儀表板,允許終端用戶從多個角度探索可用的公共數據,以及對這些數據進行高級分析和機器學習模型的結果。
關鍵詞:大數據分析,機器學習,彈性,能源,交通,媒體
軍隊越來越意識到大數據分析在作戰和戰略決策中的重要性和作用。在正確的時間獲得相關信息一直是做出最佳決策的關鍵因素。今天,這種影響甚至更大,因為數據和信息可以大規模收集并提供給每個人。技術和人工智能方法成為利用數據的巨大推動者[1]。
廣泛可用的開源數據來自媒體、科學文章、相關(專家)門戶網站,涵蓋經濟、政治、社會、能源、交通運輸等帶來了創造更有洞察力的背景的可能性,并通過分析各種來源和整合結果為任何評估提供了有價值的新維度。
從軍事角度來看,我們從開源數據中確定了許多跨不同領域的重要指標,這些指標可以用于評估整個聯盟的戰備和恢復能力。來自不同領域的許多指標似乎相互影響,可以相互關聯。
在去年,北約CI機構數據科學團隊參與了一項創新性的概念驗證,包括轉型和作戰命令,如ACT、SHAPE和JFCBS;為了識別、提取、計算和呈現開源數據中最相關的指標,以支持整個聯盟的彈性評估。由于彈性評估是一項復雜的評估,它依賴于許多不同領域和事件的關系,因此該項目定義了較小的范圍,重點關注以下關鍵領域:
?關鍵基礎設施——醫院、發電廠、港口、液化天然氣接收站和軍事設施
?能源——專注于電力和天然氣
?交通——專注于空運、公路、海運和接近實時的交通指標
?媒體——態勢感知
其主要目標是通過使用來自公開數據集的大數據來確定相關指標。然后創建有用的策劃數據和機器學習(ML)模型,以識別相關關系,并提供對當前情況和破壞性事件影響的見解。為了提高結果的準確性,我們最初關注于一個特定的地理區域。
可解釋的人工智能(XAI)提供了克服這一問題的手段,它基于有關深度學習(DL)算法結果的額外補充信息。雖然完全透明對于復雜的DL算法來說仍然是不可行的,但解釋有助于用戶在關鍵情況下對AI信息產品進行判斷。應該指出的是,XAI是透明度、因果關系、可信度、信心、公平、信心和隱私等方面的總稱。因此,基本的方法論是多方面的。一種已經流行的方法是局部可解釋模型-預知解釋(LIME)方法,因為它可以很好地應用于各種應用中的不同模型。在本文中,LIME算法是在戰略運營的決策建議背景下進行研究的。在簡單介紹了其概念后,介紹了文獻中的應用。然后,一個戰略博弈的場景被認為是軍事戰爭的替代環境。一個基于DL的國際象棋人工智能被做成 "可解釋的",以評估信息對人類決定者的價值。得出了與戰略混合行動有關的結論,這反映了所提出的方法的局限性。
根據設想,未來戰略戰爭的決策將在很大程度上受到基于人工智能(AI)方法的信息產品的影響。特別是混合作戰,是在一個高維和變異的環境中進行的,在這種環境中,對潛在的威脅和機會的評估是人類操作者難以掌握的,戰略規劃必須納入異質的、多功能的和高容量的數據源。因此,基于人工智能方法的算法產生的分類、預測和建議在這種復雜的場景中變得越來越重要。在過去的幾年里,人工智能的方法已經獲得了巨大的發展,有大量的創新和令人尊敬的成果,可以從大型數據集中獲得更高層次的信息。然而,深度學習(DL)方法的一個主要缺點是其固有的黑箱屬性,即由于計算模型的復雜性,其結果是不透明的。例如,后者可能有數百個層和數百萬個參數,這些參數是在訓練階段通過算法發現和優化的。因此,即使結果是準確的,用戶也沒有機會理解它或掌握輸入數據的因果部分。這反過來又會影響到用戶對輔助設備的信任,在兩個方向上都是如此。這個問題在某些民事應用中起著次要的作用,例如語音識別,它經常被應用于與設備的互動,因為除了體面的失望之外沒有潛在的風險。對于其他非常具體的任務,如手寫字符識別,DL算法的性能超出了人類的平均水平,這意味著失敗的可能性很小,因此關于因果關系的問題可能成為附屬品。然而,在許多軍事應用中,當涉及到與人工智能的互動時,人類的信任是一個關鍵問題,因為錯誤的決定可能會產生嚴重的后果,而用戶始終要負責任。這實際上是兩方面的。一方面,操作者往往需要了解人工智能產品的背景,特別是如果這些產品與他或她自己的本能相悖。另一方面,不可理解的技術會對算法信息產品產生偏見,因為很難確定在哪些條件下它會失敗。因此,適當的信任程度可能很難計算。
