任務規劃對于建立成功執行任務所需的形勢意識至關重要。全面的計劃有助于預測不同的情況,這一點尤其重要,因為威脅的多樣性和復雜性會增加。規劃過程是團隊的努力,需要收集、分析相關信息并將其整合到一個全面的計劃中。由于第5代平臺、傳感器和數據庫生成的大量信息,這些過程面臨壓力。
本文描述了初始直升機任務規劃環境的創建,在該環境中,來自不同來源的數據被整合、分析和可視化。參與規劃過程的所有人員都可以查看所有可用信息并與之交互。算法處理傳入的數據,為計劃的特定部分提供潛在的解決方案。交互式可視化有助于直觀理解輸入數據和算法輸出,而交互式增強現實環境有助于有效協作。
集成系統和算法是未來智能協作任務規劃的重要組成部分,因為它們可以有效處理與第5代平臺相關的大量多樣的數據流。結合直觀的可視化和協作,這使工作人員能夠構建靈活且響應迅速的操作所需的共享SA。
可解釋的人工智能(XAI)提供了克服這一問題的手段,它基于有關深度學習(DL)算法結果的額外補充信息。雖然完全透明對于復雜的DL算法來說仍然是不可行的,但解釋有助于用戶在關鍵情況下對AI信息產品進行判斷。應該指出的是,XAI是透明度、因果關系、可信度、信心、公平、信心和隱私等方面的總稱。因此,基本的方法論是多方面的。一種已經流行的方法是局部可解釋模型-預知解釋(LIME)方法,因為它可以很好地應用于各種應用中的不同模型。在本文中,LIME算法是在戰略運營的決策建議背景下進行研究的。在簡單介紹了其概念后,介紹了文獻中的應用。然后,一個戰略博弈的場景被認為是軍事戰爭的替代環境。一個基于DL的國際象棋人工智能被做成 "可解釋的",以評估信息對人類決定者的價值。得出了與戰略混合行動有關的結論,這反映了所提出的方法的局限性。
根據設想,未來戰略戰爭的決策將在很大程度上受到基于人工智能(AI)方法的信息產品的影響。特別是混合作戰,是在一個高維和變異的環境中進行的,在這種環境中,對潛在的威脅和機會的評估是人類操作者難以掌握的,戰略規劃必須納入異質的、多功能的和高容量的數據源。因此,基于人工智能方法的算法產生的分類、預測和建議在這種復雜的場景中變得越來越重要。在過去的幾年里,人工智能的方法已經獲得了巨大的發展,有大量的創新和令人尊敬的成果,可以從大型數據集中獲得更高層次的信息。然而,深度學習(DL)方法的一個主要缺點是其固有的黑箱屬性,即由于計算模型的復雜性,其結果是不透明的。例如,后者可能有數百個層和數百萬個參數,這些參數是在訓練階段通過算法發現和優化的。因此,即使結果是準確的,用戶也沒有機會理解它或掌握輸入數據的因果部分。這反過來又會影響到用戶對輔助設備的信任,在兩個方向上都是如此。這個問題在某些民事應用中起著次要的作用,例如語音識別,它經常被應用于與設備的互動,因為除了體面的失望之外沒有潛在的風險。對于其他非常具體的任務,如手寫字符識別,DL算法的性能超出了人類的平均水平,這意味著失敗的可能性很小,因此關于因果關系的問題可能成為附屬品。然而,在許多軍事應用中,當涉及到與人工智能的互動時,人類的信任是一個關鍵問題,因為錯誤的決定可能會產生嚴重的后果,而用戶始終要負責任。這實際上是兩方面的。一方面,操作者往往需要了解人工智能產品的背景,特別是如果這些產品與他或她自己的本能相悖。另一方面,不可理解的技術會對算法信息產品產生偏見,因為很難確定在哪些條件下它會失敗。因此,適當的信任程度可能很難計算。
可解釋的人工智能(XAI)是向黑盒人工智能模型的用戶提供 "透明度"、"可解釋性 "或 "可解釋性 "的方法的集合。這些術語幾乎沒有一個共同的定義,但許多出版物提到了:
XAI不能完全 "解釋 "DL模型,然而,它為工程師或操作員提供了更好地理解特定AI產品背后的因果關系的手段。而且很多時候,這可以幫助看到,從合理的因果關系鏈暗示算法決策或預測的意義上來說,該模型是否是合理的(或不是)。因此,XAI可以成為人工智能模型工程的一個重要工具,用于安全方面的驗證,甚至用于認證過程,以及為操作員提供額外的信息,以支持明智的決策。
雖然關于XAI的大多數文獻都集中在圖像識別的方法上,但這些結果很難轉化為基于特定挑戰性競爭形勢的戰術和戰略決策領域。在本文中,我們研究了人工智能模型在棋盤評估中的可解釋性。對更復雜的軍事戰略模擬的一些影響進行了討論。
本文的結構如下。在下一節中,簡要介紹了選定的XAI方法。然后,這些方法之一(LIME)被應用于棋盤評估問題,以證明在支持信息方面的解釋的質量。在最后一節,得出了結論,并討論了對更復雜的戰爭博弈和模擬的概括。
混合戰爭為沖突推波助瀾,以削弱對手的實力。相關的行動既發生在物理世界,也發生在媒體空間(通常被稱為 "信息空間")。防御混合戰爭需要全面的態勢感知,這需要在兩個領域,即物理和媒體領域的情報。為此,開源情報(OSInt)的任務是分析來自媒體空間的公開信息。由于媒體空間非常大且不斷增長,OSInt需要技術支持。在本文中,我們將描述對物理世界的事件以及媒體事件的自動檢測和提取。我們將討論不同類型的事件表征如何相互關聯,以及事件表征的網絡如何促進情景意識。
開源情報(OSInt)的任務是探索和分析可公開獲取的媒體空間,以收集有關(潛在)沖突的信息,以及其他主題。所謂 "媒體空間",我們指的是通過傳統媒體(如電視、廣播和報紙)以及社交媒體(包括各種網絡博客)傳播的非常龐大、快速且持續增長的多語種文本、圖像、視頻和音頻數據語料庫。社會媒體大多是平臺綁定的。平臺包括YouTube、Twitter、Facebook、Instagram和其他[1,2]。在很大程度上,媒體空間可以通過互聯網訪問。很多部分是對公眾開放的。然而,也存在一些半開放的區域,其中有潛在的有價值的信息,但并不打算讓所有人都能接觸到,例如Telegram和Facebook頁面。
媒體空間提供關于物理世界的信息:發生了什么?哪些事件目前正在進行?未來計劃或預測會發生什么?它對物理世界的事件反應非常快,也就是說,幾乎是立即提供信息[3]。因此,媒體空間似乎是物理世界中事件的一個有希望的 "傳感器"。然而,從鋪天蓋地的大量信息中檢索出特別相關的信息仍然是一個挑戰,因為到目前為止,所提供的大多數信息是完全不相關的,至少對軍隊來說是如此。此外,媒體空間并不一致--它包括真實和虛假信息,因此,事實核查是一個進一步的挑戰。
除了作為物理世界的傳感器,媒體空間還是意識形態、意見和價值觀的論壇。它是一個重要的空間,用于協商一個社會認為是允許的、規定的或禁止的東西,并用于表現情緒和偏見。因此,它已成為混合戰爭的戰場,即以 "通過暴力、控制、顛覆、操縱和傳播(錯誤的)信息"([4],第2頁)為目的進行的行動。(錯誤的)信息行動導致我們稱之為 "媒體事件"。媒體事件可以被觸發,以影響情緒、意識形態和公眾對物質世界的看法。
本文件是北約 IST-151 研究任務組 (RTG) 活動的最終報告,題為“軍事系統的網絡安全”。該 RTG 專注于研究軍事系統和平臺的網絡安全風險評估方法。 RTG 的目標如下:
? 協作評估軍事系統的網絡安全,并在 RTG 的北約成員國之間共享訪問權限;
? 在 RTG 的北約成員國之間共享風險評估方法和結果;
? 將 RTG 的北約成員國使用的評估方法整合到一個連貫的網絡安全風險評估方法中,以使北約國家受益。
軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。他們大量使用數據總線,如 MIL-STD-1553A/B、CAN/MilCAN、RS-422/RS-485、AFDX 甚至普通以太網,以及戰術通信的舊標準,如 MIL-STD-188C 和 Link 16。此外,捕獲器、傳感器、執行器和許多嵌入式系統是擴展攻擊面的額外無人保護的潛在輸入。結果是增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務的成功和公共安全至關重要。
軍事系統和平臺是網絡攻擊的首選目標,不是因為它們像消費電子產品那樣普遍,而是因為它們潛在的戰略影響。一旦受到影響,就可以實現各種短期和長期影響,從拒絕能力到秘密降低其有效性或效率。因此,軍隊必須在各個層面解決網絡安全問題:戰略層面,同時獲取平臺和系統;作戰層面,同時規劃軍事任務和戰術。
北約國家擁有大量可能面臨網絡攻擊的軍事平臺和系統。因此,北約將受益于利用當前的流程和方法來設計更安全的系統并評估當前系統的網絡安全。
本報告介紹了針對軍事系統和平臺量身定制的網絡安全評估方法,該方法由 RTG 團隊成員合作開發,并建立在他們的經驗和專業知識之上。團隊成員已經使用的流程被共享、分析、集成和擴充,以產生本報告中描述的流程。本報告的目標受眾是愿意評估和減輕其軍事系統的網絡安全風險的決策者。
圖一:網絡安全評估過程的五個主要步驟。
第 2 節介紹了 RTG 團隊在其存在的三年中用于開發流程的方法。第 3 節列出了可以應用該過程的系統的一些特征。最后,第 4 節描述了評估流程,而第 5 節總結本報告。
軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。這導致增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務和公共安全的成功至關重要。
絕對的網絡安全是不存在的。必須通過迭代風險評估持續管理網絡安全。傳統 IT 系統存在許多網絡安全風險管理框架和流程。然而,在軍事平臺和系統方面,情況遠非如此。本文檔介紹了針對軍事系統量身定制的網絡安全風險評估流程。該流程由北約 IST-151 研究任務組 (RTG) 活動的團隊成員開發,該活動名為“軍事系統的網絡安全”。該過程可以應用于傳統的 IT 和基于固件的嵌入式系統,這些系統在軍事平臺和系統中無處不在。
北約數據開發計劃旨在有效利用數據,開發保持北約軍事和技術優勢所需的技能、人力、敏捷流程、工具、服務和技術。
戰術軍事陸地行動嚴重依賴地形,因此在軍事決策過程中始終需要考慮地形。地形相關(地理空間)戰術信息產品,例如最佳路線或近場途徑通常由情報單元中的地形分析師確定,但也可以自動生成。這些產品可用于決策支持工具,以支持規劃過程。當在這些決策支持工具中使用機器學習時,這些產品還有助于對軍事單位的行為進行建模,這是通過機器學習找到表現良好的行動方案所需的。這項工作概述了地理空間產品,并將它們分類為基于層的體系結構,其中產品基于底層的產品。我們進一步規范了創建機器學習所需的戰術地形模型和戰術任務模型的步驟。基于兩個實際示例,我們演示了如何在提出的架構中生成地理空間產品,這些產品如何用于機器學習以進行戰術規劃,以及如何將學習到的行動和情報產品提供給規劃者以支持決策。
北約正在進行一項名為聯邦任務網絡(FMN)的重大舉措,旨在在北約成員國和伙伴國家之間建立一個共同的技術和培訓基礎,以便在聯盟行動需要時,他們的部隊能夠對關鍵信息系統進行互操作。FMN不是網絡;它是一套互操作的標準和實踐。作者正在領導MSG-193專家團隊的工作,該團隊一直致力于支持在FMN中納入適當的建模和仿真 (M&S) 標準和實踐。本文總結了FMN規范是如何制定的,包括MSG-193作為“M&S辛迪加”在過程中的作用。然后,該論文強調了NMSG的科學技術與FMN支持的軍事行動之間的文化差距,以及如何有效彌合這種差距。FMN開發的第5和第6螺旋(階段)將是建模和仿真的主要重點,包括任務演練、培訓和決策支持。本文最后總結了當前針對這些螺旋的建議中的M&S技術。