可解釋的人工智能(XAI)是向黑盒人工智能模型的用戶提供 "透明度"、"可解釋性 "或 "可解釋性 "的方法的集合。這些術語幾乎沒有一個共同的定義,但許多出版物提到了:
XAI不能完全 "解釋 "DL模型,然而,它為工程師或操作員提供了更好地理解特定AI產品背后的因果關系的手段。而且很多時候,這可以幫助看到,從合理的因果關系鏈暗示算法決策或預測的意義上來說,該模型是否是合理的(或不是)。因此,XAI可以成為人工智能模型工程的一個重要工具,用于安全方面的驗證,甚至用于認證過程,以及為操作員提供額外的信息,以支持明智的決策。
雖然關于XAI的大多數文獻都集中在圖像識別的方法上,但這些結果很難轉化為基于特定挑戰性競爭形勢的戰術和戰略決策領域。在本文中,我們研究了人工智能模型在棋盤評估中的可解釋性。對更復雜的軍事戰略模擬的一些影響進行了討論。
本文的結構如下。在下一節中,簡要介紹了選定的XAI方法。然后,這些方法之一(LIME)被應用于棋盤評估問題,以證明在支持信息方面的解釋的質量。在最后一節,得出了結論,并討論了對更復雜的戰爭博弈和模擬的概括。
記錄一個系統或集成系統內所有信息變化的出處,這提供了關于正在做出的決定和促使這些決定的重要信息。從取證的角度來看,這可以用來重新創建決策環境。然而,出處也可以為其他兩個重要功能服務。收集的數據可以支持組件的整合,而生成的圖形數據結構可以通過解釋、總結和告警來支持操作員進行態勢感知。混合戰爭將必然匯集不同決策支持能力,因為決策者必須在多個戰爭領域運作。自主代理將可能在計劃和執行過程中發揮作用,有時能夠在沒有人類干預的情況下做出決定,但人類決策者必須意識到這一點。事實證明,證據圖可以轉化為修辭結構圖(RSG),使代理能夠用自然語言甚至多模態交流,向人類解釋他們的行動。證據還被證明可以加強對計劃執行監控,并可用于向人類或自主代理提供通知,當計劃中使用的信息發生變化時,可能需要重新考慮計劃。隨著我們朝著智能機器在復雜環境中支持人類決策者團隊的方向發展,跟蹤決策及其輸入的需要變得至關重要。
出處是關于實體、活動、代理以及這些概念之間關系的信息[1]。這些信息不僅僅解釋了發生了什么,它還回答了關于實體如何被操縱、何時發生以及誰參與了這個過程的問題。我們很可能熟悉關于追蹤藝術作品出處的新聞和虛構的故事。任何實體的創造、破壞或修改的出處都可以被追蹤。在本文中,我們將重點討論軍事系統內的信息。在指揮與控制(C2)內,信息出處對于記錄行動背后的決策過程是必要的,特別是當自主和人工智能(AI)代理深入參與時。參與某一過程的 "誰 "可能是人類或人工智能代理。
信息出處有幾個目的。在取證方面,出處追蹤提供了參與決策的人和代理,以及數據是如何演化為該決策的。美國公共政策委員會指出,數據出處是算法透明度和問責制的一個明確原則[2]。完整記錄的出處可以闡明數據的依賴性、責任流,并幫助解釋為什么采取某些行動。隨著人工智能和自主代理繼續自動化進程,它們在做出關鍵決策時已變得更加不可或缺[3]。
北約數據開發計劃旨在有效利用數據,開發保持北約軍事和技術優勢所需的技能、人力、敏捷流程、工具、服務和技術。
任務規劃對于建立成功執行任務所需的形勢意識至關重要。全面的計劃有助于預測不同的情況,這一點尤其重要,因為威脅的多樣性和復雜性會增加。規劃過程是團隊的努力,需要收集、分析相關信息并將其整合到一個全面的計劃中。由于第5代平臺、傳感器和數據庫生成的大量信息,這些過程面臨壓力。
本文描述了初始直升機任務規劃環境的創建,在該環境中,來自不同來源的數據被整合、分析和可視化。參與規劃過程的所有人員都可以查看所有可用信息并與之交互。算法處理傳入的數據,為計劃的特定部分提供潛在的解決方案。交互式可視化有助于直觀理解輸入數據和算法輸出,而交互式增強現實環境有助于有效協作。
集成系統和算法是未來智能協作任務規劃的重要組成部分,因為它們可以有效處理與第5代平臺相關的大量多樣的數據流。結合直觀的可視化和協作,這使工作人員能夠構建靈活且響應迅速的操作所需的共享SA。
北約正在進行一項名為聯邦任務網絡(FMN)的重大舉措,旨在在北約成員國和伙伴國家之間建立一個共同的技術和培訓基礎,以便在聯盟行動需要時,他們的部隊能夠對關鍵信息系統進行互操作。FMN不是網絡;它是一套互操作的標準和實踐。作者正在領導MSG-193專家團隊的工作,該團隊一直致力于支持在FMN中納入適當的建模和仿真 (M&S) 標準和實踐。本文總結了FMN規范是如何制定的,包括MSG-193作為“M&S辛迪加”在過程中的作用。然后,該論文強調了NMSG的科學技術與FMN支持的軍事行動之間的文化差距,以及如何有效彌合這種差距。FMN開發的第5和第6螺旋(階段)將是建模和仿真的主要重點,包括任務演練、培訓和決策支持。本文最后總結了當前針對這些螺旋的建議中的M&S技術。
建模和仿真有助于德國武裝部隊后勤的數字化,必須提供靈活性和穩健性等因素,以識別后勤鏈中的風險和弱點。 ESG,作為一家擁有多年軍事經驗的德國軍事技術公司,我們展示了成功的仿真和分析項目(例如,“以歐洲戰斗機為例,預測德國空軍的作戰能力”或“基于仿真的醫療救援鏈分析”),并提出進一步的行動方向,例如基于仿真的分析,以優化軍事供應鏈中的加法生產或自主系統的最佳概念。通過對軍事供應鏈使用后勤仿真,可以檢查和優化其穩健性和可持續性。這種基于數據的決策支持方法(工具 AnyLogic,德國聯邦國防軍基于仿真的分析指南和模型檔案)。它聚焦于一個關鍵問題,例如“在某些參數/因素/影響下,系統的材料運行準備情況如何更高概率的為在未來發展,以及什么可以提高系統的性能?”如本講座所述那樣提供各種優勢。
圖2-1 模型開發流程
圖2-2 系統結構
成功完成地下作業需要高度專業化的能力和由最新工具輔助的準確規劃。奧地利軍事學院的NIKE研究小組旨在為這些非常特殊的作戰環境提供決策、規劃和培訓。3D模型、平面圖、地圖或激光掃描等異構數據源的快速數據集成和可視化,以及從地下結構內部的傳感器和攝像頭收集的操作員信息,提供了虛擬進入通常看不見的裝置的可能性。BORIS(基于瀏覽器的空間定向)初始HTML模型、地下作業任務工具 (SOMT) 或快速隧道建模工具 (FTMT) 等專用工具通過創建虛擬的地下任務區域來提高快速可視化。在擴展現實 (XR) 應用程序中,改進的空間理解顯著改善了決策,并支持同步任務規劃和執行。由于地下服務結構的運營商和行動部隊之間的密切合作和信息交流是成功的先決條件,所有相關因素和行動者的整合將大大增加全面合作。該項目通過在真正全面的通用作戰圖中顯示相關信息來增強通用視角,從而實現更準確和精確的行動,減少自身損失和附帶損害。
步兵模擬(IWARS)是一個實體級的戰斗模擬,通常用于估計使用不同裝備(包括手榴彈和榴彈發射器)造成的作戰效能差異。當一枚模擬手榴彈在IWARS中爆炸時,對附近人員的影響是通過查詢一個高分辨率模型預先計算出的喪失能力的概率值來確定的。這個值取決于許多因素,因此需要一個大的查詢表,可能會超過數據庫的最大容量。為了解決這個問題,創建了一個神經網絡輸入選項,讓分析師有機會使用高度壓縮的數據而不犧牲準確性或運行時間。以前的壓縮技術要么不太準確,要么提供較低的壓縮率。