成功完成地下作業需要高度專業化的能力和由最新工具輔助的準確規劃。奧地利軍事學院的NIKE研究小組旨在為這些非常特殊的作戰環境提供決策、規劃和培訓。3D模型、平面圖、地圖或激光掃描等異構數據源的快速數據集成和可視化,以及從地下結構內部的傳感器和攝像頭收集的操作員信息,提供了虛擬進入通常看不見的裝置的可能性。BORIS(基于瀏覽器的空間定向)初始HTML模型、地下作業任務工具 (SOMT) 或快速隧道建模工具 (FTMT) 等專用工具通過創建虛擬的地下任務區域來提高快速可視化。在擴展現實 (XR) 應用程序中,改進的空間理解顯著改善了決策,并支持同步任務規劃和執行。由于地下服務結構的運營商和行動部隊之間的密切合作和信息交流是成功的先決條件,所有相關因素和行動者的整合將大大增加全面合作。該項目通過在真正全面的通用作戰圖中顯示相關信息來增強通用視角,從而實現更準確和精確的行動,減少自身損失和附帶損害。
先進的任務規劃軟件包(如 AFSIM)使用傳統的人工智能方法,包括分配算法和腳本狀態機來控制軍用飛機、艦船和地面單位的模擬行為。我們開發了一種新穎的 AI 系統,該系統使用強化學習為軍事交戰生成更有效的高級策略。然而,它不是從頭開始學習具有初始隨機行為的策略,而是利用現有的傳統 AI 方法來自動化簡單的低級行為,簡化問題的協作多智能體方面,并利用可用的先驗知識引導學習以實現數量級更快的訓練。
圖 1 - 涉及空中、海上和地面單位的復雜 AFSIM 場景示例。分析師必須對所有這些平臺進行建模,并使用基于規則的系統指定它們的行為。
圖 2 - 我們最初探索的 AFSIM 場景的概念圖。許多紅色和藍色的戰斗機被放置在地圖上的隨機位置。基線腳本 AI 用于控制紅隊,我們的新混合 RL 智能體學習擊敗紅隊的策略。
圖 3 - 簡化的 MA2D 環境,完全用 Python 編寫。此示例包含兩個藍色戰斗機和兩個紅色戰斗機。深灰色區域代表每個單位的武器區域。目標是通過讓每個對手進入該區域來摧毀所有對手,同時避免類似地摧毀友軍飛機。這種簡化消除了對導彈飛行建模的需要。
圖 4 - 我們的混合架構概述,將高級強化學習器與低級腳本行為策略配對。強化學習代理選擇腳本行為,然后生成發送到環境的實際控制輸出。
任務規劃對于建立成功執行任務所需的態勢感知至關重要。全規劃有助于預測不同的情況,這一點尤其重要,因為威脅的多樣性和復雜性會增加。規劃過程是需要收集、分析相關信息并將其整合到一個全面的規劃中。由于第 5 代平臺、傳感器和數據庫生成的大量信息,這些流程面臨壓力。
本文描述了軍用直升機任務規劃環境的創建,在該環境中,不同來源的數據被整合、分析和可視化。參與規劃過程的所有人員都可以查看所有可用信息并與之交互。算法處理后的數據,為規劃的特定部分提供潛在的解決方案。交互式可視化有助于直觀理解輸入數據和算法輸出,而交互式增強現實環境有助于有效協作。
集成系統和算法是未來智能、協作任務規劃的重要組成部分,因為它們允許有效處理與第 5 代平臺相關的大量多樣的數據流。結合直觀的可視化和協作,這使工作人員能夠構建靈活且響應迅速的操作所需的共享 態勢感知。
圖1: 增強協同技術下的智能任務規劃(IMPACT)
IMPACT系統由三層組成(見圖2):
圖2:從功能角度看IMPACT架構。
?