這項研究是在2019財年進行的,是題為 "機器學習技術協助生成項目級性能估計,用于班級和士兵級作戰評估 "的研究的一部分。該研究的另一半將在另一份報告中討論。在這一半的研究中,梯度增強的決策樹被用來成功地預測人類主題專家(SMEs)的代理決定。(當所要求的系統沒有數據時,一個類似的系統通常被用作代用。) 訓練有素的決策樹模型可以用來為未來的數據請求建議代理,減少滿足這些請求所需的時間并提高所提供數據的準確性。
步兵模擬(IWARS)是一個實體級的戰斗模擬,重點是下馬的士兵、班和排,通常被陸軍用來估計使用不同裝備造成的作戰效率的差異。特別是,IWARS被用來比較不同手榴彈和榴彈發射器的有效性[1, 2, 3],幫助指導這些系統的開發和采購。
當一個模擬的手榴彈在IWARS中爆炸時,對附近人員的影響是通過查詢一個高分辨率模型預先計算出來的喪失能力的概率(P(I))值來確定的。P(I)值取決于許多因素,包括目標的姿態、防彈衣和任務(攻擊或防御),以及彈藥的下落角度、爆炸高度、爆炸到目標的范圍、爆炸到目標的方位角和爆炸后的時間。由于有這么多的因素,P(I)查詢表可能非常大。事實上,一個高分辨率的查詢表往往太大,無法裝入IWARS數據庫的最大容量約150兆字節。
為了解決這個問題,分析人員可以將IWARS數據庫分成更小的部分。例如,對12種新型空爆手榴彈的分析可以通過建立12個IWARS數據庫來進行,每種手榴彈一個數據庫。如果描述一種手榴彈的殺傷力數據太大,或者在特定情況下需要一種以上的手榴彈,但只有一種手榴彈的殺傷力數據可以放入一個數據庫,那么這種策略就會失敗。此外,即使這種策略是可行的,也有缺點:任何額外的數據庫變化都必須被鏡像12次,而且數據庫的大小會降低IWARS和數據庫編輯工具的速度。
另外,分析人員可以通過使用低分辨率的P(I)數據來規避數據庫的大小限制。這通常是通過刪除某些突發高度和突發到目標的范圍,并將突發到目標的方位角組的P(I)值平均化來實現的。這降低了模擬的準確性,也降低了對結果的信心。
本文的目的是記錄這個問題的一個新的解決方案,這個方案在所有情況下都有效,而且幾乎沒有精度損失或模型運行時間的增加。它可以描述如下:
1.訓練人工神經網絡來學習P(I)值。然后,神經網絡的參數值將對原始P(I)數據進行編碼,從而對其進行壓縮。
2.在IWARS中重新創建這些神經網絡,以便在需要時估計P(I)值。
任務規劃對于建立成功執行任務所需的態勢感知至關重要。全規劃有助于預測不同的情況,這一點尤其重要,因為威脅的多樣性和復雜性會增加。規劃過程是需要收集、分析相關信息并將其整合到一個全面的規劃中。由于第 5 代平臺、傳感器和數據庫生成的大量信息,這些流程面臨壓力。
本文描述了軍用直升機任務規劃環境的創建,在該環境中,不同來源的數據被整合、分析和可視化。參與規劃過程的所有人員都可以查看所有可用信息并與之交互。算法處理后的數據,為規劃的特定部分提供潛在的解決方案。交互式可視化有助于直觀理解輸入數據和算法輸出,而交互式增強現實環境有助于有效協作。
集成系統和算法是未來智能、協作任務規劃的重要組成部分,因為它們允許有效處理與第 5 代平臺相關的大量多樣的數據流。結合直觀的可視化和協作,這使工作人員能夠構建靈活且響應迅速的操作所需的共享 態勢感知。
圖1: 增強協同技術下的智能任務規劃(IMPACT)
IMPACT系統由三層組成(見圖2):
圖2:從功能角度看IMPACT架構。