對于群體智能中的人類操作員來說,關鍵情況下的決策支持至關重要。自主系統共享的大量數據很容易使人類決策者不堪重負,因此需要支持以智能方式分析數據。為此,使用了用于評估情況和指示可疑行為或統計異常值的自主系統。這增強了他們的態勢感知能力并減少了工作量。因此,在這項工作中,強調為檢測監視任務中的異常而開發的數據融合服務,例如在海事領域,可以適應支持集群智能的運營商。此外,為了使人類操作員能夠理解群體的行為和數據融合服務的結果,引入了可解釋的人工智能 (XAI) 概念。通過為某些決策提供解釋,這使得自主系統的行為更容易被人類理解。
作者解決了由于自主系統共享大量數據而導致的信息過載問題。為了緩解這個問題,他們建議通過兩種智能數據分析方式來幫助人類操作員。第一種方法是自動異常檢測,這可能會加強人類操作員的 態勢感知SA 并減少他們的工作量。第二種方法是可解釋的人工智能 (XAI) 概念;它們有可能使群體行為以及異常檢測結果更易于理解。
作者認為,控制一群無人機仍然具有挑戰性。一方面,(半自動化)群體代理“必須決定行動方案”;另一方面,人類操作員必須決定他們的行動,例如與群體互動。提出的建議力求改善人在循環中。考慮到海上監視的應用,使用非固定代理的動態方法具有幾個優點。首先,某些場景只能使用動態方法進行管理;其次,與固定監視傳感器相比,代理更便宜;第三,在多個地點靈活使用代理可以減少操作群體所需的人員數量。然而,情況評估仍然需要知情的操作員。
作者認為,在海洋領域用于船舶分析的異常檢測算法可能適用于引入以下場景的群體。“假設我們有一個群體來支持海上船只,這些船只不僅會收集它們自己的傳感器系統可用的數據,還會收集所有資產的數據。所有來源收集的信息都需要融合成一幅連貫的畫面。這不應僅限于 JDL 數據融合的第一級,而應包括更高級別的數據融合過程,以獲取有關附近所有對象的可用信息。” 數據驅動的方法能夠應對這種情況。文獻提供了三種檢測位置和運動異常的方法:統計解釋為與正常行為相比的異常值;聚類分析聚類相似的軌跡和確切的路線;用于建模正常移動模式的深度學習方法。為了應對更復雜的場景,包括船舶周圍環境(基礎設施、地理、天氣等)在內的算法是必要的。在某些復雜異常的情況下,區分正常和異常行為需要基于規則、基于模糊、多智能體或基于概率圖形模型的算法。對于所有提到的算法類別,作者都指出了大量的示例算法。
一些算法是黑盒模型,因此,它們的解釋對于人類操作員來說是復雜的。XAI 概念可以幫助緩解這個問題。XAI 概念旨在“提供道德、隱私、信心、信任和安全”,并努力在“它已經做了什么、現在正在做什么以及接下來會發生什么”中明確決策。,從而提高了人工操作員的 SA。考慮到 XAI 模型,模型特定方法(僅限于某些數學模型)可以與模型無關(適用于任何類型的模型)方法區分開來。
在目前的貢獻中,重點是與模型無關的方法。考慮到這些,局部解釋方法(解釋整個模型的單個預測結果)可以與全局解釋方法(解釋整個模型的行為,例如以規則列表的形式)區分開來。此外,作者使用特征屬性、路徑屬性和關聯規則挖掘來區分方法。通過特征屬性,“用戶將能夠了解他們的網絡依賴于哪些特征”;方法示例是提供全局和局部可解釋性的 Shapley Additive Explanations (SHAP) 和指示“模型在進行預測時考慮的輸入特征” 的局部可解釋模型無關解釋 (LIME)。路徑集成梯度(PIG,使用局部解釋)等路徑屬性提供了對模型預測貢獻最大的特征,從而深入了解導致決策的推理。關聯規則挖掘(ARM)是另一種使用全局解釋的方法,發現大型數據集中特征之間的相關性和共現。ARM 方法使用簡單的 if-then 規則,因此被認為是最可解釋的預測模型。可伸縮貝葉斯規則列表 (SBRL)、基尼正則化 (GiniReg) 和規則正則化 (RuleReg) 技術被認為適用于監視任務。
作者認為,使用這樣的 XAI 概念,人類操作員(決策者)可以更好地理解、更好地控制和更好地與一群自主代理進行通信,尤其是在具有挑戰性的環境中。總而言之,將異常檢測和 XAI 概念這兩種方法應用于人類在環、用戶對群體智能的理解和信任可能會得到改善。